mirror of
https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems.git
synced 2024-11-30 13:40:16 +08:00
Compare commits
No commits in common. "1ca408ec5ea3e1f9ea0e38686b132ff6e39e610c" and "5dcad9ebc4f9d54016ad5293be03f3b9f32bbe78" have entirely different histories.
1ca408ec5e
...
5dcad9ebc4
98
README.html
98
README.html
File diff suppressed because one or more lines are too long
95
README.md
95
README.md
|
@ -1,6 +1,12 @@
|
|||
# Idiot's guide to ELEC4402 communication systems
|
||||
|
||||
<div class="info-text">
|
||||
<style>
|
||||
@media print{
|
||||
.copyrighted{
|
||||
display: none !important;
|
||||
}
|
||||
}
|
||||
</style>
|
||||
|
||||
<!-- PRINT NOTE: Use 0.20 margins all around, scale: fit to page width, and no headers or backgrounds -->
|
||||
|
||||
|
@ -14,7 +20,7 @@ It is recommended to refer to use [the PDF copy](https://raw.githubusercontent.c
|
|||
|
||||
### License and information
|
||||
|
||||
Notes are open-source and licensed under the GNU GPL-3.0. **You must include the [full-text of the license](COPYING.txt) and follow its terms when using these notes or any diagrams in derivative works** (but not when printing as notes)
|
||||
Notes are open-source and licensed under the GNU GPL-3.0. **You must include the [full-text of the license](/COPYING.txt) and follow its terms when using these notes or any diagrams in derivative works** (but not when printing as notes)
|
||||
|
||||
Copyright (C) 2024 Peter Tanner
|
||||
|
||||
|
@ -68,16 +74,9 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
- **You do not get given a formula sheet**, so you are entirely dependent on your own notes (except for some exceptions, such as the $\text{erf}(x)$ table). So bring good notes.
|
||||
- Doing this unit after signal processing is a good idea.
|
||||
|
||||
## Printable notes begins on next page (in PDF)
|
||||
|
||||
<div style="page-break-after: always;"></div>
|
||||
</div>
|
||||
|
||||
<div class="short-info">
|
||||
|
||||
**[https://www.petertanner.dev/posts/Idiots-guide-to-ELEC4402-Communications-Systems/](https://www.petertanner.dev/posts/Idiots-guide-to-ELEC4402-Communications-Systems/)**
|
||||
|
||||
**Notes are open-source and licensed under the [GNU GPL-3.0](https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems/blob/master/COPYING.txt). Suggest any corrections or changes on [GitHub](https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems).**
|
||||
|
||||
</div>
|
||||
|
||||
## Fourier transform identities and properties
|
||||
|
||||
|
@ -317,11 +316,11 @@ h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
|
|||
|
||||
```math
|
||||
\begin{align*}
|
||||
x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right], \\
|
||||
&\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
|
||||
m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
|
||||
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
|
||||
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
|
||||
x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right], \\
|
||||
&\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
|
||||
P_c &=\frac{ {A_c}^2}{2}\quad\text{Carrier power}\\
|
||||
P_x &=\frac{1}{4}{m_a}^2{A_c}^2\\
|
||||
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_x}{P_x+P_c}\\
|
||||
|
@ -354,11 +353,11 @@ Overmodulation (resulting in phase reversals at crossing points): $m_a>1$
|
|||
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
|
||||
s(t) &= A_c\cos(\theta_i(t))=A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_{-\infty}^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
|
||||
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
|
||||
f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)=f_c+k_f m(t)=f_c+\Delta f_\text{max}\hat m(t)\quad\text{Instantaneous frequency}\\
|
||||
\Delta f_\text{max}&=\max_t|f_i(t)-f_c|=k_f \max_t |m(t)|\quad\text{Maximum frequency deviation}\\
|
||||
\Delta f_\text{max}&=k_f A_m\quad\text{Maximum frequency deviation (sinusoidal)}\\
|
||||
\beta&=\frac{\Delta f_\text{max}}{f_m}\quad\text{Modulation index}\\
|
||||
D&=\frac{\Delta f_\text{max}}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
|
||||
f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)\quad\text{Instantaneous frequency from instantaneous phase}\\
|
||||
\Delta f&=\beta f_m=k_f A_m f_m = \max_t(k_f m(t))- \min_t(k_f m(t))\quad\text{Maximum frequency deviation}\\
|
||||
\Delta f&=\max_t(f_i(t))- \min_t(f_i(t))\quad\text{Maximum frequency deviation}\\
|
||||
\beta&=\frac{\Delta f}{f_m}=k_f A_m\quad\text{Modulation index}\\
|
||||
D&=\frac{\Delta f}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
|
||||
\end{align*}
|
||||
```
|
||||
|
||||
|
@ -392,11 +391,12 @@ Overmodulation (resulting in phase reversals at crossing points): $m_a>1$
|
|||
```math
|
||||
\begin{align*}
|
||||
B &= 2Mf_m = 2(\beta + 1)f_m\\
|
||||
&= 2(\Delta f_\text{max}+f_m)\\
|
||||
&= 2(\Delta f+f_m)\\
|
||||
&= 2(k_f A_m+f_m)\\
|
||||
&= 2(D+1)W_m\\
|
||||
B &= \begin{cases}
|
||||
2(\Delta f_\text{max}+f_m)=2(\Delta f_\text{max}+W_m) & \text{FM, sinusoidal message}\\
|
||||
2(\Delta\phi_\text{max} + 1)f_m=2(\Delta \phi_\text{max}+1)W_m & \text{PM, sinusoidal message}
|
||||
2(\Delta f+f_m) & \text{FM, sinusoidal message}\\
|
||||
2(\Delta\phi + 1)f_m & \text{PM, sinusoidal message}
|
||||
\end{cases}\\
|
||||
\end{align*}
|
||||
```
|
||||
|
@ -440,9 +440,6 @@ B &= \begin{cases}
|
|||
|
||||
<!-- MATH END -->
|
||||
|
||||
<!-- ADJUST ACCORDING TO PDF OUTPUT -->
|
||||
<div style="page-break-after: always;"></div>
|
||||
|
||||
## Noise performance
|
||||
|
||||
Coherent detection system.
|
||||
|
@ -489,9 +486,8 @@ Use these formulas in particular:
|
|||
t&=nT_s\\
|
||||
T_s&=\frac{1}{f_s}\\
|
||||
x_s(t)&=x(t)\delta_s(t)=x(t)\sum_{n\in\mathbb{Z}}\delta(t-nT_s)=\sum_{n\in\mathbb{Z}}x(nT_s)\delta(t-nT_s)\\
|
||||
X_s(f)&=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
|
||||
\implies X_s(f)&=\sum_{n\in\mathbb{Z}}f_s X\left(f-n f_s\right)\quad\text{Sampling (FT)}\\
|
||||
B&>\frac{1}{2}f_s\implies 2B>f_s\rightarrow\text{Aliasing}\\
|
||||
X_s(f)&=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
|
||||
B&>\frac{1}{2}f_s, 2B>f_s\rightarrow\text{Aliasing}\\
|
||||
\end{align*}
|
||||
```
|
||||
|
||||
|
@ -542,12 +538,6 @@ Calculate $C_n$ coefficient as follows from $x_p(t)$:
|
|||
|
||||
Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidth.
|
||||
|
||||
```math
|
||||
\text{Nyquist rate} = 2B\quad\text{Nyquist interval}=\frac{1}{2B}
|
||||
```
|
||||
|
||||
<!-- MATH END -->
|
||||
|
||||
![By Bob K - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=94674142](images/Nyquist_frequency_&_rate.svg)
|
||||
|
||||
### Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to `images/sampling.png`)
|
||||
|
@ -769,13 +759,10 @@ tBitstream[{1, 1, -1, -1, -1, -1, 1, 1, -1, -1}, 1, "Q(t)"]
|
|||
Remember that $T=2T_b$
|
||||
|
||||
| | |
|
||||
| ----------------------- | ---------------------------------- |
|
||||
| $b_n$ | ![QPSK bits](images/qpsk-bits.svg) |
|
||||
| $I(t)$ (Odd, 1st bits) | ![QPSK bits](images/qpsk-it.svg) |
|
||||
| $Q(t)$ (Even, 2nd bits) | ![QPSK bits](images/qpsk-qt.svg) |
|
||||
|
||||
<!-- ADJUST ACCORDING TO PDF OUTPUT -->
|
||||
<div style="page-break-after: always;"></div>
|
||||
| ----------------------- | ----------------------------------- |
|
||||
| $b_n$ | ![QPSK bits](/images/qpsk-bits.svg) |
|
||||
| $I(t)$ (Odd, 1st bits) | ![QPSK bits](/images/qpsk-it.svg) |
|
||||
| $Q(t)$ (Even, 2nd bits) | ![QPSK bits](/images/qpsk-qt.svg) |
|
||||
|
||||
## Matched filter
|
||||
|
||||
|
@ -1018,9 +1005,6 @@ Adapted from table 11.4 M F Mesiya - Contemporary Communication Systems
|
|||
- Minimum distance between any two point
|
||||
- Different from bit error since a symbol can contain multiple bits
|
||||
|
||||
<!-- ADJUST ACCORDING TO PDF OUTPUT -->
|
||||
<div style="page-break-after: always;"></div>
|
||||
|
||||
## Information theory
|
||||
|
||||
### Entropy for discrete random variables
|
||||
|
@ -1192,9 +1176,6 @@ C=\frac{1}{2}\log_2\left(1+\frac{P_\text{av}}{N_0/2}\right)
|
|||
|
||||
<!-- MATH END -->
|
||||
|
||||
<!-- ADJUST ACCORDING TO PDF OUTPUT -->
|
||||
<div style="page-break-after: always;"></div>
|
||||
|
||||
## Channel code
|
||||
|
||||
Note: Define XOR ($\oplus$) as exclusive OR, or modulo-2 addition.
|
||||
|
@ -1391,25 +1372,3 @@ Set $x_1,x_2$ as information bits. Express $x_3,x_4,x_5$ in terms of $x_1,x_2$.
|
|||
- Transfer function in complex envelope form $\tilde{h}(t)$ should be divided by two.
|
||||
- Convolutions: do not forget width when using graphical method
|
||||
- todo: add more items to check
|
||||
|
||||
<style>
|
||||
@media print{
|
||||
.copyrighted, .info-text, h1 {
|
||||
display: none !important;
|
||||
}
|
||||
h2, h3, h4, h5 {
|
||||
page-break-inside: avoid;
|
||||
}
|
||||
h2::after, h3::after, h4::after, h5::after {
|
||||
content: "";
|
||||
display: block;
|
||||
height: 100px;
|
||||
margin-bottom: -100px;
|
||||
}
|
||||
}
|
||||
@media screen {
|
||||
.short-info {
|
||||
display: none;
|
||||
}
|
||||
}
|
||||
</style>
|
||||
|
|
BIN
README.pdf
BIN
README.pdf
Binary file not shown.
Loading…
Reference in New Issue
Block a user