mirror of
https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems.git
synced 2024-11-30 13:40:16 +08:00
Compare commits
6 Commits
5dcad9ebc4
...
1ca408ec5e
Author | SHA1 | Date | |
---|---|---|---|
1ca408ec5e | |||
f695c9d554 | |||
67757a98b6 | |||
358eeb8d69 | |||
262c3f1da0 | |||
3e14893802 |
98
README.html
98
README.html
File diff suppressed because one or more lines are too long
97
README.md
97
README.md
|
@ -1,12 +1,6 @@
|
||||||
# Idiot's guide to ELEC4402 communication systems
|
# Idiot's guide to ELEC4402 communication systems
|
||||||
|
|
||||||
<style>
|
<div class="info-text">
|
||||||
@media print{
|
|
||||||
.copyrighted{
|
|
||||||
display: none !important;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
</style>
|
|
||||||
|
|
||||||
<!-- PRINT NOTE: Use 0.20 margins all around, scale: fit to page width, and no headers or backgrounds -->
|
<!-- PRINT NOTE: Use 0.20 margins all around, scale: fit to page width, and no headers or backgrounds -->
|
||||||
|
|
||||||
|
@ -20,7 +14,7 @@ It is recommended to refer to use [the PDF copy](https://raw.githubusercontent.c
|
||||||
|
|
||||||
### License and information
|
### License and information
|
||||||
|
|
||||||
Notes are open-source and licensed under the GNU GPL-3.0. **You must include the [full-text of the license](/COPYING.txt) and follow its terms when using these notes or any diagrams in derivative works** (but not when printing as notes)
|
Notes are open-source and licensed under the GNU GPL-3.0. **You must include the [full-text of the license](COPYING.txt) and follow its terms when using these notes or any diagrams in derivative works** (but not when printing as notes)
|
||||||
|
|
||||||
Copyright (C) 2024 Peter Tanner
|
Copyright (C) 2024 Peter Tanner
|
||||||
|
|
||||||
|
@ -74,9 +68,16 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
- **You do not get given a formula sheet**, so you are entirely dependent on your own notes (except for some exceptions, such as the $\text{erf}(x)$ table). So bring good notes.
|
- **You do not get given a formula sheet**, so you are entirely dependent on your own notes (except for some exceptions, such as the $\text{erf}(x)$ table). So bring good notes.
|
||||||
- Doing this unit after signal processing is a good idea.
|
- Doing this unit after signal processing is a good idea.
|
||||||
|
|
||||||
## Printable notes begins on next page (in PDF)
|
|
||||||
|
|
||||||
<div style="page-break-after: always;"></div>
|
<div style="page-break-after: always;"></div>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div class="short-info">
|
||||||
|
|
||||||
|
**[https://www.petertanner.dev/posts/Idiots-guide-to-ELEC4402-Communications-Systems/](https://www.petertanner.dev/posts/Idiots-guide-to-ELEC4402-Communications-Systems/)**
|
||||||
|
|
||||||
|
**Notes are open-source and licensed under the [GNU GPL-3.0](https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems/blob/master/COPYING.txt). Suggest any corrections or changes on [GitHub](https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems).**
|
||||||
|
|
||||||
|
</div>
|
||||||
|
|
||||||
## Fourier transform identities and properties
|
## Fourier transform identities and properties
|
||||||
|
|
||||||
|
@ -316,11 +317,11 @@ h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
|
||||||
|
|
||||||
```math
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
|
x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right], \\
|
||||||
|
&\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
|
||||||
m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
|
m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
|
||||||
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
|
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
|
||||||
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
|
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
|
||||||
x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right], \\
|
|
||||||
&\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
|
|
||||||
P_c &=\frac{ {A_c}^2}{2}\quad\text{Carrier power}\\
|
P_c &=\frac{ {A_c}^2}{2}\quad\text{Carrier power}\\
|
||||||
P_x &=\frac{1}{4}{m_a}^2{A_c}^2\\
|
P_x &=\frac{1}{4}{m_a}^2{A_c}^2\\
|
||||||
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_x}{P_x+P_c}\\
|
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_x}{P_x+P_c}\\
|
||||||
|
@ -353,11 +354,11 @@ Overmodulation (resulting in phase reversals at crossing points): $m_a>1$
|
||||||
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
|
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
|
||||||
s(t) &= A_c\cos(\theta_i(t))=A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_{-\infty}^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
|
s(t) &= A_c\cos(\theta_i(t))=A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_{-\infty}^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
|
||||||
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
|
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
|
||||||
f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)\quad\text{Instantaneous frequency from instantaneous phase}\\
|
f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)=f_c+k_f m(t)=f_c+\Delta f_\text{max}\hat m(t)\quad\text{Instantaneous frequency}\\
|
||||||
\Delta f&=\beta f_m=k_f A_m f_m = \max_t(k_f m(t))- \min_t(k_f m(t))\quad\text{Maximum frequency deviation}\\
|
\Delta f_\text{max}&=\max_t|f_i(t)-f_c|=k_f \max_t |m(t)|\quad\text{Maximum frequency deviation}\\
|
||||||
\Delta f&=\max_t(f_i(t))- \min_t(f_i(t))\quad\text{Maximum frequency deviation}\\
|
\Delta f_\text{max}&=k_f A_m\quad\text{Maximum frequency deviation (sinusoidal)}\\
|
||||||
\beta&=\frac{\Delta f}{f_m}=k_f A_m\quad\text{Modulation index}\\
|
\beta&=\frac{\Delta f_\text{max}}{f_m}\quad\text{Modulation index}\\
|
||||||
D&=\frac{\Delta f}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
|
D&=\frac{\Delta f_\text{max}}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -391,12 +392,11 @@ Overmodulation (resulting in phase reversals at crossing points): $m_a>1$
|
||||||
```math
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
B &= 2Mf_m = 2(\beta + 1)f_m\\
|
B &= 2Mf_m = 2(\beta + 1)f_m\\
|
||||||
&= 2(\Delta f+f_m)\\
|
&= 2(\Delta f_\text{max}+f_m)\\
|
||||||
&= 2(k_f A_m+f_m)\\
|
|
||||||
&= 2(D+1)W_m\\
|
&= 2(D+1)W_m\\
|
||||||
B &= \begin{cases}
|
B &= \begin{cases}
|
||||||
2(\Delta f+f_m) & \text{FM, sinusoidal message}\\
|
2(\Delta f_\text{max}+f_m)=2(\Delta f_\text{max}+W_m) & \text{FM, sinusoidal message}\\
|
||||||
2(\Delta\phi + 1)f_m & \text{PM, sinusoidal message}
|
2(\Delta\phi_\text{max} + 1)f_m=2(\Delta \phi_\text{max}+1)W_m & \text{PM, sinusoidal message}
|
||||||
\end{cases}\\
|
\end{cases}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
```
|
```
|
||||||
|
@ -440,6 +440,9 @@ B &= \begin{cases}
|
||||||
|
|
||||||
<!-- MATH END -->
|
<!-- MATH END -->
|
||||||
|
|
||||||
|
<!-- ADJUST ACCORDING TO PDF OUTPUT -->
|
||||||
|
<div style="page-break-after: always;"></div>
|
||||||
|
|
||||||
## Noise performance
|
## Noise performance
|
||||||
|
|
||||||
Coherent detection system.
|
Coherent detection system.
|
||||||
|
@ -486,8 +489,9 @@ Use these formulas in particular:
|
||||||
t&=nT_s\\
|
t&=nT_s\\
|
||||||
T_s&=\frac{1}{f_s}\\
|
T_s&=\frac{1}{f_s}\\
|
||||||
x_s(t)&=x(t)\delta_s(t)=x(t)\sum_{n\in\mathbb{Z}}\delta(t-nT_s)=\sum_{n\in\mathbb{Z}}x(nT_s)\delta(t-nT_s)\\
|
x_s(t)&=x(t)\delta_s(t)=x(t)\sum_{n\in\mathbb{Z}}\delta(t-nT_s)=\sum_{n\in\mathbb{Z}}x(nT_s)\delta(t-nT_s)\\
|
||||||
X_s(f)&=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
|
X_s(f)&=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
|
||||||
B&>\frac{1}{2}f_s, 2B>f_s\rightarrow\text{Aliasing}\\
|
\implies X_s(f)&=\sum_{n\in\mathbb{Z}}f_s X\left(f-n f_s\right)\quad\text{Sampling (FT)}\\
|
||||||
|
B&>\frac{1}{2}f_s\implies 2B>f_s\rightarrow\text{Aliasing}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -538,6 +542,12 @@ Calculate $C_n$ coefficient as follows from $x_p(t)$:
|
||||||
|
|
||||||
Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidth.
|
Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidth.
|
||||||
|
|
||||||
|
```math
|
||||||
|
\text{Nyquist rate} = 2B\quad\text{Nyquist interval}=\frac{1}{2B}
|
||||||
|
```
|
||||||
|
|
||||||
|
<!-- MATH END -->
|
||||||
|
|
||||||
![By Bob K - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=94674142](images/Nyquist_frequency_&_rate.svg)
|
![By Bob K - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=94674142](images/Nyquist_frequency_&_rate.svg)
|
||||||
|
|
||||||
### Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to `images/sampling.png`)
|
### Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to `images/sampling.png`)
|
||||||
|
@ -758,11 +768,14 @@ tBitstream[{1, 1, -1, -1, -1, -1, 1, 1, -1, -1}, 1, "Q(t)"]
|
||||||
|
|
||||||
Remember that $T=2T_b$
|
Remember that $T=2T_b$
|
||||||
|
|
||||||
| | |
|
| | |
|
||||||
| ----------------------- | ----------------------------------- |
|
| ----------------------- | ---------------------------------- |
|
||||||
| $b_n$ | ![QPSK bits](/images/qpsk-bits.svg) |
|
| $b_n$ | ![QPSK bits](images/qpsk-bits.svg) |
|
||||||
| $I(t)$ (Odd, 1st bits) | ![QPSK bits](/images/qpsk-it.svg) |
|
| $I(t)$ (Odd, 1st bits) | ![QPSK bits](images/qpsk-it.svg) |
|
||||||
| $Q(t)$ (Even, 2nd bits) | ![QPSK bits](/images/qpsk-qt.svg) |
|
| $Q(t)$ (Even, 2nd bits) | ![QPSK bits](images/qpsk-qt.svg) |
|
||||||
|
|
||||||
|
<!-- ADJUST ACCORDING TO PDF OUTPUT -->
|
||||||
|
<div style="page-break-after: always;"></div>
|
||||||
|
|
||||||
## Matched filter
|
## Matched filter
|
||||||
|
|
||||||
|
@ -1005,6 +1018,9 @@ Adapted from table 11.4 M F Mesiya - Contemporary Communication Systems
|
||||||
- Minimum distance between any two point
|
- Minimum distance between any two point
|
||||||
- Different from bit error since a symbol can contain multiple bits
|
- Different from bit error since a symbol can contain multiple bits
|
||||||
|
|
||||||
|
<!-- ADJUST ACCORDING TO PDF OUTPUT -->
|
||||||
|
<div style="page-break-after: always;"></div>
|
||||||
|
|
||||||
## Information theory
|
## Information theory
|
||||||
|
|
||||||
### Entropy for discrete random variables
|
### Entropy for discrete random variables
|
||||||
|
@ -1176,6 +1192,9 @@ C=\frac{1}{2}\log_2\left(1+\frac{P_\text{av}}{N_0/2}\right)
|
||||||
|
|
||||||
<!-- MATH END -->
|
<!-- MATH END -->
|
||||||
|
|
||||||
|
<!-- ADJUST ACCORDING TO PDF OUTPUT -->
|
||||||
|
<div style="page-break-after: always;"></div>
|
||||||
|
|
||||||
## Channel code
|
## Channel code
|
||||||
|
|
||||||
Note: Define XOR ($\oplus$) as exclusive OR, or modulo-2 addition.
|
Note: Define XOR ($\oplus$) as exclusive OR, or modulo-2 addition.
|
||||||
|
@ -1372,3 +1391,25 @@ Set $x_1,x_2$ as information bits. Express $x_3,x_4,x_5$ in terms of $x_1,x_2$.
|
||||||
- Transfer function in complex envelope form $\tilde{h}(t)$ should be divided by two.
|
- Transfer function in complex envelope form $\tilde{h}(t)$ should be divided by two.
|
||||||
- Convolutions: do not forget width when using graphical method
|
- Convolutions: do not forget width when using graphical method
|
||||||
- todo: add more items to check
|
- todo: add more items to check
|
||||||
|
|
||||||
|
<style>
|
||||||
|
@media print{
|
||||||
|
.copyrighted, .info-text, h1 {
|
||||||
|
display: none !important;
|
||||||
|
}
|
||||||
|
h2, h3, h4, h5 {
|
||||||
|
page-break-inside: avoid;
|
||||||
|
}
|
||||||
|
h2::after, h3::after, h4::after, h5::after {
|
||||||
|
content: "";
|
||||||
|
display: block;
|
||||||
|
height: 100px;
|
||||||
|
margin-bottom: -100px;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
@media screen {
|
||||||
|
.short-info {
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
</style>
|
||||||
|
|
BIN
README.pdf
BIN
README.pdf
Binary file not shown.
Loading…
Reference in New Issue
Block a user