mirror of
https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems.git
synced 2024-12-02 22:50:15 +08:00
Compare commits
No commits in common. "7d5e4ae12205deca50d4829b2ef71b7cd1fd12e1" and "8d86ce77eb74d4d55fcb5515385e70cbe34c77b2" have entirely different histories.
7d5e4ae122
...
8d86ce77eb
99
README.html
99
README.html
File diff suppressed because one or more lines are too long
336
README.md
336
README.md
|
@ -1,9 +1,5 @@
|
|||
# Idiot's guide to ELEC4402 communication systems
|
||||
|
||||
## [Download PDF 📄](/README.pdf)
|
||||
|
||||
It is recommended to refer to use [the PDF copy](/README.pdf) instead of whatever GitHub renders.
|
||||
|
||||
## License and information
|
||||
|
||||
Notes are open-source and licensed under the GNU GPL-3.0. **You must include the [full-text of the license](/COPYING.txt) and follow its terms when using these notes or any diagrams in derivative works** (but not when printing as notes)
|
||||
|
@ -29,24 +25,26 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
|
||||
</details>
|
||||
|
||||
[Access a web-copy of the notes for printing](/README.html)
|
||||
|
||||
I accept pull requests or suggestions but the content must not be copyrighted under a non-GPL compatible license.
|
||||
|
||||
## Fourier transform identities
|
||||
|
||||
| **Time Function** | **Fourier Transform** |
|
||||
| --------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| $\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)$ | $T \text{sinc}(fT)$ |
|
||||
| --------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| $\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)$ | $T \, \text{sinc}(fT)$ |
|
||||
| $\text{sinc}(2Wt)$ | $\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$ |
|
||||
| $\exp(-at)u(t),\quad a>0$ | $\frac{1}{a + j2\pi f}$ |
|
||||
| $\exp(-a\lvert t \rvert),\quad a>0$ | $\frac{2a}{a^2 + (2\pi f)^2}$ |
|
||||
| $\exp(-at)u(t), \, a>0$ | $\frac{1}{a + j2\pi f}$ |
|
||||
| $\exp(-a\lvert t \rvert), \, a>0$ | $\frac{2a}{a^2 + (2\pi f)^2}$ |
|
||||
| $\exp(-\pi t^2)$ | $\exp(-\pi f^2)$ |
|
||||
| $1 - \frac{\lvert t \rvert}{T},\quad\lvert t \rvert < T$ | $T \text{sinc}^2(fT)$ |
|
||||
| $\begin{cases} 1 - \frac{\lvert t \rvert}{T}, & \lvert t \rvert < T \\ 0, & \lvert t \rvert \geq T \end{cases}$ | $T \, \text{sinc}^2(fT)$ |
|
||||
| $\delta(t)$ | $1$ |
|
||||
| $1$ | $\delta(f)$ |
|
||||
| $\delta(t - t_0)$ | $\exp(-j2\pi f t_0)$ |
|
||||
| $g(t-a)$ | $\exp(-j2\pi fa)G(f)\quad\text{shift property}$ |
|
||||
| $g(bt)$ | $\frac{G(f/b)}{\|b\|}\quad\text{scaling property}$ |
|
||||
| $g(bt-a)$ | $\frac{1}{\|b\|}\exp(-j2\pi a(f/b))\cdot G(f/b)\quad\text{shift and scale}$ |
|
||||
| $g(bt-a)$ | $\frac{1}{\|b\|}\exp(-j2\pi a(f/b))\cdot G(f/b)\quad\text{shift \& scale}$ |
|
||||
| $\frac{d}{dt}g(t)$ | $j2\pi fG(f)\quad\text{differentiation property}$ |
|
||||
| $G(t)$ | $g(-f)\quad\text{duality property}$ |
|
||||
| $g(t)h(t)$ | $G(f)*H(f)$ |
|
||||
|
@ -55,19 +53,17 @@ I accept pull requests or suggestions but the content must not be copyrighted un
|
|||
| $\cos(2\pi f_c t)$ | $\frac{1}{2}[\delta(f - f_c) + \delta(f + f_c)]$ |
|
||||
| $\sin(2\pi f_c t)$ | $\frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]$ |
|
||||
| $\text{sgn}(t)$ | $\frac{1}{j\pi f}$ |
|
||||
| $\frac{1}{\pi t}$ | $-j \text{sgn}(f)$ |
|
||||
| $\frac{1}{\pi t}$ | $-j \, \text{sgn}(f)$ |
|
||||
| $u(t)$ | $\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}$ |
|
||||
| $\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$ | $\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)=f_0 \sum_{n=-\infty}^{\infty} \delta\left(f - n f_0\right)$ |
|
||||
|
||||
```math
|
||||
\begin{align*}
|
||||
u(t) &= \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}&\text{Unit Step Function}\\
|
||||
\text{sgn}(t) &= \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}&\text{Signum Function}\\
|
||||
\text{sinc}(2Wt) &= \frac{\sin(2\pi W t)}{2\pi W t}&\text{sinc Function}\\
|
||||
\text{rect}(t) = \Pi(t) &= \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & \lvert t \rvert > 0.5 \end{cases}&\text{Rectangular/Gate Function}\\
|
||||
g(t)*h(t)=(g*h)(t)&=\int_\infty^\infty g(\tau)h(t-\tau)d\tau&\text{Convolution}\\
|
||||
\end{align*}
|
||||
```
|
||||
| **Function Name** | **Formula** |
|
||||
| -------------------- | ------------------------------------------------------------------------------------------------------- |
|
||||
| Unit Step Function | $u(t) = \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}$ |
|
||||
| Signum Function | $\text{sgn}(t) = \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}$ |
|
||||
| sinc Function | $\text{sinc}(2Wt) = \frac{\sin(2\pi W t)}{2\pi W t}$ |
|
||||
| Rectangular Function | $\text{rect}(t) = \Pi(t) = \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & \lvert t \rvert > 0.5 \end{cases}$ |
|
||||
| Convolution | $g(t)*h(t)=(g*h)(t)=\int_\infty^\infty g(\tau)h(t-\tau)d\tau$ |
|
||||
|
||||
### Fourier transform of continuous time periodic signal
|
||||
|
||||
|
@ -77,21 +73,21 @@ Required for some questions on **sampling**:
|
|||
|
||||
Transform a continuous time-periodic signal $x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s)$ with period $T_s$:
|
||||
|
||||
```math
|
||||
$$
|
||||
X_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
|
||||
```
|
||||
$$
|
||||
|
||||
Calculate $C_n$ coefficient as follows from $x_p(t)$:
|
||||
|
||||
<!-- Remember $X_p(f)\leftrightarrow x_p(t)$ and **NOT** $\color{red}X_p(f)\leftrightarrow x_p(t-nT_s)$ -->
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
% C_n&=X_p(nf_s)\\
|
||||
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
|
||||
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### $\text{rect}$ function
|
||||
|
||||
|
@ -99,16 +95,16 @@ Calculate $C_n$ coefficient as follows from $x_p(t)$:
|
|||
|
||||
### Bessel function
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\sum_{n\in\mathbb{Z}}{J_n}^2(\beta)&=1\\
|
||||
\sum_{n\in\Z}{J_n}^2(\beta)&=1\\
|
||||
J_n(\beta)&=(-1)^nJ_{-n}(\beta)
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### White noise
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
R_W(\tau)&=\frac{N_0}{2}\delta(\tau)=\frac{kT}{2}\delta(\tau)=\sigma^2\delta(\tau)\\
|
||||
G_w(f)&=\frac{N_0}{2}\\
|
||||
|
@ -116,27 +112,27 @@ N_0&=kT\\
|
|||
G_y(f)&=|H(f)|^2G_w(f)\\
|
||||
G_y(f)&=G(f)G_w(f)\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### WSS
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\mu_X(t) &= \mu_X\text{ Constant}\\
|
||||
R_{XX}(t_1,t_2)&=R_X(t_1-t_2)=R_X(\tau)\\
|
||||
E[X(t_1)X(t_2)]&=E[X(t)X(t+\tau)]
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Ergodicity
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\braket{X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t)dt\\
|
||||
\braket{X(t+\tau)X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t+\tau)x(t)dt\\
|
||||
E[\braket{X(t)}_T]&=\frac{1}{2T}\int_{-T}^{T}x(t)dt=\frac{1}{2T}\int_{-T}^{T}m_Xdt=m_X\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
| Type | Normal | Mean square sense |
|
||||
| ----------------------------------- | ------------------------------------------------------- | ----------------------------------------------------------- |
|
||||
|
@ -147,17 +143,17 @@ G_y(f)&=G(f)G_w(f)\\
|
|||
|
||||
### Other identities
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
f*(g*h) &=(f*g)*h\quad\text{Convolution associative}\\
|
||||
a(f*g) &= (af)*g \quad\text{Convolution associative}\\
|
||||
\sum_{x=-\infty}^\infty(f(x a)\delta(\omega-x b))&=f\left(\frac{\omega a}{b}\right)
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Other trig
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\cos2\theta=2 \cos^2 \theta-1&\Leftrightarrow\frac{\cos2\theta+1}{2}=\cos^2\theta\\
|
||||
e^{-j\alpha}-e^{j\alpha}&=-2j \sin(\alpha)\\
|
||||
|
@ -168,11 +164,11 @@ G_y(f)&=G(f)G_w(f)\\
|
|||
\sin(A-\pi/2)&=-\cos(A)\\
|
||||
\cos(A-\pi/2)&=\sin(A)\\
|
||||
\cos(A+\pi/2)&=-\sin(A)\\
|
||||
\int_{x\in\mathbb{R}}\text{sinc}(A x) &= \frac{1}{|A|}\\
|
||||
\int_{x\in\R}\text{sinc}(A x) &= \frac{1}{|A|}\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\cos(A+B) &= \cos (A) \cos (B)-\sin (A) \sin (B) \\
|
||||
\sin(A+B) &= \sin (A) \cos (B)+\cos (A) \sin (B) \\
|
||||
|
@ -180,9 +176,9 @@ G_y(f)&=G(f)G_w(f)\\
|
|||
\cos(A)\sin(B) &= \frac{1}{2} (\sin (A+B)-\sin (A-B)) \\
|
||||
\sin(A)\sin(B) &= \frac{1}{2} (\cos (A-B)-\cos (A+B)) \\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\cos(A)+\cos(B) &= 2 \cos \left(\frac{A}{2}-\frac{B}{2}\right) \cos \left(\frac{A}{2}+\frac{B}{2}\right) \\
|
||||
\cos(A)-\cos(B) &= -2 \sin \left(\frac{A}{2}-\frac{B}{2}\right) \sin \left(\frac{A}{2}+\frac{B}{2}\right) \\
|
||||
|
@ -191,7 +187,7 @@ G_y(f)&=G(f)G_w(f)\\
|
|||
\cos(A)+\sin(B)&= -2 \sin \left(\frac{A}{2}-\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}+\frac{B}{2}+\frac{\pi }{4}\right) \\
|
||||
\cos(A)-\sin(B)&= -2 \sin \left(\frac{A}{2}+\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}-\frac{B}{2}+\frac{\pi }{4}\right) \\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
## IQ/Complex envelope
|
||||
|
||||
|
@ -199,7 +195,7 @@ Def. $\tilde{g}(t)=g_I(t)+jg_Q(t)$ as the complex envelope. Best to convert to $
|
|||
|
||||
### Convert complex envelope representation to time-domain representation of signal
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
g(t)&=g_I(t)\cos(2\pi f_c t)-g_Q(t)\sin(2\pi f_c t)\\
|
||||
&=\text{Re}[\tilde{g}(t)\exp{(j2\pi f_c t)}]\\
|
||||
|
@ -209,23 +205,23 @@ A(t)&=|g(t)|=\sqrt{g_I^2(t)+g_Q^2(t)}\quad\text{Amplitude}\\
|
|||
g_I(t)&=A(t)\cos(\phi(t))\quad\text{In-phase component}\\
|
||||
g_Q(t)&=A(t)\sin(\phi(t))\quad\text{Quadrature-phase component}\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### For transfer function
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
|
||||
&=2\text{Re}[\tilde{h}(t)\exp{(j2\pi f_c t)}]\\
|
||||
\Rightarrow\tilde{h}(t)&=h_I(t)/2+jh_Q(t)/2=A(t)/2\exp{(j\phi(t))}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
## AM
|
||||
|
||||
### CAM
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
|
||||
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
|
||||
|
@ -237,7 +233,7 @@ h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
|
|||
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_x}{P_x+P_c}\\
|
||||
B_T&=2f_m=2B
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
$B_T$: Signal bandwidth
|
||||
$B$: Bandwidth of modulating wave
|
||||
|
@ -246,16 +242,16 @@ Overmodulation (resulting in phase reversals at crossing points): $m_a>1$
|
|||
|
||||
### DSB-SC
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
x_\text{DSB}(t) &= A_c \cos{(2\pi f_c t)} m(t)\\
|
||||
B_T&=2f_m=2B
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
## FM/PM
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
|
||||
s(t) &= A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_0^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
|
||||
|
@ -264,30 +260,34 @@ Overmodulation (resulting in phase reversals at crossing points): $m_a>1$
|
|||
\Delta f&=\beta f_m=k_f A_m f_m = \max_t(k_f m(t))- \min_t(k_f m(t))\quad\text{Maximum frequency deviation}\\
|
||||
D&=\frac{\Delta f}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Bessel form and magnitude spectrum (single tone)
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right] \Leftrightarrow s(t)= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\cos[2\pi(f_c+nf_m)t]
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
<!-- ### Bessel repr.
|
||||
|
||||
$$s(t) = A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\cos[2\pi(f_c+nf_m) t)$$ -->
|
||||
|
||||
### FM signal power
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
P_\text{av}&=\frac{{A_c}^2}{2}\\
|
||||
P_\text{band\_index}&=\frac{{A_c}^2{J_\text{band\_index}}^2(\beta)}{2}\\
|
||||
\text{band\_index}&=0\implies f_c+0f_m\\
|
||||
\text{band\_index}&=1\implies f_c+1f_m,\dots\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Carson's rule to find $B$ (98% power bandwidth rule)
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
B &= 2Mf_m = 2(\beta + 1)f_m\\
|
||||
&= 2(\Delta f+f_m)\\
|
||||
|
@ -298,7 +298,7 @@ B &= \begin{cases}
|
|||
2(\Delta\phi + 1)f_m & \text{PM, sinusoidal message}
|
||||
\end{cases}\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
#### $\Delta f$ of arbitrary modulating signal
|
||||
|
||||
|
@ -306,7 +306,7 @@ Find instantaneous frequency $f_\text{FM}$.
|
|||
|
||||
$M$: Number of **pairs** of significant sidebands
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
s(t)&=A_c\cos(\theta_\text{FM}(t))\\
|
||||
f_\text{FM}(t) &= \frac{1}{2\pi}\frac{d\theta_\text{FM}(t)}{dt}\\
|
||||
|
@ -317,17 +317,17 @@ W_m &= \text{max}(\text{frequencies in $\theta_\text{FM}(t)$...}) \\
|
|||
D &= \frac{\Delta f}{W_m}\\
|
||||
B_T &= 2(D+1)W_m
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Complex envelope
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
s(t)&=A_c\cos(2\pi f_c t+\beta\sin(2\pi f_m t)) \Leftrightarrow \tilde{s}(t) = A_c\exp(j\beta\sin(2\pi f_m t))\\
|
||||
s(t)&=\text{Re}[\tilde{s}(t)\exp{(j2\pi f_c t)}]\\
|
||||
\tilde{s}(t) &= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\exp(j2\pi f_m t)
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Band
|
||||
|
||||
|
@ -337,7 +337,7 @@ B_T &= 2(D+1)W_m
|
|||
|
||||
## Power, energy and autocorrelation
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
G_\text{WGN}(f)&=\frac{N_0}{2}\\
|
||||
G_x(f)&=|H(f)|^2G_w(f)\text{ (PSD)}\\
|
||||
|
@ -350,24 +350,24 @@ B_T &= 2(D+1)W_m
|
|||
E&=\int_{-\infty}^{\infty}|x(t)|^2dt=|X(f)|^2\\
|
||||
R_x(\tau) &= \mathfrak{F}(G_x(f))\quad\text{PSD to Autocorrelation}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
##
|
||||
|
||||
## Noise performance
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\text{CNR}_\text{in} &= \frac{P_\text{in}}{P_\text{noise}}\\
|
||||
\text{CNR}_\text{in,FM} &= \frac{A^2}{2WN_0}\\
|
||||
\text{SNR}_\text{FM} &= \frac{3A^2k_f^2P}{2N_0W^3}\\
|
||||
\text{SNR(dB)} &= 10\log_{10}(\text{SNR}) \quad\text{Decibels from ratio}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
## Sampling
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
t&=nT_s\\
|
||||
T_s&=\frac{1}{f_s}\\
|
||||
|
@ -375,7 +375,7 @@ B_T &= 2(D+1)W_m
|
|||
X_s(f)&=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
|
||||
B&>\frac{1}{2}f_s, 2B>f_s\rightarrow\text{Aliasing}\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Procedure to reconstruct sampled signal
|
||||
|
||||
|
@ -397,21 +397,21 @@ Required for some questions on **sampling**:
|
|||
|
||||
Transform a continuous time-periodic signal $x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s)$ with period $T_s$:
|
||||
|
||||
```math
|
||||
$$
|
||||
X_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
|
||||
```
|
||||
$$
|
||||
|
||||
Calculate $C_n$ coefficient as follows from $x_p(t)$:
|
||||
|
||||
<!-- Remember $X_p(f)\leftrightarrow x_p(t)$ and **NOT** $\color{red}X_p(f)\leftrightarrow x_p(t-nT_s)$ -->
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
% C_n&=X_p(nf_s)\\
|
||||
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
|
||||
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
<!-- Reconstruct from $\bar{X_s}(f)$ within the range $[-f_s/2,f_s/2]$ -->
|
||||
|
||||
|
@ -428,15 +428,15 @@ Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidt
|
|||
|
||||
## Quantizer
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\Delta &= \frac{x_\text{Max}-x_\text{Min}}{2^k} \quad\text{for $k$-bit quantizer (V/lsb)}\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Quantization noise
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
e &:= y-x\quad\text{Quantization error}\\
|
||||
\mu_E &= E[E] = 0\quad\text{Zero mean}\\
|
||||
|
@ -444,7 +444,7 @@ Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidt
|
|||
\text{SQNR}&=\frac{\text{Signal power}}{\text{Quantization noise}}\\
|
||||
\text{SQNR(dB)}&=10\log_{10}(\text{SQNR})
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Insert here figure 8.17 from M F Mesiya - Contemporary Communication Systems (Add image to `images/quantizer.png`)
|
||||
|
||||
|
@ -455,7 +455,7 @@ Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidt
|
|||
|
||||
![binary_codes](images/Line_Codes.drawio.svg)
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
R_b&\rightarrow\text{Bit rate}\\
|
||||
D&\rightarrow\text{Symbol rate | }R_d\text{ | }1/T_b\\
|
||||
|
@ -469,7 +469,7 @@ Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidt
|
|||
G_\text{unipolarNRZ}(f)&=\frac{A^2}{4R_b}\left(\text{sinc}^2\left(\frac{f}{R_b}\right)+R_b\delta(f)\right)\\
|
||||
G_\text{unipolarRZ}(f)&=\frac{A^2}{16} \left(\sum _{l=-\infty }^{\infty } \delta \left(f-\frac{l}{T_b}\right) \left| \text{sinc}(\text{duty} \times l) \right| {}^2+T_b \left| \text{sinc}\left(\text{duty} \times f T_b\right) \right| {}^2\right), \text{NB}_0=2R_b
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
## Modulation and basis functions
|
||||
|
||||
|
@ -479,27 +479,25 @@ Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidt
|
|||
|
||||
#### Basis functions
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\varphi_1(t) &= \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t)\quad0\leq t\leq T_b\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
#### Symbol mapping
|
||||
|
||||
```math
|
||||
b_n:\{1,0\}\to a_n:\{1,0\}
|
||||
```
|
||||
$$b_n:\{1,0\}\to a_n:\{1,0\}$$
|
||||
|
||||
#### 2 possible waveforms
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
s_1(t)&=A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=\sqrt{2E_b}\varphi_1(t)\\
|
||||
s_1(t)&=0\\
|
||||
&\text{Since $E_b=E_\text{average}=\frac{1}{2}(\frac{{A_c}^2}{2}\times T_b + 0)=\frac{{A_c}^2}{4}T_b$}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
Distance is $d=\sqrt{2E_b}$
|
||||
|
||||
|
@ -507,27 +505,25 @@ Distance is $d=\sqrt{2E_b}$
|
|||
|
||||
#### Basis functions
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\varphi_1(t) &= \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t)\quad0\leq t\leq T_b\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
#### Symbol mapping
|
||||
|
||||
```math
|
||||
b_n:\{1,0\}\to a_n:\{1,\color{green}-1\color{white}\}
|
||||
```
|
||||
$$b_n:\{1,0\}\to a_n:\{1,\color{lime}-1\color{white}\}$$
|
||||
|
||||
#### 2 possible waveforms
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
s_1(t)&=A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=\sqrt{E_b}\varphi_1(t)\\
|
||||
s_1(t)&=-A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=-\sqrt{E_b}\varphi_2(t)\\
|
||||
&\text{Since $E_b=E_\text{average}=\frac{1}{2}(\frac{{A_c}^2}{2}\times T_b + \frac{{A_c}^2}{2}\times T_b)=\frac{{A_c}^2}{2}T_b$}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
Distance is $d=2\sqrt{E_b}$
|
||||
|
||||
|
@ -535,45 +531,45 @@ Distance is $d=2\sqrt{E_b}$
|
|||
|
||||
#### Basis functions
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
T &= 2 T_b\quad\text{Time per symbol for two bits $T_b$}\\
|
||||
\varphi_1(t) &= \sqrt{\frac{2}{T}}\cos(2\pi f_c t)\quad0\leq t\leq T\\
|
||||
\varphi_2(t) &= \sqrt{\frac{2}{T}}\sin(2\pi f_c t)\quad0\leq t\leq T\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### 4 possible waveforms
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
s_1(t)&=\sqrt{E_s/2}\left[\varphi_1(t)+\varphi_2(t)\right]\\
|
||||
s_2(t)&=\sqrt{E_s/2}\left[\varphi_1(t)-\varphi_2(t)\right]\\
|
||||
s_3(t)&=\sqrt{E_s/2}\left[-\varphi_1(t)+\varphi_2(t)\right]\\
|
||||
s_4(t)&=\sqrt{E_s/2}\left[-\varphi_1(t)-\varphi_2(t)\right]\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
Note on energy per symbol: Since $|s_i(t)|=A_c$, have to normalize distance as follows:
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
s_i(t)&=A_c\sqrt{T/2}/\sqrt{2}\times\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
|
||||
&=\sqrt{T{A_c}^2/4}\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
|
||||
&=\sqrt{E_s/2}\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
#### Signal
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\text{Symbol mapping: }& \left\{1,0\right\}\to\left\{1,-1\right\}\\
|
||||
I(t) &= b_{2n}\varphi_1(t)\quad\text{Even bits}\\
|
||||
Q(t) &= b_{2n+1}\varphi_2(t)\quad\text{Odd bits}\\
|
||||
x(t) &= A_c[I(t)\cos(2\pi f_c t)-Q(t)\sin(2\pi f_c t)]
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Example of waveform
|
||||
|
||||
|
@ -619,20 +615,20 @@ Remember that $T=2T_b$
|
|||
|
||||
Find transfer function $h(t)$ of matched filter and apply to an input:
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
h(t)&=s_1(T-t)-s_2(T-t)\\
|
||||
h(t)&=s^*(T-t) \qquad\text{((.)* is the conjugate)}\\
|
||||
s_{on}(t)&=h(t)*s_n(t)=\int_\infty^\infty h(\tau)s_n(t-\tau)d\tau\quad\text{Filter output}\\
|
||||
n_o(t)&=h(t)*n(t)\quad\text{Noise at filter output}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### 2. Bit error rate
|
||||
|
||||
Bit error rate (BER) from matched filter outputs and filter output noise
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
% H_\text{opt}(f)&=\max_{H(f)}\left(\frac{s_{o1}-s_{o2}}{2\sigma_o}\right)
|
||||
|
||||
|
@ -647,7 +643,7 @@ Bit error rate (BER) from matched filter outputs and filter output noise
|
|||
\text{BER}_\text{unipolarNRZ|BASK}&=Q\left(\sqrt{\frac{d^2}{N_0}}\right)=Q\left(\sqrt{\frac{E_b}{N_0}}\right)\\
|
||||
\text{BER}_\text{polarNRZ|BPSK}&=Q\left(\sqrt{\frac{2d^2}{N_0}}\right)=Q\left(\sqrt{\frac{2E_b}{N_0}}\right)\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
<div style="page-break-after: always;"></div>
|
||||
|
||||
|
@ -677,7 +673,7 @@ Bit error rate (BER) from matched filter outputs and filter output noise
|
|||
|
||||
| $x$ | $Q(x)$ | $x$ | $Q(x)$ | $x$ | $Q(x)$ | $x$ | $Q(x)$ |
|
||||
| ------ | ---------- | ------ | ----------------------- | ------ | ------------------------ | ------ | ------------------------ |
|
||||
| $0.00$ | $0.5$ | $2.30$ | $0.010724$ | $4.55$ | $2.6823 \times 10^{-6}$ | $6.80$ | $5.231 \times 10^{-12}$ |
|
||||
| $0.00$ | $0.5 | $2.30$ | $0.010724$ | $4.55$ | $2.6823 \times 10^{-6}$ | $6.80$ | $5.231 \times 10^{-12}$ |
|
||||
| $0.05$ | $0.48006$ | $2.35$ | $0.0093867$ | $4.60$ | $2.1125 \times 10^{-6}$ | $6.85$ | $3.6925 \times 10^{-12}$ |
|
||||
| $0.10$ | $0.46017$ | $2.40$ | $0.0081975$ | $4.65$ | $1.6597 \times 10^{-6}$ | $6.90$ | $2.6001 \times 10^{-12}$ |
|
||||
| $0.15$ | $0.44038$ | $2.45$ | $0.0071428$ | $4.70$ | $1.3008 \times 10^{-6}$ | $6.95$ | $1.8264 \times 10^{-12}$ |
|
||||
|
@ -730,7 +726,7 @@ Adapted from table 6.1 M F Mesiya - Contemporary Communication Systems
|
|||
|
||||
### Receiver output shit
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
r_o(t)&=\begin{cases}
|
||||
s_{o1}(t)+n_o(t) & \text{code 1}\\
|
||||
|
@ -738,14 +734,14 @@ Adapted from table 6.1 M F Mesiya - Contemporary Communication Systems
|
|||
\end{cases}\\
|
||||
n&: \text{AWGN with }\sigma_o^2\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
<!--
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
G_x(f)
|
||||
\end{align*}
|
||||
``` -->
|
||||
$$ -->
|
||||
|
||||
## ISI, channel model
|
||||
|
||||
|
@ -755,22 +751,20 @@ TODO:
|
|||
|
||||
### Nomenclature
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
D&\rightarrow\text{Symbol Rate, Max. Signalling Rate}\\
|
||||
T&\rightarrow\text{Symbol Duration}\\
|
||||
M&\rightarrow\text{Symbol set size}\\
|
||||
W&\rightarrow\text{Bandwidth}\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Raised cosine (RC) pulse
|
||||
|
||||
![Raised cosine pulse](images/RC.drawio.svg)
|
||||
|
||||
```math
|
||||
0\leq\alpha\leq1
|
||||
```
|
||||
$$0\leq\alpha\leq1$$
|
||||
|
||||
⚠ NOTE might not be safe to assume $T'=T$, if you can solve the question without $T$ then use that method.
|
||||
|
||||
|
@ -779,43 +773,50 @@ To solve this type of question:
|
|||
1. Use the formula for $D$ below
|
||||
2. Consult the BER table below to get the BER which relates the noise of the channel $N_0$ to $E_b$ and to $R_b$.
|
||||
|
||||
<!-- $$
|
||||
V_\text{RC}(f)=\begin{cases}
|
||||
T & 0\le|f|\le(1-\alpha)/2T\\
|
||||
\frac{T}{2}\left(1+\cos\left[\right]\right)
|
||||
\end{cases}
|
||||
$$ -->
|
||||
|
||||
| Linear modulation ($M$-PSK, $M$-QAM) | NRZ unipolar encoding |
|
||||
| --------------------------------------------------- | -------------------------------------------------- |
|
||||
| $W=B_\text{\color{green}abs-abs}$ | $W=B_\text{\color{green}abs}$ |
|
||||
| $W=B_\text{\color{lime}abs-abs}$ | $W=B_\text{\color{lime}abs}$ |
|
||||
| $W=B_\text{abs-abs}=\frac{1+\alpha}{T}=(1+\alpha)D$ | $W=B_\text{abs}=\frac{1+\alpha}{2T}=(1+\alpha)D/2$ |
|
||||
| $D=\frac{W\text{ symbol/s}}{1+\alpha}$ | $D=\frac{2W\text{ symbol/s}}{1+\alpha}$ |
|
||||
|
||||
#### Symbol set size $M$
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
D\text{ symbol/s}&=\frac{2W\text{ Hz}}{1+\alpha}\\
|
||||
R_b\text{ bit/s}&=(D\text{ symbol/s})\times(k\text{ bit/symbol})\\
|
||||
M\text{ symbol/set}&=2^k\\
|
||||
E_b&=PT=P_\text{av}/R_b\quad\text{Energy per bit}\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Nyquist stuff
|
||||
|
||||
#### Condition for 0 ISI TODO:
|
||||
#### Condition for 0 ISI
|
||||
|
||||
```math
|
||||
$$
|
||||
P_r(kT)=\begin{cases}
|
||||
1 & k=0\\
|
||||
0 & k\neq0
|
||||
\end{cases}
|
||||
```
|
||||
$$
|
||||
|
||||
#### Other
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\text{Excess BW}&=B_\text{abs}-B_\text{Nyquist}=\frac{1+\alpha}{2T}-\frac{1}{2T}=\frac{\alpha}{2T}\quad\text{FOR NRZ (Use correct $B_\text{abs}$)}\\
|
||||
\alpha&=\frac{\text{Excess BW}}{B_\text{Nyquist}}=\frac{B_\text{abs}-B_\text{Nyquist}}{B_\text{Nyquist}}\\
|
||||
T&=1/D
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
<div style="page-break-after: always;"></div>
|
||||
|
||||
|
@ -853,7 +854,7 @@ Adapted from table 11.4 M F Mesiya - Contemporary Communication Systems
|
|||
|
||||
### Entropy for discrete random variables
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
H(x) &\geq 0\\
|
||||
H(x) &= -\sum_{x_i\in A_x} p_X(x_i) \log_2(p_X(x_i))\\
|
||||
|
@ -865,7 +866,7 @@ Adapted from table 11.4 M F Mesiya - Contemporary Communication Systems
|
|||
H(x|y) &= H(x,y)-H(y)\\
|
||||
H(x,y) &= H(x) + H(y|x) = H(y) + H(x|y)\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
Entropy is **maximized** when all have an equal probability.
|
||||
|
||||
|
@ -873,63 +874,64 @@ Entropy is **maximized** when all have an equal probability.
|
|||
|
||||
TODO: Cut out if not required
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
h(x) &= -\int_\mathbb{R}f_X(x)\log_2(f_X(x))dx
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Mutual information
|
||||
|
||||
Amount of entropy decrease of $x$ after observation by $y$.
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
I(x;y) &= H(x)-H(x|y)=H(y)-H(y|x)\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Channel model
|
||||
|
||||
Vertical, $x$: input\
|
||||
Horizontal, $y$: output
|
||||
|
||||
```math
|
||||
$$
|
||||
\mathbf{P}=\left[\begin{matrix}
|
||||
p_{11} & p_{12} &\dots & p_{1N}\\
|
||||
p_{21} & p_{22} &\dots & p_{2N}\\
|
||||
\vdots & \vdots &\ddots & \vdots\\
|
||||
p_{M1} & p_{M2} &\dots & p_{MN}\\
|
||||
\end{matrix}\right]
|
||||
```
|
||||
$$
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{array}{c|cccc}
|
||||
P(y_j|x_i)& y_1 & y_2 & \dots & y_N \\\hline
|
||||
P(y_j|x_i)& y_1 & y_2 & \dots & y_N \\
|
||||
\hline
|
||||
x_1 & p_{11} & p_{12} & \dots & p_{1N} \\
|
||||
x_2 & p_{21} & p_{22} & \dots & p_{2N} \\
|
||||
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
||||
x_M & p_{M1} & p_{M2} & \dots & p_{MN} \\
|
||||
\end{array}
|
||||
```
|
||||
$$
|
||||
|
||||
Input has probability distribution $p_X(a_i)=P(X=a_i)$
|
||||
|
||||
Channel maps alphabet $`\{a_1,\dots,a_M\} \to \{b_1,\dots,b_N\}`$
|
||||
Channel maps alphabet $\{a_1,\dots,a_M\} \to \{b_1,\dots,b_N\}$
|
||||
|
||||
Output has probabiltiy distribution $p_Y(b_j)=P(y=b_j)$
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
p_Y(b_j) &= \sum_{i=1}^{M}P[x=a_i,y=b_j]\quad 1\leq j\leq N \\
|
||||
&= \sum_{i=1}^{M}P[X=a_i]P[Y=b_j|X=a_i]\\
|
||||
[\begin{matrix}p_Y(b_0)&p_Y(b_1)&\dots&p_Y(b_j)\end{matrix}] &= [\begin{matrix}p_X(a_0)&p_X(a_1)&\dots&p_X(a_i)\end{matrix}]\times\mathbf{P}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
#### Fast procedure to calculate $I(y;x)$
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
&\text{1. Find }H(x)\\
|
||||
&\text{2. Find }[\begin{matrix}p_Y(b_0)&p_Y(b_1)&\dots&p_Y(b_j)\end{matrix}] = [\begin{matrix}p_X(a_0)&p_X(a_1)&\dots&p_X(a_i)\end{matrix}]\times\mathbf{P}\\
|
||||
|
@ -938,7 +940,7 @@ Output has probabiltiy distribution $p_Y(b_j)=P(y=b_j)$
|
|||
&\text{5. Find }H(x|y)=H(x,y)-H(y)\\
|
||||
&\text{6. Find }I(y;x)=H(x)-H(x|y)\\
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Channel types
|
||||
|
||||
|
@ -949,7 +951,7 @@ Output has probabiltiy distribution $p_Y(b_j)=P(y=b_j)$
|
|||
|
||||
#### Channel capacity of weakly symmetric channel
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
C &\to\text{Channel capacity (bits/channels used)}\\
|
||||
N &\to\text{Output alphabet size}\\
|
||||
|
@ -957,38 +959,38 @@ Output has probabiltiy distribution $p_Y(b_j)=P(y=b_j)$
|
|||
C &= \log_2(N)-H(\mathbf{p})\quad\text{Capacity for weakly symmetric and symmetric channels}\\
|
||||
R &< C \text{ for error-free transmission}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
#### Channel capacity of an AWGN channel
|
||||
|
||||
```math
|
||||
$$
|
||||
y_i=x_i+n_i\quad n_i\thicksim N(0,N_0/2)
|
||||
```
|
||||
$$
|
||||
|
||||
```math
|
||||
$$
|
||||
C=\frac{1}{2}\log_2\left(1+\frac{P_\text{av}}{N_0/2}\right)
|
||||
```
|
||||
$$
|
||||
|
||||
#### Channel capacity of a bandwidth AWGN channel
|
||||
|
||||
Note: Define XOR ($\oplus$) as exclusive OR, or modulo-2 addition.
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
P_s&\to\text{Bandwidth limited average power}\\
|
||||
y_i&=\text{bandpass}_W(x_i)+n_i\quad n_i\thicksim N(0,N_0/2)\\
|
||||
C&=W\log_2\left(1+\frac{P_s}{N_0 W}\right)\\
|
||||
C&=W\log_2(1+\text{SNR})\quad\text{SNR}=P_s/(N_0 W)
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
## Channel code
|
||||
|
||||
| | | |
|
||||
| ---------------- | --------------------------------- | ---------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ---------------- | --------------------------------- | -------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Hamming weight | $w_H(x)$ | Number of `'1'` in codeword $x$ |
|
||||
| Hamming distance | $d_H(x_1,x_2)=w_H(x_1\oplus x_2)$ | Number of different bits between codewords $x_1$ and $x_2$ which is the hamming weight of the XOR of the two codes. |
|
||||
| Minimum distance | $d_\text{min}$ | **IMPORTANT**: $x\neq\textbf{0}$, excludes weight of all-zero codeword. For a linear block code, $d_\text{min}=w_\text{min}$ |
|
||||
| Minimum distance | $d_\text{min}$ | **IMPORTANT**: $x\neq\bold{0}$, excludes weight of all-zero codeword. For a linear block code, $d_\text{min}=w_\text{min}$ |
|
||||
|
||||
### Linear block code
|
||||
|
||||
|
@ -1009,7 +1011,7 @@ For a linear block code, $d_\text{min}=w_\text{min}$
|
|||
|
||||
Each generator vector is a binary string of size $n$. There are $k$ generator vectors in $\mathbf{G}$.
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\mathbf{g}_i&=[\begin{matrix}
|
||||
g_{i,0}& \dots & g_{i,n-2} & g_{i,n-1}
|
||||
|
@ -1027,11 +1029,11 @@ Each generator vector is a binary string of size $n$. There are $k$ generator ve
|
|||
g_{k-1,0}& \dots & g_{k-1,n-2} & g_{k-1,n-1}\\
|
||||
\end{matrix}\right]
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
A message block $\mathbf{m}$ is coded as $\mathbf{x}$ using the generation codewords in $\mathbf{G}$:
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\mathbf{m}&=[\begin{matrix}
|
||||
m_{0}& \dots & m_{n-2} & m_{k-1}
|
||||
|
@ -1039,13 +1041,13 @@ A message block $\mathbf{m}$ is coded as $\mathbf{x}$ using the generation codew
|
|||
\color{darkgray}\mathbf{m}&\color{darkgray}=[101001]\quad\text{Example for $k=6$}\\
|
||||
\mathbf{x} &= \mathbf{m}\mathbf{G}=m_0\mathbf{g}_0+m_1\mathbf{g}_1+\dots+m_{k-1}\mathbf{g}_{k-1}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
### Systemic linear block code
|
||||
|
||||
Contains $k$ message bits (Copy $\mathbf{m}$ as-is) and $(n-k)$ parity bits after the message bits.
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\mathbf{G}&=\begin{array}{c|c}[\mathbf{I}_k & \mathbf{P}]\end{array}=\left[
|
||||
\begin{array}{c|c}
|
||||
|
@ -1068,13 +1070,13 @@ Contains $k$ message bits (Copy $\mathbf{m}$ as-is) and $(n-k)$ parity bits afte
|
|||
\mathbf{x} &= \mathbf{m}\mathbf{G}= \mathbf{m} \begin{array}{c|c}[\mathbf{I}_k & \mathbf{P}]\end{array}=\begin{array}{c|c}[\mathbf{mI}_k & \mathbf{mP}]\end{array}=\begin{array}{c|c}[\mathbf{m} & \mathbf{b}]\end{array}\\
|
||||
\mathbf{b} &= \mathbf{m}\mathbf{P}\quad\text{Parity bits of $\mathbf{x}$}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
#### Parity check matrix $\mathbf{H}$
|
||||
|
||||
Transpose $\mathbf{P}$ for the parity check matrix
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\mathbf{H}&=\begin{array}{c|c}[\mathbf{P}^\text{T} & \mathbf{I}_{n-k}]\end{array}\\
|
||||
&=\left[
|
||||
|
@ -1101,7 +1103,7 @@ Transpose $\mathbf{P}$ for the parity check matrix
|
|||
\end{matrix}\end{array}\right]\\
|
||||
\mathbf{xH}^\text{T}&=\mathbf{0}\implies\text{Codeword is valid}
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
#### Procedure to find parity check matrix from list of codewords
|
||||
|
||||
|
@ -1112,28 +1114,30 @@ Transpose $\mathbf{P}$ for the parity check matrix
|
|||
|
||||
Example:
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{array}{cccc}
|
||||
x_1 & x_2 & x_3 & x_4 & x_5 \\\hline
|
||||
x_1 & x_2 & x_3 & x_4 & x_5 \\
|
||||
\hline
|
||||
\color{magenta}1&\color{magenta}0&1&1&0\\
|
||||
\color{magenta}0&\color{magenta}1&1&1&1\\
|
||||
\color{magenta}0&\color{magenta}0&0&0&0\\
|
||||
\color{magenta}1&\color{magenta}1&0&0&1\\
|
||||
\end{array}
|
||||
```
|
||||
$$
|
||||
|
||||
Set $x_1,x_2$ as information bits. Express $x_3,x_4,x_5$ in terms of $x_1,x_2$.
|
||||
|
||||
```math
|
||||
$$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
x_3 &= x_1\oplus x_2\\
|
||||
x_4 &= x_1\oplus x_2\\
|
||||
x_5 &= x_2\\
|
||||
\end{aligned}
|
||||
\end{align*}
|
||||
\implies\textbf{P}&=
|
||||
\begin{array}{c|cc}
|
||||
& x_1 & x_2 \\\hline
|
||||
\begin{array}{c|ccc}
|
||||
& x_1 & x_2 \\
|
||||
\hline
|
||||
x_3&1&1&\\
|
||||
x_4&1&1&\\
|
||||
x_5&0&1&\\
|
||||
|
@ -1152,7 +1156,7 @@ Set $x_1,x_2$ as information bits. Express $x_3,x_4,x_5$ in terms of $x_1,x_2$.
|
|||
0 & 0 & 1\\
|
||||
\end{matrix}\end{array}\right]
|
||||
\end{align*}
|
||||
```
|
||||
$$
|
||||
|
||||
#### Error detection and correction
|
||||
|
||||
|
@ -1162,6 +1166,6 @@ Set $x_1,x_2$ as information bits. Express $x_3,x_4,x_5$ in terms of $x_1,x_2$.
|
|||
|
||||
## CHECKLIST
|
||||
|
||||
- Transfer function in complex envelope form $\tilde{h}(t)$ should be divided by two.
|
||||
- Transfer function in complex envelope form ($\tilde{h}(t)$) should be divided by two.
|
||||
- Convolutions: do not forget width when using graphical method
|
||||
- todo: add more items to check
|
||||
|
|
BIN
README.pdf
BIN
README.pdf
Binary file not shown.
Loading…
Reference in New Issue
Block a user