diff --git a/README.html b/README.html
index 33961cd..5752366 100644
--- a/README.html
+++ b/README.html
@@ -200,8 +200,8 @@ along with this program. If not, see http
-Time Function
-Fourier Transform
+Time domain x ( t ) x(t) x ( t )
+Frequency domain X ( f ) X(f) X ( f )
@@ -242,34 +242,6 @@ along with this program. If not, see http
exp ( − j 2 π f t 0 ) \exp(-j2\pi f t_0) exp ( − j 2 π f t 0 )
-g ( t − a ) g(t-a) g ( t − a )
-exp ( − j 2 π f a ) G ( f ) shift property \exp(-j2\pi fa)G(f)\quad\text{shift property} exp ( − j 2 π f a ) G ( f ) shift property
-
-
-g ( b t ) g(bt) g ( b t )
-G ( f / b ) ∣ b ∣ scaling property \frac{G(f/b)}{|b|}\quad\text{scaling property} ∣ b ∣ G ( f / b ) scaling property
-
-
-g ( b t − a ) g(bt-a) g ( b t − a )
-1 ∣ b ∣ exp ( − j 2 π a ( f / b ) ) ⋅ G ( f / b ) shift and scale \frac{1}{|b|}\exp(-j2\pi a(f/b))\cdot G(f/b)\quad\text{shift and scale} ∣ b ∣ 1 exp ( − j 2 πa ( f / b )) ⋅ G ( f / b ) shift and scale
-
-
-d d t g ( t ) \frac{d}{dt}g(t) d t d g ( t )
-j 2 π f G ( f ) differentiation property j2\pi fG(f)\quad\text{differentiation property} j 2 π f G ( f ) differentiation property
-
-
-G ( t ) G(t) G ( t )
-g ( − f ) duality property g(-f)\quad\text{duality property} g ( − f ) duality property
-
-
-g ( t ) h ( t ) g(t)h(t) g ( t ) h ( t )
-G ( f ) ∗ H ( f ) G(f)*H(f) G ( f ) ∗ H ( f )
-
-
-g ( t ) ∗ h ( t ) g(t)*h(t) g ( t ) ∗ h ( t )
-G ( f ) H ( f ) G(f)H(f) G ( f ) H ( f )
-
-
exp ( j 2 π f c t ) \exp(j2\pi f_c t) exp ( j 2 π f c t )
δ ( f − f c ) \delta(f - f_c) δ ( f − f c )
@@ -299,6 +271,90 @@ along with this program. If not, see http
+
+
+
+Time domain x ( t ) x(t) x ( t )
+Frequency domain X ( f ) X(f) X ( f )
+Property
+
+
+
+
+g ( t − a ) g(t-a) g ( t − a )
+exp ( − j 2 π f a ) G ( f ) \exp(-j2\pi fa)G(f) exp ( − j 2 π f a ) G ( f )
+Time shifting
+
+
+exp ( − j 2 π f c t ) g ( t ) \exp(-j2\pi f_c t)g(t) exp ( − j 2 π f c t ) g ( t )
+G ( f − f c ) G(f-f_c) G ( f − f c )
+Frequency shifting
+
+
+g ( b t ) g(bt) g ( b t )
+G ( f / b ) ∣ b ∣ \frac{G(f/b)}{|b|} ∣ b ∣ G ( f / b )
+Time scaling
+
+
+g ( b t − a ) g(bt-a) g ( b t − a )
+1 ∣ b ∣ exp ( − j 2 π a ( f / b ) ) ⋅ G ( f / b ) \frac{1}{|b|}\exp(-j2\pi a(f/b))\cdot G(f/b) ∣ b ∣ 1 exp ( − j 2 πa ( f / b )) ⋅ G ( f / b )
+Time scaling and shifting
+
+
+d d t g ( t ) \frac{d}{dt}g(t) d t d g ( t )
+j 2 π f G ( f ) j2\pi fG(f)\quad j 2 π f G ( f )
+Differentiation wrt time
+
+
+g ∗ ( t ) g^*(t) g ∗ ( t )
+G ∗ ( − f ) G^*(-f) G ∗ ( − f )
+Conjugate functions
+
+
+G ( t ) G(t) G ( t )
+g ( − f ) g(-f) g ( − f )
+Duality
+
+
+∫ − ∞ t g ( τ ) d τ \int_{-\infty}^t g(\tau)d\tau ∫ − ∞ t g ( τ ) d τ
+1 j 2 π f G ( f ) + G ( 0 ) 2 δ ( f ) \frac{1}{j2\pi f}G(f)+\frac{G(0)}{2}\delta(f) j 2 π f 1 G ( f ) + 2 G ( 0 ) δ ( f )
+Integration wrt time
+
+
+g ( t ) h ( t ) g(t)h(t) g ( t ) h ( t )
+G ( f ) ∗ H ( f ) G(f)*H(f) G ( f ) ∗ H ( f )
+Time multiplication
+
+
+g ( t ) ∗ h ( t ) g(t)*h(t) g ( t ) ∗ h ( t )
+G ( f ) H ( f ) G(f)H(f) G ( f ) H ( f )
+Time convolution
+
+
+a g ( t ) + b h ( t ) ag(t)+bh(t) a g ( t ) + bh ( t )
+a G ( f ) + b H ( f ) aG(f)+bH(f) a G ( f ) + b H ( f )
+Linearity a , b a,b a , b constants
+
+
+
+
+
+
+Description
+Property
+
+
+
+
+g ( 0 ) = ∫ − ∞ ∞ G ( f ) d f g(0)=\int_{-\infty}^\infty G(f)df g ( 0 ) = ∫ − ∞ ∞ G ( f ) df
+Area under G ( f ) G(f) G ( f )
+
+
+G ( 0 ) = ∫ − ∞ ∞ G ( t ) d t G(0)=\int_{-\infty}^\infty G(t)dt G ( 0 ) = ∫ − ∞ ∞ G ( t ) d t
+Area under g ( t ) g(t) g ( t )
+
+
+
u ( t ) = { 1 , t > 0 1 2 , t = 0 0 , t < 0 Unit Step Function sgn ( t ) = { + 1 , t > 0 0 , t = 0 − 1 , t < 0 Signum Function sinc ( 2 W t ) = sin ( 2 π W t ) 2 π W t sinc Function rect ( t ) = Π ( t ) = { 1 , − 0.5 < t < 0.5 0 , ∣ t ∣ > 0.5 Rectangular/Gate Function g ( t ) ∗ h ( t ) = ( g ∗ h ) ( t ) = ∫ ∞ ∞ g ( τ ) h ( t − τ ) d τ Convolution \begin{align*}
u(t) &= \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}&\text{Unit Step Function}\\
\text{sgn}(t) &= \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}&\text{Signum Function}\\
@@ -2072,6 +2128,7 @@ M1001 80h400000v40h-400000z"/>
h ( x ) = − ∫ R f X ( x ) log 2 ( f X ( x )) d x
+
Amount of entropy decrease of x x x after observation by y y y .
I ( x ; y ) = H ( x ) − H ( x ∣ y ) = H ( y ) − H ( y ∣ x ) \begin{align*}
I(x;y) &= H(x)-H(x|y)=H(y)-H(y|x)\\
diff --git a/README.md b/README.md
index 47b14eb..fdb3ff6 100644
--- a/README.md
+++ b/README.md
@@ -72,7 +72,7 @@ along with this program. If not, see .
## Fourier transform identities
-| **Time Function** | **Fourier Transform** |
+| Time domain $x(t)$ | Frequency domain $X(f)$ |
| --------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
| $\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)$ | $T \text{sinc}(fT)$ |
| $\text{sinc}(2Wt)$ | $\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$ |
@@ -83,13 +83,6 @@ along with this program. If not, see .
| $\delta(t)$ | $1$ |
| $1$ | $\delta(f)$ |
| $\delta(t - t_0)$ | $\exp(-j2\pi f t_0)$ |
-| $g(t-a)$ | $\exp(-j2\pi fa)G(f)\quad\text{shift property}$ |
-| $g(bt)$ | $\frac{G(f/b)}{\|b\|}\quad\text{scaling property}$ |
-| $g(bt-a)$ | $\frac{1}{\|b\|}\exp(-j2\pi a(f/b))\cdot G(f/b)\quad\text{shift and scale}$ |
-| $\frac{d}{dt}g(t)$ | $j2\pi fG(f)\quad\text{differentiation property}$ |
-| $G(t)$ | $g(-f)\quad\text{duality property}$ |
-| $g(t)h(t)$ | $G(f)*H(f)$ |
-| $g(t)*h(t)$ | $G(f)H(f)$ |
| $\exp(j2\pi f_c t)$ | $\delta(f - f_c)$ |
| $\cos(2\pi f_c t)$ | $\frac{1}{2}[\delta(f - f_c) + \delta(f + f_c)]$ |
| $\sin(2\pi f_c t)$ | $\frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]$ |
@@ -98,6 +91,25 @@ along with this program. If not, see .
| $u(t)$ | $\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}$ |
| $\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$ | $\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)=f_0 \sum_{n=-\infty}^{\infty} \delta\left(f - n f_0\right)$ |
+| Time domain $x(t)$ | Frequency domain $X(f)$ | Property |
+| ------------------------------- | ------------------------------------------------ | ------------------------- |
+| $g(t-a)$ | $\exp(-j2\pi fa)G(f)$ | Time shifting |
+| $\exp(-j2\pi f_c t)g(t)$ | $G(f-f_c)$ | Frequency shifting |
+| $g(bt)$ | $\frac{G(f/b)}{\|b\|}$ | Time scaling |
+| $g(bt-a)$ | $\frac{1}{\|b\|}\exp(-j2\pi a(f/b))\cdot G(f/b)$ | Time scaling and shifting |
+| $\frac{d}{dt}g(t)$ | $j2\pi fG(f)\quad$ | Differentiation wrt time |
+| $g^*(t)$ | $G^*(-f)$ | Conjugate functions |
+| $G(t)$ | $g(-f)$ | Duality |
+| $\int_{-\infty}^t g(\tau)d\tau$ | $\frac{1}{j2\pi f}G(f)+\frac{G(0)}{2}\delta(f)$ | Integration wrt time |
+| $g(t)h(t)$ | $G(f)*H(f)$ | Time multiplication |
+| $g(t)*h(t)$ | $G(f)H(f)$ | Time convolution |
+| $ag(t)+bh(t)$ | $aG(f)+bH(f)$ | Linearity $a,b$ constants |
+
+| Description | Property |
+| ----------------------------------- | ----------------- |
+| $g(0)=\int_{-\infty}^\infty G(f)df$ | Area under $G(f)$ |
+| $G(0)=\int_{-\infty}^\infty G(t)dt$ | Area under $g(t)$ |
+
```math
\begin{align*}
u(t) &= \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}&\text{Unit Step Function}\\
@@ -1015,6 +1027,8 @@ TODO: Cut out if not required
### Mutual information
+![Mutual information](images/MutualInformation.drawio.svg)
+
Amount of entropy decrease of $x$ after observation by $y$.
```math
diff --git a/README.pdf b/README.pdf
index 40eb3ad..b4d6b8c 100644
Binary files a/README.pdf and b/README.pdf differ
diff --git a/images/MutualInformation.drawio.svg b/images/MutualInformation.drawio.svg
new file mode 100644
index 0000000..a159569
--- /dev/null
+++ b/images/MutualInformation.drawio.svg
@@ -0,0 +1,4 @@
+
+
+
+
\ No newline at end of file