make pdf link more obvious

This commit is contained in:
Peter 2024-10-29 06:09:15 +08:00
parent 0e593127fa
commit 7d5e4ae122

View File

@ -1,5 +1,9 @@
# Idiot's guide to ELEC4402 communication systems # Idiot's guide to ELEC4402 communication systems
## [Download PDF 📄](/README.pdf)
It is recommended to refer to use [the PDF copy](/README.pdf) instead of whatever GitHub renders.
## License and information ## License and information
Notes are open-source and licensed under the GNU GPL-3.0. **You must include the [full-text of the license](/COPYING.txt) and follow its terms when using these notes or any diagrams in derivative works** (but not when printing as notes) Notes are open-source and licensed under the GNU GPL-3.0. **You must include the [full-text of the license](/COPYING.txt) and follow its terms when using these notes or any diagrams in derivative works** (but not when printing as notes)
@ -25,8 +29,6 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
</details> </details>
[Access a PDF render of the notes (**It is recommended to refer to this instead of the GitHub rendered page!**)](/README.pdf)
I accept pull requests or suggestions but the content must not be copyrighted under a non-GPL compatible license. I accept pull requests or suggestions but the content must not be copyrighted under a non-GPL compatible license.
## Fourier transform identities ## Fourier transform identities
@ -514,7 +516,7 @@ Distance is $d=\sqrt{2E_b}$
#### Symbol mapping #### Symbol mapping
```math ```math
b_n:\{1,0\}\to a_n:\{1,\color{lime}-1\color{white}\} b_n:\{1,0\}\to a_n:\{1,\color{green}-1\color{white}\}
``` ```
#### 2 possible waveforms #### 2 possible waveforms
@ -779,7 +781,7 @@ To solve this type of question:
| Linear modulation ($M$-PSK, $M$-QAM) | NRZ unipolar encoding | | Linear modulation ($M$-PSK, $M$-QAM) | NRZ unipolar encoding |
| --------------------------------------------------- | -------------------------------------------------- | | --------------------------------------------------- | -------------------------------------------------- |
| $W=B_\text{\color{lime}abs-abs}$ | $W=B_\text{\color{lime}abs}$ | | $W=B_\text{\color{green}abs-abs}$ | $W=B_\text{\color{green}abs}$ |
| $W=B_\text{abs-abs}=\frac{1+\alpha}{T}=(1+\alpha)D$ | $W=B_\text{abs}=\frac{1+\alpha}{2T}=(1+\alpha)D/2$ | | $W=B_\text{abs-abs}=\frac{1+\alpha}{T}=(1+\alpha)D$ | $W=B_\text{abs}=\frac{1+\alpha}{2T}=(1+\alpha)D/2$ |
| $D=\frac{W\text{ symbol/s}}{1+\alpha}$ | $D=\frac{2W\text{ symbol/s}}{1+\alpha}$ | | $D=\frac{W\text{ symbol/s}}{1+\alpha}$ | $D=\frac{2W\text{ symbol/s}}{1+\alpha}$ |