diff --git a/README.html b/README.html
index 31cca24..c807bcc 100644
--- a/README.html
+++ b/README.html
@@ -543,18 +543,18 @@ h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
AM
CAM
-x(t)mamamaPcPxηBT=Accos(2πfct)[1+kam(t)]=Accos(2πfct)[1+mam(t)/Ac],where m(t)=Amm^(t) and m^(t) is the normalized modulating signal=Acmint∣kam(t)∣ka is the amplitude sensitivity (volt−1), ma is the modulation index.=Amax+AminAmax−Amin (Symmetrical m(t))=kaAm (Symmetrical m(t))=2Ac2Carrier power=41ma2Ac2=Total PowerSignal Power=Px+PcPx=2fm=2B
BTB_TBT: Signal bandwidth
BBB: Bandwidth of modulating wave
@@ -567,17 +567,17 @@ h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
xDSB(t)BT=Accos(2πfct)m(t)=2fm=2B
FM/PM
-s(t)=Accos[2πfct+kpm(t)]Phase modulated (PM)s(t)=Accos(θi(t))=Accos[2πfct+2πkf∫−∞tm(τ)dτ]Frequency modulated (FM)s(t)=Accos[2πfct+βsin(2πfmt)]FM single tonefi(t)=12πddtθi(t)Instantaneous frequency from instantaneous phaseΔf=βfm=kfAmfm=maxt(kfm(t))−mint(kfm(t))Maximum frequency deviationΔf=maxt(fi(t))−mint(fi(t))Maximum frequency deviationβ=Δffm=kfAmModulation indexD=ΔfWmDeviation ratio, where Wm is bandwidth of m(t) (Use FT)\begin{align*}
+s(t)=Accos[2πfct+kpm(t)]Phase modulated (PM)s(t)=Accos(θi(t))=Accos[2πfct+2πkf∫−∞tm(τ)dτ]Frequency modulated (FM)s(t)=Accos[2πfct+βsin(2πfmt)]FM single tonefi(t)=12πddtθi(t)=fc+kfm(t)=fc+Δfmaxm^(t)Instantaneous frequencyΔfmax=maxt∣fi(t)−fc∣=kfmaxt∣m(t)∣Maximum frequency deviationΔfmax=kfAmMaximum frequency deviation (sinusoidal)β=ΔfmaxfmModulation indexD=ΔfmaxWmDeviation ratio, where Wm is bandwidth of m(t) (Use FT)\begin{align*}
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
s(t) &= A_c\cos(\theta_i(t))=A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_{-\infty}^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
- f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)\quad\text{Instantaneous frequency from instantaneous phase}\\
- \Delta f&=\beta f_m=k_f A_m f_m = \max_t(k_f m(t))- \min_t(k_f m(t))\quad\text{Maximum frequency deviation}\\
- \Delta f&=\max_t(f_i(t))- \min_t(f_i(t))\quad\text{Maximum frequency deviation}\\
- \beta&=\frac{\Delta f}{f_m}=k_f A_m\quad\text{Modulation index}\\
- D&=\frac{\Delta f}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
+ f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)=f_c+k_f m(t)=f_c+\Delta f_\text{max}\hat m(t)\quad\text{Instantaneous frequency}\\
+ \Delta f_\text{max}&=\max_t|f_i(t)-f_c|=k_f \max_t |m(t)|\quad\text{Maximum frequency deviation}\\
+ \Delta f_\text{max}&=k_f A_m\quad\text{Maximum frequency deviation (sinusoidal)}\\
+ \beta&=\frac{\Delta f_\text{max}}{f_m}\quad\text{Modulation index}\\
+ D&=\frac{\Delta f_\text{max}}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
\end{align*}
-s(t)s(t)s(t)fi(t)ΔfΔfβD=Accos[2πfct+kpm(t)]Phase modulated (PM)=Accos(θi(t))=Accos[2πfct+2πkf∫−∞tm(τ)dτ]Frequency modulated (FM)=Accos[2πfct+βsin(2πfmt)]FM single tone=2π1dtdθi(t)Instantaneous frequency from instantaneous phase=βfm=kfAmfm=tmax(kfm(t))−tmin(kfm(t))Maximum frequency deviation=tmax(fi(t))−tmin(fi(t))Maximum frequency deviation=fmΔf=kfAmModulation index=WmΔfDeviation ratio, where Wm is bandwidth of m(t) (Use FT)
+s(t)s(t)s(t)fi(t)ΔfmaxΔfmaxβD=Accos[2πfct+kpm(t)]Phase modulated (PM)=Accos(θi(t))=Accos[2πfct+2πkf∫−∞tm(τ)dτ]Frequency modulated (FM)=Accos[2πfct+βsin(2πfmt)]FM single tone=2π1dtdθi(t)=fc+kfm(t)=fc+Δfmaxm^(t)Instantaneous frequency=tmax∣fi(t)−fc∣=kftmax∣m(t)∣Maximum frequency deviation=kfAmMaximum frequency deviation (sinusoidal)=fmΔfmaxModulation index=WmΔfmaxDeviation ratio, where Wm is bandwidth of m(t) (Use FT)
s(t)=Accos[2πfct+βsin(2πfmt)]⇔s(t)=Ac∑n=−∞∞Jn(β)cos[2π(fc+nfm)t]\begin{align*}
@@ -595,17 +595,16 @@ h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
PavPband_indexband_indexband_index=2Ac2=2Ac2Jband_index2(β)=0⟹fc+0fm=1⟹fc+1fm,…
Carson's rule to find BBB (98% power bandwidth rule)
-B=2Mfm=2(β+1)fm=2(Δf+fm)=2(kfAm+fm)=2(D+1)WmB={2(Δf+fm)FM, sinusoidal message2(Δϕ+1)fmPM, sinusoidal message\begin{align*}
+B=2Mfm=2(β+1)fm=2(Δfmax+fm)=2(D+1)WmB={2(Δfmax+fm)=2(Δfmax+Wm)FM, sinusoidal message2(Δϕmax+1)fm=2(Δϕmax+1)WmPM, sinusoidal message\begin{align*}
B &= 2Mf_m = 2(\beta + 1)f_m\\
- &= 2(\Delta f+f_m)\\
- &= 2(k_f A_m+f_m)\\
+ &= 2(\Delta f_\text{max}+f_m)\\
&= 2(D+1)W_m\\
B &= \begin{cases}
- 2(\Delta f+f_m) & \text{FM, sinusoidal message}\\
- 2(\Delta\phi + 1)f_m & \text{PM, sinusoidal message}
+ 2(\Delta f_\text{max}+f_m)=2(\Delta f_\text{max}+W_m) & \text{FM, sinusoidal message}\\
+ 2(\Delta\phi_\text{max} + 1)f_m=2(\Delta \phi_\text{max}+1)W_m & \text{PM, sinusoidal message}
\end{cases}\\
\end{align*}
-BB=2Mfm=2(β+1)fm=2(Δf+fm)=2(kfAm+fm)=2(D+1)Wm={2(Δf+fm)2(Δϕ+1)fmFM, sinusoidal messagePM, sinusoidal message
+BB=2Mfm=2(β+1)fm=2(Δfmax+fm)=2(D+1)Wm={2(Δfmax+fm)=2(Δfmax+Wm)2(Δϕmax+1)fm=2(Δϕmax+1)WmFM, sinusoidal messagePM, sinusoidal message
Complex envelope
s(t)=Accos(2πfct+βsin(2πfmt))⇔s~(t)=Acexp(jβsin(2πfmt))s(t)=Re[s~(t)exp(j2πfct)]s~(t)=Ac∑n=−∞∞Jn(β)exp(j2πfmt)\begin{align*}
diff --git a/README.md b/README.md
index a019b65..2b7e568 100644
--- a/README.md
+++ b/README.md
@@ -317,11 +317,11 @@ h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
```math
\begin{align*}
+ x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right], \\
+ &\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
- x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right], \\
- &\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
P_c &=\frac{ {A_c}^2}{2}\quad\text{Carrier power}\\
P_x &=\frac{1}{4}{m_a}^2{A_c}^2\\
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_x}{P_x+P_c}\\
@@ -354,11 +354,11 @@ Overmodulation (resulting in phase reversals at crossing points): $m_a>1$
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
s(t) &= A_c\cos(\theta_i(t))=A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_{-\infty}^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
- f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)\quad\text{Instantaneous frequency from instantaneous phase}\\
- \Delta f&=\beta f_m=k_f A_m f_m = \max_t(k_f m(t))- \min_t(k_f m(t))\quad\text{Maximum frequency deviation}\\
- \Delta f&=\max_t(f_i(t))- \min_t(f_i(t))\quad\text{Maximum frequency deviation}\\
- \beta&=\frac{\Delta f}{f_m}=k_f A_m\quad\text{Modulation index}\\
- D&=\frac{\Delta f}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
+ f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)=f_c+k_f m(t)=f_c+\Delta f_\text{max}\hat m(t)\quad\text{Instantaneous frequency}\\
+ \Delta f_\text{max}&=\max_t|f_i(t)-f_c|=k_f \max_t |m(t)|\quad\text{Maximum frequency deviation}\\
+ \Delta f_\text{max}&=k_f A_m\quad\text{Maximum frequency deviation (sinusoidal)}\\
+ \beta&=\frac{\Delta f_\text{max}}{f_m}\quad\text{Modulation index}\\
+ D&=\frac{\Delta f_\text{max}}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
\end{align*}
```
@@ -392,12 +392,11 @@ Overmodulation (resulting in phase reversals at crossing points): $m_a>1$
```math
\begin{align*}
B &= 2Mf_m = 2(\beta + 1)f_m\\
- &= 2(\Delta f+f_m)\\
- &= 2(k_f A_m+f_m)\\
+ &= 2(\Delta f_\text{max}+f_m)\\
&= 2(D+1)W_m\\
B &= \begin{cases}
- 2(\Delta f+f_m) & \text{FM, sinusoidal message}\\
- 2(\Delta\phi + 1)f_m & \text{PM, sinusoidal message}
+ 2(\Delta f_\text{max}+f_m)=2(\Delta f_\text{max}+W_m) & \text{FM, sinusoidal message}\\
+ 2(\Delta\phi_\text{max} + 1)f_m=2(\Delta \phi_\text{max}+1)W_m & \text{PM, sinusoidal message}
\end{cases}\\
\end{align*}
```
diff --git a/README.pdf b/README.pdf
index ed99660..2aac667 100644
Binary files a/README.pdf and b/README.pdf differ