diff --git a/README.html b/README.html
index db8d14c..31cca24 100644
--- a/README.html
+++ b/README.html
@@ -675,14 +675,15 @@ Use these formulas in particular:
CNRinCNRin,FMSNRFMSNR(dB)=PnoisePin=2WN0A2=2N0W33A2kf2P=10log10(SNR)Decibels from ratio
Sampling
-tTsxs(t)Xs(f)⟹Xs(f)B=nTs=fs1=x(t)δs(t)=x(t)n∈Z∑δ(t−nTs)=n∈Z∑x(nTs)δ(t−nTs)=fsX(f)∗n∈Z∑δ(f−Tsn)=fsX(f)∗n∈Z∑δ(f−nfs)=n∈Z∑fsX(f−nfs)Sampling (FT)>21fs⟹2B>fs→Aliasing
Procedure to reconstruct sampled signal
Analog signal x′(t)x'(t)x′(t) which can be reconstructed from a sampled signal xs(t)x_s(t)xs(t): Put xs(t)x_s(t)xs(t) through LPF with maximum frequency of fs/2f_s/2fs/2 and minimum frequency of −fs/2-f_s/2−fs/2. Anything outside of the BPF will be attenuated, therefore nnn which results in frequencies outside the BPF will evaluate to 000 and can be ignored.
@@ -708,6 +709,9 @@ Use these formulas in particular:
Nyquist criterion for zero-ISI
Do not transmit more than 2B2B2B samples per second over a channel of BBB bandwidth.
+Nyquist rate=2BNyquist interval=12B\text{Nyquist rate} = 2B\quad\text{Nyquist interval}=\frac{1}{2B}
+Nyquist rate=2BNyquist interval=2B1
+
Cannot add directly due to copyright!
diff --git a/README.md b/README.md
index 7bcf59e..a019b65 100644
--- a/README.md
+++ b/README.md
@@ -490,8 +490,9 @@ Use these formulas in particular:
t&=nT_s\\
T_s&=\frac{1}{f_s}\\
x_s(t)&=x(t)\delta_s(t)=x(t)\sum_{n\in\mathbb{Z}}\delta(t-nT_s)=\sum_{n\in\mathbb{Z}}x(nT_s)\delta(t-nT_s)\\
- X_s(f)&=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
- B&>\frac{1}{2}f_s, 2B>f_s\rightarrow\text{Aliasing}\\
+ X_s(f)&=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
+ \implies X_s(f)&=\sum_{n\in\mathbb{Z}}f_s X\left(f-n f_s\right)\quad\text{Sampling (FT)}\\
+ B&>\frac{1}{2}f_s\implies 2B>f_s\rightarrow\text{Aliasing}\\
\end{align*}
```
@@ -542,6 +543,12 @@ Calculate $C_n$ coefficient as follows from $x_p(t)$:
Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidth.
+```math
+\text{Nyquist rate} = 2B\quad\text{Nyquist interval}=\frac{1}{2B}
+```
+
+
+
![By Bob K - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=94674142](images/Nyquist_frequency_&_rate.svg)
### Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to `images/sampling.png`)
diff --git a/README.pdf b/README.pdf
index 8a97b3c..ed99660 100644
Binary files a/README.pdf and b/README.pdf differ