mirror of
https://github.com/peter-tanner/Honours_Thesis.git
synced 2024-11-30 14:40:16 +08:00
Use latexindent
for auto formatting
This commit is contained in:
parent
e9ffe5ddfe
commit
7484ac73a1
213
main.tex
213
main.tex
|
@ -38,36 +38,36 @@
|
|||
|
||||
\begin{titlepage}
|
||||
|
||||
% Center the content
|
||||
\begin{center}
|
||||
% Center the content
|
||||
\begin{center}
|
||||
|
||||
% Title
|
||||
% \vspace*{3cm}
|
||||
% ATTENTION: THIS IS A DRAFT VERSION. TODO: CHECK GRAMMAR AND PRESENTATION BEFORE SUBMITTING
|
||||
{\LARGE\bfseries Design of an Experiment to Evaluate High-Power Rockets as a CubeSat Qualification Platform} \\[3cm]
|
||||
% Title
|
||||
% \vspace*{3cm}
|
||||
% ATTENTION: THIS IS A DRAFT VERSION. TODO: CHECK GRAMMAR AND PRESENTATION BEFORE SUBMITTING
|
||||
{\LARGE\bfseries Design of an Experiment to Evaluate High-Power Rockets as a CubeSat Qualification Platform} \\[3cm]
|
||||
|
||||
|
||||
|
||||
% Author's name
|
||||
{\Large Author: Peter Tanner} \\[1cm]
|
||||
% Author's name
|
||||
{\Large Author: Peter Tanner} \\[1cm]
|
||||
|
||||
% Supervisor's name
|
||||
{\Large Supervisor: Dilusha Silva} \\[2cm] % \\[3cm]
|
||||
% Supervisor's name
|
||||
{\Large Supervisor: Dilusha Silva} \\[2cm] % \\[3cm]
|
||||
|
||||
% Degree text
|
||||
{\large ATTENTION: THIS IS A DRAFT VERSION. TODO: CHECK GRAMMAR AND PRESENTATION BEFORE SUBMITTING}
|
||||
{\large \textit{This thesis is presented in partial fulfilment of the requirements for the degree of Bachelor of Philosophy
|
||||
(Honours) at the University of Western Australia}} \\[1cm]
|
||||
% Degree text
|
||||
{\large ATTENTION: THIS IS A DRAFT VERSION. TODO: CHECK GRAMMAR AND PRESENTATION BEFORE SUBMITTING}
|
||||
{\large \textit{This thesis is presented in partial fulfilment of the requirements for the degree of Bachelor of Philosophy
|
||||
(Honours) at the University of Western Australia}} \\[1cm]
|
||||
|
||||
% Faculty information
|
||||
{\large Faculty of Engineering and Mathematical Sciences} \\[3cm]
|
||||
% Faculty information
|
||||
{\large Faculty of Engineering and Mathematical Sciences} \\[3cm]
|
||||
|
||||
{\large Word count: TODO:} \\
|
||||
{\large Submitted: \today} \\[2cm]
|
||||
{\large Word count: TODO:} \\
|
||||
{\large Submitted: \today} \\[2cm]
|
||||
|
||||
\includesvg[width=0.5\textwidth]{images/UWA-logo-dark.svg} \\
|
||||
\includesvg[width=0.5\textwidth]{images/UWA-logo-dark.svg} \\
|
||||
|
||||
\end{center}
|
||||
\end{center}
|
||||
|
||||
\end{titlepage}
|
||||
|
||||
|
@ -514,26 +514,25 @@ Three batteries were placed in parallel to form a 1S3P battery pack, this config
|
|||
\paragraph{Power electronics} Power electronics are used to stabilise the battery voltage, since a \liion battery may have a voltage ranging from \SIrange{4.2}{2.5}{\volt} over one discharge cycle.
|
||||
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\begin{tabular}{|c|c|c|c|c|}
|
||||
\hline
|
||||
\textbf{Item} & \textbf{Voltage (\si{\volt})} & \textbf{Unit current (\si{\milli\ampere})} & \textbf{Quantity} & \textbf{Current (\si{\milli\ampere})} \\
|
||||
\hline
|
||||
Payload-under-test & 5 & 1500 (Max.) & 1 & \\
|
||||
Raspberry Pi Zero W & 5 & & 1 & \\
|
||||
NEO-M9N & 3.3 & & 1 & \\
|
||||
ZED-F9P & 3.3 & & 1 & \\
|
||||
LSM6DSOX & 3.3 & & 2 & \\
|
||||
ADXL375 & 3.3 & & 2 & \\
|
||||
% ADXL375 & 3.3 & & 1 & \\
|
||||
E32-900M30S & 3.3 & & 1 & \\
|
||||
% TODO: RS-485, SC16I750,
|
||||
\hline
|
||||
% \textbf{Total} & - & \\
|
||||
|
||||
\end{tabular}
|
||||
\caption{Operating voltage and current consumption of devices connected to EPC.}
|
||||
\label{tabl:epc-power-budget}
|
||||
\centering
|
||||
\begin{tabular}{|c|c|c|c|c|}
|
||||
\hline
|
||||
\textbf{Item} & \textbf{Voltage (\si{\volt})} & \textbf{Unit current (\si{\milli\ampere})} & \textbf{Quantity} & \textbf{Current (\si{\milli\ampere})} \\
|
||||
\hline
|
||||
Payload-under-test & 5 & 1500 (Max.) & 1 & \\
|
||||
Raspberry Pi Zero W & 5 & & 1 & \\
|
||||
NEO-M9N & 3.3 & & 1 & \\
|
||||
ZED-F9P & 3.3 & & 1 & \\
|
||||
LSM6DSOX & 3.3 & & 2 & \\
|
||||
ADXL375 & 3.3 & & 2 & \\
|
||||
% ADXL375 & 3.3 & & 1 & \\
|
||||
E32-900M30S & 3.3 & & 1 & \\
|
||||
% TODO: RS-485, SC16I750,
|
||||
\hline
|
||||
% \textbf{Total} & - & \\
|
||||
\end{tabular}
|
||||
\caption{Operating voltage and current consumption of devices connected to EPC.}
|
||||
\label{tabl:epc-power-budget}
|
||||
\end{table}
|
||||
|
||||
|
||||
|
@ -563,13 +562,13 @@ The design evaluation framework will consist of three major types of tests:
|
|||
|
||||
\begin{itemize}
|
||||
\item Environmental tests.
|
||||
\subitem Hot and cold temperature testing.
|
||||
\subitem Shaker table.
|
||||
\subitem Hot and cold temperature testing.
|
||||
\subitem Shaker table.
|
||||
\item Vehicle tests.
|
||||
\subitem Drone.
|
||||
\subitem Rocket.
|
||||
\subitem Drone.
|
||||
\subitem Rocket.
|
||||
\item Experimental evaluation.
|
||||
\subitem Evaluation of accelerometers.
|
||||
\subitem Evaluation of accelerometers.
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Environmental testing}
|
||||
|
@ -618,13 +617,13 @@ The IIST recommended qualification level for the random vibration test is specif
|
|||
\begin{table}[t]
|
||||
\centering
|
||||
\begin{tabular}{|c | c | c | c | c|}
|
||||
\hline
|
||||
\textbf{Frequency ($\si{\hertz}$)} & \textbf{PSD ($\si{\square\gacc\per\hertz}$)} & \textbf{$\si{\gacc}$ (RMS)} & \textbf{Duration ($\si{\second\per\siaxis}$)} & \textbf{Axis} \\ \hline
|
||||
20 & 0.002 & \multirow{5}{*}{13.5} & \multirow{5}{*}{60} & \multirow{5}{*}{Three axes} \\ \cline{1-2}
|
||||
60 & 0.002 & & & \\ \cline{1-2}
|
||||
250 & 0.138 & & & \\ \cline{1-2}
|
||||
1000 & 0.138 & & & \\ \cline{1-2}
|
||||
2000 & 0.034 & & & \\ \hline
|
||||
\hline
|
||||
\textbf{Frequency ($\si{\hertz}$)} & \textbf{PSD ($\si{\square\gacc\per\hertz}$)} & \textbf{$\si{\gacc}$ (RMS)} & \textbf{Duration ($\si{\second\per\siaxis}$)} & \textbf{Axis} \\ \hline
|
||||
20 & 0.002 & \multirow{5}{*}{13.5} & \multirow{5}{*}{60} & \multirow{5}{*}{Three axes} \\ \cline{1-2}
|
||||
60 & 0.002 & & & \\ \cline{1-2}
|
||||
250 & 0.138 & & & \\ \cline{1-2}
|
||||
1000 & 0.138 & & & \\ \cline{1-2}
|
||||
2000 & 0.034 & & & \\ \hline
|
||||
\end{tabular}
|
||||
\caption{IIST recommended random vibration test profile for qualification of CubeSat for launch on POEM.}
|
||||
\label{tabl:random-vibration-profile-iist}
|
||||
|
@ -632,10 +631,10 @@ The IIST recommended qualification level for the random vibration test is specif
|
|||
|
||||
|
||||
\begin{figure}[b]
|
||||
\centering
|
||||
\includesvg[width=\linewidth]{images/random-qualification-level.svg}
|
||||
\label{fig:random-vibration-qualification-level}
|
||||
\caption{IIST recommended random vibration test profile for qualification of CubeSat for launch on POEM (profile defined in \ref{tabl:random-vibration-profile-iist}).}
|
||||
\centering
|
||||
\includesvg[width=\linewidth]{images/random-qualification-level.svg}
|
||||
\label{fig:random-vibration-qualification-level}
|
||||
\caption{IIST recommended random vibration test profile for qualification of CubeSat for launch on POEM (profile defined in \ref{tabl:random-vibration-profile-iist}).}
|
||||
\end{figure}
|
||||
|
||||
This random vibration profile is standard in industry, other launches of satellites on the PSLV use similar vibration profiles.
|
||||
|
@ -651,11 +650,11 @@ The IIST recommended qualification level for the sine-sweep test is specified in
|
|||
\begin{table}[H]
|
||||
\centering
|
||||
\begin{tabular}{|c|c|c|c|c|c|}
|
||||
\hline
|
||||
\multicolumn{2}{|c|}{\textbf{Longitudinal}} & \multicolumn{2}{c|}{\textbf{Lateral}} & \multirow{2}{*}{\textbf{Sweep Rate}} & \multirow{2}{*}{\textbf{Axis}} \\ \cline{1-4}
|
||||
\textbf{Frequency} & \textbf{Level} & \textbf{Frequency} & \textbf{Level} & & \\ \hline
|
||||
\SIrange{10}{16}{\hertz} & \SI{20}{\mmDA} & \SIrange{10}{16}{\hertz} & \SI{12}{\mmDA} & \SI{4}{\octave\per\minute} & Three axes \\ \hline
|
||||
\SIrange{16}{100}{\hertz} & \SI{10}{\gacc} & \SIrange{16}{100}{\hertz} & \SI{6}{\gacc} & \SI{4}{\octave\per\minute} & Three axes \\ \hline
|
||||
\hline
|
||||
\multicolumn{2}{|c|}{\textbf{Longitudinal}} & \multicolumn{2}{c|}{\textbf{Lateral}} & \multirow{2}{*}{\textbf{Sweep Rate}} & \multirow{2}{*}{\textbf{Axis}} \\ \cline{1-4}
|
||||
\textbf{Frequency} & \textbf{Level} & \textbf{Frequency} & \textbf{Level} & & \\ \hline
|
||||
\SIrange{10}{16}{\hertz} & \SI{20}{\mmDA} & \SIrange{10}{16}{\hertz} & \SI{12}{\mmDA} & \SI{4}{\octave\per\minute} & Three axes \\ \hline
|
||||
\SIrange{16}{100}{\hertz} & \SI{10}{\gacc} & \SIrange{16}{100}{\hertz} & \SI{6}{\gacc} & \SI{4}{\octave\per\minute} & Three axes \\ \hline
|
||||
\end{tabular}
|
||||
\caption{Vibration Data: Longitudinal and Lateral Details with Sweep Rate and Axis Merged}
|
||||
\label{tabl:sine-sweep-profile-iist}
|
||||
|
@ -665,14 +664,14 @@ The IIST recommended qualification level for the sine-sweep test is specified in
|
|||
The IIST recommended qualification level for the shock test is specified in table \ref{tabl:shock-test-iist}.
|
||||
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\begin{tabular}{|c|c|c|c|}
|
||||
\hline
|
||||
\textbf{Amplitude} & \textbf{Duration (ms)} & \textbf{Shock profile} & \textbf{Axis} \\ \hline
|
||||
\SI{50}{\gacc} & 10 & Half sine & Single-axis shocks, for all three axes \\ \hline
|
||||
\end{tabular}
|
||||
\caption{IIST recommended shock test profile for qualification of CubeSat for launch on POEM.}
|
||||
\label{tabl:shock-test-iist}
|
||||
\centering
|
||||
\begin{tabular}{|c|c|c|c|}
|
||||
\hline
|
||||
\textbf{Amplitude} & \textbf{Duration (ms)} & \textbf{Shock profile} & \textbf{Axis} \\ \hline
|
||||
\SI{50}{\gacc} & 10 & Half sine & Single-axis shocks, for all three axes \\ \hline
|
||||
\end{tabular}
|
||||
\caption{IIST recommended shock test profile for qualification of CubeSat for launch on POEM.}
|
||||
\label{tabl:shock-test-iist}
|
||||
\end{table}
|
||||
|
||||
|
||||
|
@ -748,30 +747,30 @@ One of the objectives of this research is to design a platform for qualification
|
|||
\end{itemize}
|
||||
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\label{tabl:daq-v1-sensor-datarate}
|
||||
\begin{tabular}{|c|c|p{0.6\linewidth}|}
|
||||
Data source & Data rate & Notes \\
|
||||
\hline
|
||||
LSM6DSOX & $\SI{0.41}{\mega\byte\per\second}$ & $16$ byte structs are generated at $\SI{6664}{\hertz}$ for both acceleration and gyroscope data for two sensors.\\
|
||||
ADXL375 & $\SI{0.038}{\mega\byte\per\second}$ & $20$ byte structs generated at $\SI{1}{\kilo\hertz}$ for two sensors.\\
|
||||
Camera & $\SI{0.054}{\mega\byte\per\second}$ & $\SI{460800}{\baud}$ \\
|
||||
TOTAL & $\SI{0.502}{\mega\byte\per\second}$ & $60\%$ of maximum sequential write bandwidth.
|
||||
\end{tabular}
|
||||
\caption{Data sources and their data rates.}
|
||||
\centering
|
||||
\label{tabl:daq-v1-sensor-datarate}
|
||||
\begin{tabular}{|c|c|p{0.6\linewidth}|}
|
||||
Data source & Data rate & Notes \\
|
||||
\hline
|
||||
LSM6DSOX & $\SI{0.41}{\mega\byte\per\second}$ & $16$ byte structs are generated at $\SI{6664}{\hertz}$ for both acceleration and gyroscope data for two sensors. \\
|
||||
ADXL375 & $\SI{0.038}{\mega\byte\per\second}$ & $20$ byte structs generated at $\SI{1}{\kilo\hertz}$ for two sensors. \\
|
||||
Camera & $\SI{0.054}{\mega\byte\per\second}$ & $\SI{460800}{\baud}$ \\
|
||||
TOTAL & $\SI{0.502}{\mega\byte\per\second}$ & $60\%$ of maximum sequential write bandwidth.
|
||||
\end{tabular}
|
||||
\caption{Data sources and their data rates.}
|
||||
\end{table}
|
||||
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\begin{tabular}{|c|c|c|}
|
||||
Test & Read [MB/s] & Write [MB/s]\\
|
||||
\hline
|
||||
SEQ1M Q1T1 (1 task, 1 thread) & 0.84 & 0.84\\
|
||||
% RND4K Q32T1 (32 tasks, 1 thread) & 0.81 & 0.70\\
|
||||
RND4K Q1T1 (1 task, 1 thread) & 0.75 & 0.66\\
|
||||
\end{tabular}
|
||||
\caption{CrystalDiskMark benchmark of DAQ v1.}
|
||||
\label{tabl:daq-v1-diskmark}
|
||||
\centering
|
||||
\begin{tabular}{|c|c|c|}
|
||||
Test & Read [MB/s] & Write [MB/s] \\
|
||||
\hline
|
||||
SEQ1M Q1T1 (1 task, 1 thread) & 0.84 & 0.84 \\
|
||||
% RND4K Q32T1 (32 tasks, 1 thread) & 0.81 & 0.70\\
|
||||
RND4K Q1T1 (1 task, 1 thread) & 0.75 & 0.66 \\
|
||||
\end{tabular}
|
||||
\caption{CrystalDiskMark benchmark of DAQ v1.}
|
||||
\label{tabl:daq-v1-diskmark}
|
||||
\end{table}
|
||||
|
||||
\section{Second revision of test and POEM emulation electronics}
|
||||
|
@ -803,23 +802,23 @@ DAQ v2 uses a similar EPS design to DAQ v1,
|
|||
A custom rocket named UNO was designed and built by another project member from scratch, it has a height of 290 cm, diameter of $\SI{16.3}{\centi\meter}$ and a dry mass of $\SI{14.42}{\kilo\gram}$ without a motor. It was designed to fly with an M impulse class motor, however due to changes in United States export regulations it was not possible to obtain this motor in the time of this research, and therefore it was only possible to launch with a K impulse class motor which has about 1/10th of the total impulse of the N motor as shown in table \ref{tabl:impulseclasses}.
|
||||
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\label{tabl:impulseclasses}
|
||||
\begin{tabular}{|c|c|}
|
||||
Total impulse [$\SI{}{\newton\second}$] & Motor impulse class \\
|
||||
\hline
|
||||
160.01 - 320.00 & H \\
|
||||
320.01 - 640.00 & I \\
|
||||
640.01 - 1,280.00 & J \\
|
||||
1,280.01 - 2,560.00 & K \\
|
||||
2,560.01 - 5,120.00 & L \\
|
||||
5,120.01 - 10,240.00 & M \\
|
||||
10,240.01 - 20,560.00 & N \\
|
||||
20,560.01 - 40,960.00 & O \\
|
||||
40,960.01 - 81,920.00 & P \\
|
||||
81,920.01 - 163,840.00 & Q \\
|
||||
\end{tabular}
|
||||
\caption{Rocket motor impulse classes \cite{nfpa2018}}
|
||||
\centering
|
||||
\label{tabl:impulseclasses}
|
||||
\begin{tabular}{|c|c|}
|
||||
Total impulse [$\SI{}{\newton\second}$] & Motor impulse class \\
|
||||
\hline
|
||||
160.01 - 320.00 & H \\
|
||||
320.01 - 640.00 & I \\
|
||||
640.01 - 1,280.00 & J \\
|
||||
1,280.01 - 2,560.00 & K \\
|
||||
2,560.01 - 5,120.00 & L \\
|
||||
5,120.01 - 10,240.00 & M \\
|
||||
10,240.01 - 20,560.00 & N \\
|
||||
20,560.01 - 40,960.00 & O \\
|
||||
40,960.01 - 81,920.00 & P \\
|
||||
81,920.01 - 163,840.00 & Q \\
|
||||
\end{tabular}
|
||||
\caption{Rocket motor impulse classes \cite{nfpa2018}}
|
||||
\end{table}
|
||||
|
||||
\begin{figure}[H]
|
||||
|
|
Loading…
Reference in New Issue
Block a user