Chapter 1

i(t)=dqdtq(t)=i(t)dtP=v×i=i×Wqv=WqW=v×q=v×idt \begin{align} i(t)&=\frac{dq}{dt} \Leftrightarrow q(t)=\int i(t)\cdot dt\\ P&=v\times i=i\times \frac{W}{q}\\ v&=\frac{W}{q} \Leftrightarrow W=v\times q = \int v\times i \cdot dt\\ \end{align}

Chapter 4

Load line: ix=vxRT+vtRTGeneral: Av=voutvinInverting: Av=RfRinNon Inverting: Av=1+RfRin \begin{align} \text{Load line: } i_x &= -\frac{v_x}{R_T}+ \frac{v_t}{R_T}\\ \text{General: } A_v &= \frac{v_{out}}{v_{in}}\\ \text{Inverting: } A_v &= -\frac{R_f}{R_{in}}\\ \text{Non Inverting: } A_v &= 1+\frac{R_f}{R_{in}}\\ \end{align}

Inverting

Non-inverting

Chapter 5

Capacitor

C=qvi(t)=Cdvdtv(t)=1C0ti(t)dtSeries: 1CT=i=0N1CiParallel: CT=i=0NCiEnergy: E=12Cv2 \begin{align} C &= \frac{q}{v}\\ i(t) = C\frac{dv}{dt} &\Leftrightarrow v(t) = \frac{1}{C}\int_0^t i(t)\cdot dt\\ \text{Series: }\frac{1}{C_T} &= \sum^N_{i=0}\frac{1}{C_i}\\ \text{Parallel: }C_T &= \sum^N_{i=0}C_i\\ \text{Energy: }E &= \frac{1}{2}Cv^2 \end{align}

Differential equation solution

Where vs=vv_s=v_\infty:

τ=R×CvC(t)={v0t0v+(v0v)et/τt>0v0et/τ (Natural response, no input)v(1et/τ) (Forced response, input)iC(t)=vsvC(t)R=(v0v)et/τR \begin{align} \tau &= R\times C\\ v_C(t) &= \begin{cases} \begin{array}{lr} v_0 & t\leq 0\\ v_\infty+(v_0-v_\infty)e^{-t/\tau} & t > 0 \end{array} \end{cases}\\ & v_0 e^{-t/\tau} \text{ (Natural response, no input)}\\ & v_\infty\left(1-e^{-t/\tau}\right) \text{ (Forced response, input)}\\ i_C(t) &= \frac{v_s-v_C(t)}{R}=\frac{-(v_0-v_\infty)e^{-t/\tau}}{R} \end{align}

  1. Remove all independent sources, find equivalent resistance and capacitance, find τ\tau.
  2. Set C as open circuit, find initial capacitor voltage v0v_0 at t=0t=0
  3. Set C as open circuit, find final capacitor voltage vv_\infty at tt\to\infty

Inductor

L=λiv(t)=Ldidti(t)=1L0tvdtSeries: LT=i=0NLiParallel: 1LT=i=0N1LiEnergy: E=12Li2 \begin{align} L &= \frac{\lambda}{i}\\ v(t)=L\frac{di}{dt} &\Leftrightarrow i(t)=\frac{1}{L}\int_0^tv\cdot dt\\ \text{Series: }L_T &= \sum^N_{i=0}L_i\\ \text{Parallel: }\frac{1}{L_T} &= \sum^N_{i=0}\frac{1}{L_i}\\ \text{Energy: }E &= \frac{1}{2}Li^2 \end{align}

Differential equation solution

Where vs/R=iv_s/R=i_\infty:

τ=LRi(t)={i0t0i+(i0i)et/τt>0i0et/τ (Natural response, no input)i(1et/τ) (Forced response, input) \begin{align} \tau &= \frac{L}{R}\\ i(t) &= \begin{cases} \begin{array}{lr} i_0 & t\leq 0\\ i_\infty+(i_0-i_\infty)e^{-t/\tau} & t > 0 \end{array} \end{cases}\\ & i_0 e^{-t/\tau} \text{ (Natural response, no input)}\\ & i_\infty\left(1-e^{-t/\tau}\right) \text{ (Forced response, input)}\\ \end{align}

Voltage drop in DC for capacitor and inductor at steady state

CAPACITOR: INDUCTOR: v_T _ v_T _ | <- V_1 | <- V_1 C1 = ) <- V_D1 L1 3 ) <- V_D1 | | C2 = C2 3 | | ... ... | | CN = LN 3 | | GND * GND *

Capacitor

Current through capacitors in series is the same, so all capacitors have same charge stored qq.

Voltage drop over capacitor ivDi=vTCTCiVoltage divider: vi=vTCT1Ci+1Ci+1++1CN\begin{align} \text{Voltage drop over capacitor $i$: } v_{Di} &= v_T\frac{C_T}{C_i}\\ \text{Voltage divider: } v_i &= v_T\frac{C_T}{\frac{1}{C_i}+\frac{1}{C_{i+1}}+\dots+\frac{1}{C_N}}\\ \end{align}

Inductor

No voltage drop in steady state (Inductor is a short circuit)

Chapter 7

Maximum power transfer in AC

Condition: ZL=ZSMaximum power to load (50%): 2Pavg=Prms2=Pmax=VS24RS=VL24RLTotal maximum power: 2Pavg=Prms2=Pmax=VS22RS \begin{align} \text{Condition: } &\overline{Z_L} = \overline{Z_S^*}\\ \text{Maximum power to load (50\%): } &2P_\text{avg}=P_\text{rms}\cdot\sqrt{2} = P_\text{max} = \frac{{|V_S|}^2}{4R_S}\\ & = \frac{{|V_L|}^2}{4R_L}\\ \text{Total maximum power: } &2P_\text{avg}=P_\text{rms}\cdot\sqrt{2} = P_\text{max} = \frac{{|V_S|}^2}{2R_S} \end{align}

Complex Power

Where Vˉ=Vθ\bar{V}=V\angle\theta and Iˉ=Iϕ\bar{I}=I\angle\phi:

Complex [VA]: Sˉ=Vˉrms×Iˉrms=Vˉ×Iˉ2=VI2(θϕ)Apparent [VA]: SReal [W]: P=Scos(θϕ)=Re(Sˉ)Reactive [VAR]: Q=Scos(θϕ)=Im(Sˉ)Q=Ptan(arccos(Power factor))Power Factor=PS=cos(arctan(QP)) \begin{align} \text{Complex [VA]: }\bar{S} &= \bar{V}_\text{rms}\times \bar{I}_\text{rms}^* = \frac{\bar{V}\times \bar{I}^*}{2} = \frac{VI}{2}\angle(\theta-\phi)\\ \text{Apparent [VA]: } |S|\\ \text{Real [W]: } P &= |S| \cos(\theta-\phi) = \text{Re}(\bar{S})\\ \text{Reactive [VAR]: } Q &= |S| \cos(\theta-\phi) = \text{Im}(\bar{S})\\ Q &= P\tan(\arccos(\text{Power factor}))\\ \text{Power Factor} &= \frac{P}{|S|} = \cos\left(\arctan\left(\frac{Q}{P}\right)\right) \end{align}

Where Sˉ=Sφ\bar{S}=|S|\angle\varphi

φ=arctan(QP) \varphi = \arctan\left(\frac{Q}{P}\right)

Lagging Leading
Voltage Current behind Current ahead
Load type Inductive Capacitive
QQ Q>0Q>0 Q<0Q<0
φ\varphi φ>0\varphi>0 φ<0\varphi<0

Chapter 8

Constants

μ0=4π×107 \mu_0=4\pi \times 10^{-7}

Faraday’s law: ε=NdΦdtAmpere’s law: B=μ0I2πr \begin{align} \text{Faraday's law: }\varepsilon &= -N\frac{d\varPhi}{dt}\\ \text{Ampere's law: }B &= \frac{\mu_0 I}{2\pi r}\\ \end{align}

Transformer

Step up: n>1n>1
Step down: n<1n<1

VsVp=NsNp=ipis=nZˉin=1n2ZˉL \begin{align} \frac{V_s}{V_p} &= \frac{N_s}{N_p}=\frac{i_p}{i_s}=n\\ \bar{Z}_{in} &= \frac{1}{n^2}\bar{Z}_L \end{align}

Motor

For permanent motors, define permanent torque constant kTP=kTΦk_{TP}=k_T\varPhi

T=kT×Φ×ia=kTP×iaPmech=ωmechT=ωmech×kTP×ia \begin{align} T &= k_T\times\varPhi \times i_a = k_{TP} \times i_a\\ P_\text{mech} &= \omega_\text{mech} T = \omega_\text{mech} \times k_{TP}\times i_a \end{align}

Back emf

Define for permanent motors, define permanent armature constant kaP=kaΦk_{aP} = k_a\varPhi
Note, back emf should oppose vav_a and iai_a

eb=ka×Φ×ωmech=kaP×ωmech \begin{align} e_b=k_a\times \varPhi\times \omega_\text{mech} = k_{aP} \times\omega_\text{mech}\\ \end{align}

Summary

For ideal motor, torque and armature constants are the same: ka=kTk_a=k_T
Define pp as number of magnetic poles and MM as the number of parallel paths in armature winding.

Power dissipated: Pe=eb×ia=kaP×ωmech×iaConstants for ideal motor: ka=kT=pN2πM \begin{align} \text{Power dissipated: } P_e &= e_b\times i_a = k_{aP} \times \omega_\text{mech} \times i_a\\ \text {Constants for ideal motor: } k_a &= k_T = \frac{pN}{2\pi M} \end{align}

For permanent magnet DC motor in DC steady state:
Define viscous frictional damping coefficient bb and load torque TLT_L

{0=vaiaRakaPωmech=vaiaRaebkTPia=TL+b×ωmechAnalog speed control (Voltage): T=kTPRvskTPkaPRωmechAnalog speed control (Current): T=kTPRSRiskTPkaPRωmech \begin{align} &\begin{cases} 0 &= v_a - i_a R_a - k_{aP} \omega_\text{mech} = v_a - i_a R_a - e_b \\ k_{TP} i_a &= T_L + b\times \omega_\text{mech} \end{cases}\\ &\text{Analog speed control (Voltage): } T = \frac{k_{TP}}{R}v_s - \frac{k_{TP}k_{aP}}{R} \omega_\text{mech}\\ &\text{Analog speed control (Current): } T = \frac{k_{TP}R_S}{R}i_s - \frac{k_{TP}k_{aP}}{R} \omega_\text{mech} \end{align}