diff --git a/README.html b/README.html
index c807bcc..c71d0ab 100644
--- a/README.html
+++ b/README.html
@@ -231,7 +231,7 @@ along with this program. If not, see http
exp(−πf2)
-
1−T∣t∣,∣t∣<T
+
1−T∣t∣,∣t∣<Ttri(t/T)
Tsinc2(fT)
@@ -383,14 +383,15 @@ along with this program. If not, see http
x(t)=Accos(2πfct)[1+kam(t)]=Accos(2πfct)[1+mam(t)/Ac],where m(t)=Amm^(t) and m^(t) is the normalized modulating signalma=mint∣kam(t)∣Acka is the amplitude sensitivity (volt−1), ma is the modulation index.ma=Amax−AminAmax+Amin (Symmetrical m(t))ma=kaAm (Symmetrical m(t))Pc=Ac22Carrier powerPx=14ma2Ac2η=Signal PowerTotal Power=PxPx+PcBT=2fm=2B\begin{align*}
+
x(t)=Accos(2πfct)[1+kam(t)]=Accos(2πfct)[1+mam(t)/Ac],where m(t)=Amm^(t) and m^(t) is the normalized modulating signalma=∣mint(kam(t))∣Acka is the amplitude sensitivity (volt−1), ma is the modulation index.ma=Amax−AminAmax+Amin (Symmetrical m(t))ma=kaAm (Symmetrical m(t))Pc=Ac22Carrier powerPx=14ma2Ac2η=Signal PowerTotal Power=PxPx+PcBT=2fm=2B\begin{align*}
x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right], \\
&\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
- m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
+ m_a &= \frac{|\min_t(k_a m(t))|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
P_c &=\frac{ {A_c}^2}{2}\quad\text{Carrier power}\\
@@ -554,7 +568,7 @@ h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_x}{P_x+P_c}\\
B_T&=2f_m=2B
\end{align*}
-x(t)mamamaPcPxηBT=Accos(2πfct)[1+kam(t)]=Accos(2πfct)[1+mam(t)/Ac],where m(t)=Amm^(t) and m^(t) is the normalized modulating signal=Acmint∣kam(t)∣ka is the amplitude sensitivity (volt−1), ma is the modulation index.=Amax+AminAmax−Amin (Symmetrical m(t))=kaAm (Symmetrical m(t))=2Ac2Carrier power=41ma2Ac2=Total PowerSignal Power=Px+PcPx=2fm=2B
+x(t)mamamaPcPxηBT=Accos(2πfct)[1+kam(t)]=Accos(2πfct)[1+mam(t)/Ac],where m(t)=Amm^(t) and m^(t) is the normalized modulating signal=Ac∣mint(kam(t))∣ka is the amplitude sensitivity (volt−1), ma is the modulation index.=Amax+AminAmax−Amin (Symmetrical m(t))=kaAm (Symmetrical m(t))=2Ac2Carrier power=41ma2Ac2=Total PowerSignal Power=Px+PcPx=2fm=2B
BTB_TBT: Signal bandwidth
BBB: Bandwidth of modulating wave
diff --git a/README.md b/README.md
index 2b7e568..c919c91 100644
--- a/README.md
+++ b/README.md
@@ -81,26 +81,26 @@ along with this program. If not, see .
## Fourier transform identities and properties
-| Time domain $x(t)$ | Frequency domain $X(f)$ |
-| --------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
-| $\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)$ | $T \text{sinc}(fT)$ |
-| $\text{sinc}(2Wt)$ | $\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$ |
-| $\exp(-at)u(t),\quad a>0$ | $\frac{1}{a + j2\pi f}$ |
-| $\exp(-a\lvert t \rvert),\quad a>0$ | $\frac{2a}{a^2 + (2\pi f)^2}$ |
-| $\exp(-\pi t^2)$ | $\exp(-\pi f^2)$ |
-| $1 - \frac{\lvert t \rvert}{T},\quad\lvert t \rvert < T$ | $T \text{sinc}^2(fT)$ |
-| $\delta(t)$ | $1$ |
-| $1$ | $\delta(f)$ |
-| $\delta(t - t_0)$ | $\exp(-j2\pi f t_0)$ |
-| $\exp(j2\pi f_c t)$ | $\delta(f - f_c)$ |
-| $\cos(2\pi f_c t)$ | $\frac{1}{2}[\delta(f - f_c) + \delta(f + f_c)]$ |
-| $\cos(2\pi f_c t+\theta)$ | $\frac{1}{2}[\delta(f - f_c)\exp(j\theta) + \delta(f + f_c)\exp(-j\theta)]\quad\text{Use for coherent recv.}$ |
-| $\sin(2\pi f_c t)$ | $\frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]$ |
-| $\sin(2\pi f_c t+\theta)$ | $\frac{1}{2j} [\delta(f - f_c)\exp(j\theta) - \delta(f + f_c)\exp(-j\theta)]$ |
-| $\text{sgn}(t)$ | $\frac{1}{j\pi f}$ |
-| $\frac{1}{\pi t}$ | $-j \text{sgn}(f)$ |
-| $u(t)$ | $\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}$ |
-| $\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$ | $\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)=f_0 \sum_{n=-\infty}^{\infty} \delta\left(f - n f_0\right)$ |
+| Time domain $x(t)$ | Frequency domain $X(f)$ |
+| ---------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
+| $\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)$ | $T \text{sinc}(fT)$ |
+| $\text{sinc}(2Wt)$ | $\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$ |
+| $\exp(-at)u(t),\quad a>0$ | $\frac{1}{a + j2\pi f}$ |
+| $\exp(-a\lvert t \rvert),\quad a>0$ | $\frac{2a}{a^2 + (2\pi f)^2}$ |
+| $\exp(-\pi t^2)$ | $\exp(-\pi f^2)$ |
+| $1 - \frac{\lvert t \rvert}{T},\quad\lvert t \rvert < T\quad\text{tri}(t/T)$ | $T \text{sinc}^2(fT)$ |
+| $\delta(t)$ | $1$ |
+| $1$ | $\delta(f)$ |
+| $\delta(t - t_0)$ | $\exp(-j2\pi f t_0)$ |
+| $\exp(j2\pi f_c t)$ | $\delta(f - f_c)$ |
+| $\cos(2\pi f_c t)$ | $\frac{1}{2}[\delta(f - f_c) + \delta(f + f_c)]$ |
+| $\cos(2\pi f_c t+\theta)$ | $\frac{1}{2}[\delta(f - f_c)\exp(j\theta) + \delta(f + f_c)\exp(-j\theta)]\quad\text{Use for coherent recv.}$ |
+| $\sin(2\pi f_c t)$ | $\frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]$ |
+| $\sin(2\pi f_c t+\theta)$ | $\frac{1}{2j} [\delta(f - f_c)\exp(j\theta) - \delta(f + f_c)\exp(-j\theta)]$ |
+| $\text{sgn}(t)$ | $\frac{1}{j\pi f}$ |
+| $\frac{1}{\pi t}$ | $-j \text{sgn}(f)$ |
+| $u(t)$ | $\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}$ |
+| $\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$ | $\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)=f_0 \sum_{n=-\infty}^{\infty} \delta\left(f - n f_0\right)$ |
| Time domain $x(t)$ | Frequency domain $X(f)$ | Property |
| ---------------------------------------- | ------------------------------------------------ | ----------------------------- |
@@ -130,6 +130,7 @@ along with this program. If not, see .
\text{sgn}(t) &= \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}&\text{Signum Function}\\
\text{sinc}(2Wt) &= \frac{\sin(2\pi W t)}{2\pi W t}&\text{sinc Function}\\
\text{rect}(t) = \Pi(t) &= \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & \lvert t \rvert > 0.5 \end{cases}&\text{Rectangular/Gate Function}\\
+ \text{tri}(t/T) &= \begin{cases} 1 - \frac{|t|}{T}, & \lvert t\rvert < T \\ 0, & \lvert t \rvert > T \end{cases}=\Pi(t/T)*\Pi(t/T)&\text{Triangle Function}\\
g(t)*h(t)=(g*h)(t)&=\int_\infty^\infty g(\tau)h(t-\tau)d\tau&\text{Convolution}\\
\end{align*}
```
@@ -156,16 +157,19 @@ Calculate $C_n$ coefficient as follows from $x_p(t)$:
```math
\begin{align*}
- C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
- &=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
+ C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
\end{align*}
```
-### $\text{rect}$ function
+### Shape functions
-![rect](images/rect.drawio.svg)
+| $\text{rect}$ function | $\text{tri}$ function |
+| ------------------------------- | --------------------- |
+| ![rect](images/rect.drawio.svg) | TODO: Add graphic. |
+
+Tri placeholder: For $\text{tri}(t/T)=1-\|t\|/T$, Intersects $x$ axis at $-T$ and $T$ and $y$ axis at $1$.
### Bessel function
@@ -319,7 +323,7 @@ h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
\begin{align*}
x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right], \\
&\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
- m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
+ m_a &= \frac{|\min_t(k_a m(t))|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
P_c &=\frac{ {A_c}^2}{2}\quad\text{Carrier power}\\
diff --git a/README.pdf b/README.pdf
index 2aac667..984b2ed 100644
Binary files a/README.pdf and b/README.pdf differ