some DC machine stuff, pdf script to concatenate solutions

This commit is contained in:
Peter 2022-10-28 22:16:04 +08:00
parent 2c1e3d91d8
commit 9417b0a466
11 changed files with 95 additions and 1 deletions

2
.gitignore vendored
View File

@ -1 +1 @@
etc/
*.pdf

BIN
2022-10-28-15-52-14.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

BIN
2022-10-28-15-52-44.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
2022-10-28-15-52-58.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

BIN
2022-10-28-15-53-29.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

BIN
2022-10-28-16-30-51.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

BIN
2022-10-28-18-21-53.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

BIN
2022-10-28-18-22-17.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

BIN
2022-10-28-18-28-51.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

View File

@ -8,6 +8,7 @@ I draw them with a mouse
- Double check all are in the correct phase! Multiplications and divisions by $\sqrt{3}$ or $3$ where necessary must be checked! Try annotating everything that does not have an associated phase.
- Check conjugate in current. $\bar{S}=\bar{V}\bar{I}^*$
- Check transformer parameters are referred to the proper side
#### Y-$\Delta$ transformation (Balanced case)
@ -200,3 +201,87 @@ P_\text{mech}&=P_\text{F\\\&W}+P_\text{misc}+P_\text{out}
$$
---
### Magnetic circuit analogy
| Magnetic circuit | name | | Electrical circuit | name |
| ----------------------------------- | ---------------------------- | --- | ------------------------ | ----------------------- |
| $$\mathcal F$$ | Magnetomotive force [A-turn] | | $$\mathcal E$$ | Electromotive force [V] |
| $$\mathcal R$$ | Reluctance [1/H] | | $$R$$ | Resistance [$\Omega$] |
| $$\Phi$$ | Magnetic flux [Wb] | | $$I$$ | Current [A] |
| $$\mathcal P=\frac{1}{\mathcal R}$$ | Permeance [H] | | $$G=\frac{1}{R}$$ | Conductivity [$\mho$] |
| $$\mathcal F=\Phi\mathcal R$$ | Hopkinson's law | | $$V=IR$$ | Ohm's law |
| $$\mathcal R=\frac{l}{\mu A}$$ | | | $$R=\frac{l}{\sigma A}$$ |
---
### Transformers
$$Z_P=Z_S\left(\frac{N_P}{N_S}\right)^2=Z_S n^2$$
#### Maximum power.
If load is resistive ($jX_\text{load}=0$) then for maximum power transfer:
$$R_\text{load}=|{R_\text{src}}^2+j{X_\text{src}}^2|$$
#### Parameter identification
![](2022-10-28-15-52-14.png)
| Open-circuit test | Short-circuit test |
| ---------------------------- | ---------------------------- |
| ![](2022-10-28-15-53-29.png) | ![](2022-10-28-15-52-58.png) |
#### Voltage regulation
$$\text{VR}=\frac{|V_\text{NL,P}|-|V_\text{rated,P}|}{|V_\text{rated,P}|}=\frac{|V_\text{in}|-|V_\text{rated,P}|}{|V_\text{rated,P}|}$$
Ignore shunt resistance. Refer from primary side. Use KVL to determine $V_\text{in}$.
Voltage regulation is typically small.
$$|V_\text{in}|=|V_\text{rated,P}+I_\text{L,P}\cdot\bar Z|$$
![](2022-10-28-16-30-51.png)
### DC machine
| Separately excited machine | Shunt excited | Series excited |
| ---------------------------------------- | ----------------------------------------------------------------- | --------------------------------------------------------------------------------- |
| ![](2022-10-28-18-21-53.png) | ![](2022-10-28-18-22-17.png) | ![](2022-10-28-18-28-51.png) |
| | Similar torque-speed characteristic to separately-excited machine | High torque per ampere. Used in high-torque applications |
| Requires two independent voltage sources | | Do not run unloaded - infinite speed at 0 torque as $\omega\propto 1/\sqrt{\tau}$ |
| Motor control using $R_f$ | Motor control using $R_F$ | Motor control using $V_T$. |
#### Starting DC motors
$R_A$ might need to be adjusted so it is high initially in large DC motors, as the starting current is high since there is no back-emf created by $E_A$.
#### Magnetizating curve
When a question specifies the field current or $R_\text{adj}$, refer to magnetization curve. Magnetizating curve is valid at a specific speed $n_{m1}$, and the curve is used to find $E_{A1}$. Using the load condition to find the armature current $I_A=\tau_\text{ind}/(K\varPhi)$, $V_A$ can be used to find a second induced EMF $E_{A2}$. Using $E_{A2}$ find the speed $n_{m2}$ by scaling $n_{m1}$ by $E_{A2}/E_{A1}$.
#### Idk
$$P_\text{mech}=E_AI_A$$
No-load separately excited machine. Assuming no mechanical losses.
$$E_A=V_A\text{ (No load)}$$
$$I_A=0\text{ (No load)}$$
Armature reaction causes increase in speed and causes instability as the core saturates near the poles. Can be reduced with compensating winding which is in series with the armature coil.
$$K\Phi\omega=E_A$$
$$K\Phi I_A=\tau$$
For shunt motor
$$K\Phi=\frac{V_T-R_AI_A}{\omega}$$
$$\tau=K\Phi I_A=\frac{V_T-R_AI_A}{\omega}I_A$$
Assume no saturation, speed locked(?):
This doesn't seem right. We are meant to use the machine constant and the proportionality of current to magnetic flux.
$$\frac{E_{A2}}{E_{A1}}=\frac{I_{f2}}{I_{f1}}$$

9
etc/pdf.ps1 Normal file
View File

@ -0,0 +1,9 @@
pdftk `
F="ENSC3016_PS_T4_b_DC Machines_Solution[50d7a8].pdf" `
E="ENSC3016_PS_T4_a_DC Machines_Solution[3a221a].pdf" `
D="ENSC3016_T7_PS_Synchronous_Machines_Part3_Solutions[71c8f8].pdf" `
C="ENSC3016_T8_PS_Induction_Machines_Part2_Solutions(2)[7cca6e].pdf" `
B="ENSC3016_Induction_Machines_Solutions[74fb7b].pdf" `
A="ENSC3016_PS_T6_c_Transformers_Solution[b4ede2].pdf" `
cat A2 A3 D3-5 C6 B3-6 E F `
output print.pdf verbose