mirror of
https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems.git
synced 2024-11-30 13:40:16 +08:00
Compare commits
2 Commits
8d86ce77eb
...
7d5e4ae122
Author | SHA1 | Date | |
---|---|---|---|
7d5e4ae122 | |||
0e593127fa |
99
README.html
99
README.html
File diff suppressed because one or more lines are too long
336
README.md
336
README.md
|
@ -1,5 +1,9 @@
|
||||||
# Idiot's guide to ELEC4402 communication systems
|
# Idiot's guide to ELEC4402 communication systems
|
||||||
|
|
||||||
|
## [Download PDF 📄](/README.pdf)
|
||||||
|
|
||||||
|
It is recommended to refer to use [the PDF copy](/README.pdf) instead of whatever GitHub renders.
|
||||||
|
|
||||||
## License and information
|
## License and information
|
||||||
|
|
||||||
Notes are open-source and licensed under the GNU GPL-3.0. **You must include the [full-text of the license](/COPYING.txt) and follow its terms when using these notes or any diagrams in derivative works** (but not when printing as notes)
|
Notes are open-source and licensed under the GNU GPL-3.0. **You must include the [full-text of the license](/COPYING.txt) and follow its terms when using these notes or any diagrams in derivative works** (but not when printing as notes)
|
||||||
|
@ -25,26 +29,24 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
[Access a web-copy of the notes for printing](/README.html)
|
|
||||||
|
|
||||||
I accept pull requests or suggestions but the content must not be copyrighted under a non-GPL compatible license.
|
I accept pull requests or suggestions but the content must not be copyrighted under a non-GPL compatible license.
|
||||||
|
|
||||||
## Fourier transform identities
|
## Fourier transform identities
|
||||||
|
|
||||||
| **Time Function** | **Fourier Transform** |
|
| **Time Function** | **Fourier Transform** |
|
||||||
| --------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
|
| --------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| $\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)$ | $T \, \text{sinc}(fT)$ |
|
| $\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)$ | $T \text{sinc}(fT)$ |
|
||||||
| $\text{sinc}(2Wt)$ | $\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$ |
|
| $\text{sinc}(2Wt)$ | $\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$ |
|
||||||
| $\exp(-at)u(t), \, a>0$ | $\frac{1}{a + j2\pi f}$ |
|
| $\exp(-at)u(t),\quad a>0$ | $\frac{1}{a + j2\pi f}$ |
|
||||||
| $\exp(-a\lvert t \rvert), \, a>0$ | $\frac{2a}{a^2 + (2\pi f)^2}$ |
|
| $\exp(-a\lvert t \rvert),\quad a>0$ | $\frac{2a}{a^2 + (2\pi f)^2}$ |
|
||||||
| $\exp(-\pi t^2)$ | $\exp(-\pi f^2)$ |
|
| $\exp(-\pi t^2)$ | $\exp(-\pi f^2)$ |
|
||||||
| $\begin{cases} 1 - \frac{\lvert t \rvert}{T}, & \lvert t \rvert < T \\ 0, & \lvert t \rvert \geq T \end{cases}$ | $T \, \text{sinc}^2(fT)$ |
|
| $1 - \frac{\lvert t \rvert}{T},\quad\lvert t \rvert < T$ | $T \text{sinc}^2(fT)$ |
|
||||||
| $\delta(t)$ | $1$ |
|
| $\delta(t)$ | $1$ |
|
||||||
| $1$ | $\delta(f)$ |
|
| $1$ | $\delta(f)$ |
|
||||||
| $\delta(t - t_0)$ | $\exp(-j2\pi f t_0)$ |
|
| $\delta(t - t_0)$ | $\exp(-j2\pi f t_0)$ |
|
||||||
| $g(t-a)$ | $\exp(-j2\pi fa)G(f)\quad\text{shift property}$ |
|
| $g(t-a)$ | $\exp(-j2\pi fa)G(f)\quad\text{shift property}$ |
|
||||||
| $g(bt)$ | $\frac{G(f/b)}{\|b\|}\quad\text{scaling property}$ |
|
| $g(bt)$ | $\frac{G(f/b)}{\|b\|}\quad\text{scaling property}$ |
|
||||||
| $g(bt-a)$ | $\frac{1}{\|b\|}\exp(-j2\pi a(f/b))\cdot G(f/b)\quad\text{shift \& scale}$ |
|
| $g(bt-a)$ | $\frac{1}{\|b\|}\exp(-j2\pi a(f/b))\cdot G(f/b)\quad\text{shift and scale}$ |
|
||||||
| $\frac{d}{dt}g(t)$ | $j2\pi fG(f)\quad\text{differentiation property}$ |
|
| $\frac{d}{dt}g(t)$ | $j2\pi fG(f)\quad\text{differentiation property}$ |
|
||||||
| $G(t)$ | $g(-f)\quad\text{duality property}$ |
|
| $G(t)$ | $g(-f)\quad\text{duality property}$ |
|
||||||
| $g(t)h(t)$ | $G(f)*H(f)$ |
|
| $g(t)h(t)$ | $G(f)*H(f)$ |
|
||||||
|
@ -53,17 +55,19 @@ I accept pull requests or suggestions but the content must not be copyrighted un
|
||||||
| $\cos(2\pi f_c t)$ | $\frac{1}{2}[\delta(f - f_c) + \delta(f + f_c)]$ |
|
| $\cos(2\pi f_c t)$ | $\frac{1}{2}[\delta(f - f_c) + \delta(f + f_c)]$ |
|
||||||
| $\sin(2\pi f_c t)$ | $\frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]$ |
|
| $\sin(2\pi f_c t)$ | $\frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]$ |
|
||||||
| $\text{sgn}(t)$ | $\frac{1}{j\pi f}$ |
|
| $\text{sgn}(t)$ | $\frac{1}{j\pi f}$ |
|
||||||
| $\frac{1}{\pi t}$ | $-j \, \text{sgn}(f)$ |
|
| $\frac{1}{\pi t}$ | $-j \text{sgn}(f)$ |
|
||||||
| $u(t)$ | $\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}$ |
|
| $u(t)$ | $\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}$ |
|
||||||
| $\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$ | $\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)=f_0 \sum_{n=-\infty}^{\infty} \delta\left(f - n f_0\right)$ |
|
| $\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$ | $\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)=f_0 \sum_{n=-\infty}^{\infty} \delta\left(f - n f_0\right)$ |
|
||||||
|
|
||||||
| **Function Name** | **Formula** |
|
```math
|
||||||
| -------------------- | ------------------------------------------------------------------------------------------------------- |
|
\begin{align*}
|
||||||
| Unit Step Function | $u(t) = \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}$ |
|
u(t) &= \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}&\text{Unit Step Function}\\
|
||||||
| Signum Function | $\text{sgn}(t) = \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}$ |
|
\text{sgn}(t) &= \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}&\text{Signum Function}\\
|
||||||
| sinc Function | $\text{sinc}(2Wt) = \frac{\sin(2\pi W t)}{2\pi W t}$ |
|
\text{sinc}(2Wt) &= \frac{\sin(2\pi W t)}{2\pi W t}&\text{sinc Function}\\
|
||||||
| Rectangular Function | $\text{rect}(t) = \Pi(t) = \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & \lvert t \rvert > 0.5 \end{cases}$ |
|
\text{rect}(t) = \Pi(t) &= \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & \lvert t \rvert > 0.5 \end{cases}&\text{Rectangular/Gate Function}\\
|
||||||
| Convolution | $g(t)*h(t)=(g*h)(t)=\int_\infty^\infty g(\tau)h(t-\tau)d\tau$ |
|
g(t)*h(t)=(g*h)(t)&=\int_\infty^\infty g(\tau)h(t-\tau)d\tau&\text{Convolution}\\
|
||||||
|
\end{align*}
|
||||||
|
```
|
||||||
|
|
||||||
### Fourier transform of continuous time periodic signal
|
### Fourier transform of continuous time periodic signal
|
||||||
|
|
||||||
|
@ -73,21 +77,21 @@ Required for some questions on **sampling**:
|
||||||
|
|
||||||
Transform a continuous time-periodic signal $x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s)$ with period $T_s$:
|
Transform a continuous time-periodic signal $x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s)$ with period $T_s$:
|
||||||
|
|
||||||
$$
|
```math
|
||||||
X_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
|
X_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
|
||||||
$$
|
```
|
||||||
|
|
||||||
Calculate $C_n$ coefficient as follows from $x_p(t)$:
|
Calculate $C_n$ coefficient as follows from $x_p(t)$:
|
||||||
|
|
||||||
<!-- Remember $X_p(f)\leftrightarrow x_p(t)$ and **NOT** $\color{red}X_p(f)\leftrightarrow x_p(t-nT_s)$ -->
|
<!-- Remember $X_p(f)\leftrightarrow x_p(t)$ and **NOT** $\color{red}X_p(f)\leftrightarrow x_p(t-nT_s)$ -->
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
% C_n&=X_p(nf_s)\\
|
% C_n&=X_p(nf_s)\\
|
||||||
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
|
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
|
||||||
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
|
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### $\text{rect}$ function
|
### $\text{rect}$ function
|
||||||
|
|
||||||
|
@ -95,16 +99,16 @@ $$
|
||||||
|
|
||||||
### Bessel function
|
### Bessel function
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\sum_{n\in\Z}{J_n}^2(\beta)&=1\\
|
\sum_{n\in\mathbb{Z}}{J_n}^2(\beta)&=1\\
|
||||||
J_n(\beta)&=(-1)^nJ_{-n}(\beta)
|
J_n(\beta)&=(-1)^nJ_{-n}(\beta)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### White noise
|
### White noise
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
R_W(\tau)&=\frac{N_0}{2}\delta(\tau)=\frac{kT}{2}\delta(\tau)=\sigma^2\delta(\tau)\\
|
R_W(\tau)&=\frac{N_0}{2}\delta(\tau)=\frac{kT}{2}\delta(\tau)=\sigma^2\delta(\tau)\\
|
||||||
G_w(f)&=\frac{N_0}{2}\\
|
G_w(f)&=\frac{N_0}{2}\\
|
||||||
|
@ -112,27 +116,27 @@ N_0&=kT\\
|
||||||
G_y(f)&=|H(f)|^2G_w(f)\\
|
G_y(f)&=|H(f)|^2G_w(f)\\
|
||||||
G_y(f)&=G(f)G_w(f)\\
|
G_y(f)&=G(f)G_w(f)\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### WSS
|
### WSS
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\mu_X(t) &= \mu_X\text{ Constant}\\
|
\mu_X(t) &= \mu_X\text{ Constant}\\
|
||||||
R_{XX}(t_1,t_2)&=R_X(t_1-t_2)=R_X(\tau)\\
|
R_{XX}(t_1,t_2)&=R_X(t_1-t_2)=R_X(\tau)\\
|
||||||
E[X(t_1)X(t_2)]&=E[X(t)X(t+\tau)]
|
E[X(t_1)X(t_2)]&=E[X(t)X(t+\tau)]
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Ergodicity
|
### Ergodicity
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\braket{X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t)dt\\
|
\braket{X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t)dt\\
|
||||||
\braket{X(t+\tau)X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t+\tau)x(t)dt\\
|
\braket{X(t+\tau)X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t+\tau)x(t)dt\\
|
||||||
E[\braket{X(t)}_T]&=\frac{1}{2T}\int_{-T}^{T}x(t)dt=\frac{1}{2T}\int_{-T}^{T}m_Xdt=m_X\\
|
E[\braket{X(t)}_T]&=\frac{1}{2T}\int_{-T}^{T}x(t)dt=\frac{1}{2T}\int_{-T}^{T}m_Xdt=m_X\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
| Type | Normal | Mean square sense |
|
| Type | Normal | Mean square sense |
|
||||||
| ----------------------------------- | ------------------------------------------------------- | ----------------------------------------------------------- |
|
| ----------------------------------- | ------------------------------------------------------- | ----------------------------------------------------------- |
|
||||||
|
@ -143,17 +147,17 @@ $$
|
||||||
|
|
||||||
### Other identities
|
### Other identities
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
f*(g*h) &=(f*g)*h\quad\text{Convolution associative}\\
|
f*(g*h) &=(f*g)*h\quad\text{Convolution associative}\\
|
||||||
a(f*g) &= (af)*g \quad\text{Convolution associative}\\
|
a(f*g) &= (af)*g \quad\text{Convolution associative}\\
|
||||||
\sum_{x=-\infty}^\infty(f(x a)\delta(\omega-x b))&=f\left(\frac{\omega a}{b}\right)
|
\sum_{x=-\infty}^\infty(f(x a)\delta(\omega-x b))&=f\left(\frac{\omega a}{b}\right)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Other trig
|
### Other trig
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\cos2\theta=2 \cos^2 \theta-1&\Leftrightarrow\frac{\cos2\theta+1}{2}=\cos^2\theta\\
|
\cos2\theta=2 \cos^2 \theta-1&\Leftrightarrow\frac{\cos2\theta+1}{2}=\cos^2\theta\\
|
||||||
e^{-j\alpha}-e^{j\alpha}&=-2j \sin(\alpha)\\
|
e^{-j\alpha}-e^{j\alpha}&=-2j \sin(\alpha)\\
|
||||||
|
@ -164,11 +168,11 @@ $$
|
||||||
\sin(A-\pi/2)&=-\cos(A)\\
|
\sin(A-\pi/2)&=-\cos(A)\\
|
||||||
\cos(A-\pi/2)&=\sin(A)\\
|
\cos(A-\pi/2)&=\sin(A)\\
|
||||||
\cos(A+\pi/2)&=-\sin(A)\\
|
\cos(A+\pi/2)&=-\sin(A)\\
|
||||||
\int_{x\in\R}\text{sinc}(A x) &= \frac{1}{|A|}\\
|
\int_{x\in\mathbb{R}}\text{sinc}(A x) &= \frac{1}{|A|}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\cos(A+B) &= \cos (A) \cos (B)-\sin (A) \sin (B) \\
|
\cos(A+B) &= \cos (A) \cos (B)-\sin (A) \sin (B) \\
|
||||||
\sin(A+B) &= \sin (A) \cos (B)+\cos (A) \sin (B) \\
|
\sin(A+B) &= \sin (A) \cos (B)+\cos (A) \sin (B) \\
|
||||||
|
@ -176,9 +180,9 @@ $$
|
||||||
\cos(A)\sin(B) &= \frac{1}{2} (\sin (A+B)-\sin (A-B)) \\
|
\cos(A)\sin(B) &= \frac{1}{2} (\sin (A+B)-\sin (A-B)) \\
|
||||||
\sin(A)\sin(B) &= \frac{1}{2} (\cos (A-B)-\cos (A+B)) \\
|
\sin(A)\sin(B) &= \frac{1}{2} (\cos (A-B)-\cos (A+B)) \\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\cos(A)+\cos(B) &= 2 \cos \left(\frac{A}{2}-\frac{B}{2}\right) \cos \left(\frac{A}{2}+\frac{B}{2}\right) \\
|
\cos(A)+\cos(B) &= 2 \cos \left(\frac{A}{2}-\frac{B}{2}\right) \cos \left(\frac{A}{2}+\frac{B}{2}\right) \\
|
||||||
\cos(A)-\cos(B) &= -2 \sin \left(\frac{A}{2}-\frac{B}{2}\right) \sin \left(\frac{A}{2}+\frac{B}{2}\right) \\
|
\cos(A)-\cos(B) &= -2 \sin \left(\frac{A}{2}-\frac{B}{2}\right) \sin \left(\frac{A}{2}+\frac{B}{2}\right) \\
|
||||||
|
@ -187,7 +191,7 @@ $$
|
||||||
\cos(A)+\sin(B)&= -2 \sin \left(\frac{A}{2}-\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}+\frac{B}{2}+\frac{\pi }{4}\right) \\
|
\cos(A)+\sin(B)&= -2 \sin \left(\frac{A}{2}-\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}+\frac{B}{2}+\frac{\pi }{4}\right) \\
|
||||||
\cos(A)-\sin(B)&= -2 \sin \left(\frac{A}{2}+\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}-\frac{B}{2}+\frac{\pi }{4}\right) \\
|
\cos(A)-\sin(B)&= -2 \sin \left(\frac{A}{2}+\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}-\frac{B}{2}+\frac{\pi }{4}\right) \\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
## IQ/Complex envelope
|
## IQ/Complex envelope
|
||||||
|
|
||||||
|
@ -195,7 +199,7 @@ Def. $\tilde{g}(t)=g_I(t)+jg_Q(t)$ as the complex envelope. Best to convert to $
|
||||||
|
|
||||||
### Convert complex envelope representation to time-domain representation of signal
|
### Convert complex envelope representation to time-domain representation of signal
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
g(t)&=g_I(t)\cos(2\pi f_c t)-g_Q(t)\sin(2\pi f_c t)\\
|
g(t)&=g_I(t)\cos(2\pi f_c t)-g_Q(t)\sin(2\pi f_c t)\\
|
||||||
&=\text{Re}[\tilde{g}(t)\exp{(j2\pi f_c t)}]\\
|
&=\text{Re}[\tilde{g}(t)\exp{(j2\pi f_c t)}]\\
|
||||||
|
@ -205,23 +209,23 @@ A(t)&=|g(t)|=\sqrt{g_I^2(t)+g_Q^2(t)}\quad\text{Amplitude}\\
|
||||||
g_I(t)&=A(t)\cos(\phi(t))\quad\text{In-phase component}\\
|
g_I(t)&=A(t)\cos(\phi(t))\quad\text{In-phase component}\\
|
||||||
g_Q(t)&=A(t)\sin(\phi(t))\quad\text{Quadrature-phase component}\\
|
g_Q(t)&=A(t)\sin(\phi(t))\quad\text{Quadrature-phase component}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### For transfer function
|
### For transfer function
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
|
h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
|
||||||
&=2\text{Re}[\tilde{h}(t)\exp{(j2\pi f_c t)}]\\
|
&=2\text{Re}[\tilde{h}(t)\exp{(j2\pi f_c t)}]\\
|
||||||
\Rightarrow\tilde{h}(t)&=h_I(t)/2+jh_Q(t)/2=A(t)/2\exp{(j\phi(t))}
|
\Rightarrow\tilde{h}(t)&=h_I(t)/2+jh_Q(t)/2=A(t)/2\exp{(j\phi(t))}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
## AM
|
## AM
|
||||||
|
|
||||||
### CAM
|
### CAM
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
|
m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
|
||||||
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
|
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
|
||||||
|
@ -233,7 +237,7 @@ $$
|
||||||
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_x}{P_x+P_c}\\
|
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_x}{P_x+P_c}\\
|
||||||
B_T&=2f_m=2B
|
B_T&=2f_m=2B
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
$B_T$: Signal bandwidth
|
$B_T$: Signal bandwidth
|
||||||
$B$: Bandwidth of modulating wave
|
$B$: Bandwidth of modulating wave
|
||||||
|
@ -242,16 +246,16 @@ Overmodulation (resulting in phase reversals at crossing points): $m_a>1$
|
||||||
|
|
||||||
### DSB-SC
|
### DSB-SC
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
x_\text{DSB}(t) &= A_c \cos{(2\pi f_c t)} m(t)\\
|
x_\text{DSB}(t) &= A_c \cos{(2\pi f_c t)} m(t)\\
|
||||||
B_T&=2f_m=2B
|
B_T&=2f_m=2B
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
## FM/PM
|
## FM/PM
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
|
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
|
||||||
s(t) &= A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_0^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
|
s(t) &= A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_0^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
|
||||||
|
@ -260,34 +264,30 @@ $$
|
||||||
\Delta f&=\beta f_m=k_f A_m f_m = \max_t(k_f m(t))- \min_t(k_f m(t))\quad\text{Maximum frequency deviation}\\
|
\Delta f&=\beta f_m=k_f A_m f_m = \max_t(k_f m(t))- \min_t(k_f m(t))\quad\text{Maximum frequency deviation}\\
|
||||||
D&=\frac{\Delta f}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}
|
D&=\frac{\Delta f}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Bessel form and magnitude spectrum (single tone)
|
### Bessel form and magnitude spectrum (single tone)
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right] \Leftrightarrow s(t)= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\cos[2\pi(f_c+nf_m)t]
|
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right] \Leftrightarrow s(t)= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\cos[2\pi(f_c+nf_m)t]
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
<!-- ### Bessel repr.
|
|
||||||
|
|
||||||
$$s(t) = A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\cos[2\pi(f_c+nf_m) t)$$ -->
|
|
||||||
|
|
||||||
### FM signal power
|
### FM signal power
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
P_\text{av}&=\frac{{A_c}^2}{2}\\
|
P_\text{av}&=\frac{{A_c}^2}{2}\\
|
||||||
P_\text{band\_index}&=\frac{{A_c}^2{J_\text{band\_index}}^2(\beta)}{2}\\
|
P_\text{band\_index}&=\frac{{A_c}^2{J_\text{band\_index}}^2(\beta)}{2}\\
|
||||||
\text{band\_index}&=0\implies f_c+0f_m\\
|
\text{band\_index}&=0\implies f_c+0f_m\\
|
||||||
\text{band\_index}&=1\implies f_c+1f_m,\dots\\
|
\text{band\_index}&=1\implies f_c+1f_m,\dots\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Carson's rule to find $B$ (98% power bandwidth rule)
|
### Carson's rule to find $B$ (98% power bandwidth rule)
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
B &= 2Mf_m = 2(\beta + 1)f_m\\
|
B &= 2Mf_m = 2(\beta + 1)f_m\\
|
||||||
&= 2(\Delta f+f_m)\\
|
&= 2(\Delta f+f_m)\\
|
||||||
|
@ -298,7 +298,7 @@ B &= \begin{cases}
|
||||||
2(\Delta\phi + 1)f_m & \text{PM, sinusoidal message}
|
2(\Delta\phi + 1)f_m & \text{PM, sinusoidal message}
|
||||||
\end{cases}\\
|
\end{cases}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
#### $\Delta f$ of arbitrary modulating signal
|
#### $\Delta f$ of arbitrary modulating signal
|
||||||
|
|
||||||
|
@ -306,7 +306,7 @@ Find instantaneous frequency $f_\text{FM}$.
|
||||||
|
|
||||||
$M$: Number of **pairs** of significant sidebands
|
$M$: Number of **pairs** of significant sidebands
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
s(t)&=A_c\cos(\theta_\text{FM}(t))\\
|
s(t)&=A_c\cos(\theta_\text{FM}(t))\\
|
||||||
f_\text{FM}(t) &= \frac{1}{2\pi}\frac{d\theta_\text{FM}(t)}{dt}\\
|
f_\text{FM}(t) &= \frac{1}{2\pi}\frac{d\theta_\text{FM}(t)}{dt}\\
|
||||||
|
@ -317,17 +317,17 @@ W_m &= \text{max}(\text{frequencies in $\theta_\text{FM}(t)$...}) \\
|
||||||
D &= \frac{\Delta f}{W_m}\\
|
D &= \frac{\Delta f}{W_m}\\
|
||||||
B_T &= 2(D+1)W_m
|
B_T &= 2(D+1)W_m
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Complex envelope
|
### Complex envelope
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
s(t)&=A_c\cos(2\pi f_c t+\beta\sin(2\pi f_m t)) \Leftrightarrow \tilde{s}(t) = A_c\exp(j\beta\sin(2\pi f_m t))\\
|
s(t)&=A_c\cos(2\pi f_c t+\beta\sin(2\pi f_m t)) \Leftrightarrow \tilde{s}(t) = A_c\exp(j\beta\sin(2\pi f_m t))\\
|
||||||
s(t)&=\text{Re}[\tilde{s}(t)\exp{(j2\pi f_c t)}]\\
|
s(t)&=\text{Re}[\tilde{s}(t)\exp{(j2\pi f_c t)}]\\
|
||||||
\tilde{s}(t) &= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\exp(j2\pi f_m t)
|
\tilde{s}(t) &= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\exp(j2\pi f_m t)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Band
|
### Band
|
||||||
|
|
||||||
|
@ -337,7 +337,7 @@ $$
|
||||||
|
|
||||||
## Power, energy and autocorrelation
|
## Power, energy and autocorrelation
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
G_\text{WGN}(f)&=\frac{N_0}{2}\\
|
G_\text{WGN}(f)&=\frac{N_0}{2}\\
|
||||||
G_x(f)&=|H(f)|^2G_w(f)\text{ (PSD)}\\
|
G_x(f)&=|H(f)|^2G_w(f)\text{ (PSD)}\\
|
||||||
|
@ -350,24 +350,24 @@ $$
|
||||||
E&=\int_{-\infty}^{\infty}|x(t)|^2dt=|X(f)|^2\\
|
E&=\int_{-\infty}^{\infty}|x(t)|^2dt=|X(f)|^2\\
|
||||||
R_x(\tau) &= \mathfrak{F}(G_x(f))\quad\text{PSD to Autocorrelation}
|
R_x(\tau) &= \mathfrak{F}(G_x(f))\quad\text{PSD to Autocorrelation}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
##
|
##
|
||||||
|
|
||||||
## Noise performance
|
## Noise performance
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\text{CNR}_\text{in} &= \frac{P_\text{in}}{P_\text{noise}}\\
|
\text{CNR}_\text{in} &= \frac{P_\text{in}}{P_\text{noise}}\\
|
||||||
\text{CNR}_\text{in,FM} &= \frac{A^2}{2WN_0}\\
|
\text{CNR}_\text{in,FM} &= \frac{A^2}{2WN_0}\\
|
||||||
\text{SNR}_\text{FM} &= \frac{3A^2k_f^2P}{2N_0W^3}\\
|
\text{SNR}_\text{FM} &= \frac{3A^2k_f^2P}{2N_0W^3}\\
|
||||||
\text{SNR(dB)} &= 10\log_{10}(\text{SNR}) \quad\text{Decibels from ratio}
|
\text{SNR(dB)} &= 10\log_{10}(\text{SNR}) \quad\text{Decibels from ratio}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
## Sampling
|
## Sampling
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
t&=nT_s\\
|
t&=nT_s\\
|
||||||
T_s&=\frac{1}{f_s}\\
|
T_s&=\frac{1}{f_s}\\
|
||||||
|
@ -375,7 +375,7 @@ $$
|
||||||
X_s(f)&=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
|
X_s(f)&=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
|
||||||
B&>\frac{1}{2}f_s, 2B>f_s\rightarrow\text{Aliasing}\\
|
B&>\frac{1}{2}f_s, 2B>f_s\rightarrow\text{Aliasing}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Procedure to reconstruct sampled signal
|
### Procedure to reconstruct sampled signal
|
||||||
|
|
||||||
|
@ -397,21 +397,21 @@ Required for some questions on **sampling**:
|
||||||
|
|
||||||
Transform a continuous time-periodic signal $x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s)$ with period $T_s$:
|
Transform a continuous time-periodic signal $x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s)$ with period $T_s$:
|
||||||
|
|
||||||
$$
|
```math
|
||||||
X_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
|
X_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
|
||||||
$$
|
```
|
||||||
|
|
||||||
Calculate $C_n$ coefficient as follows from $x_p(t)$:
|
Calculate $C_n$ coefficient as follows from $x_p(t)$:
|
||||||
|
|
||||||
<!-- Remember $X_p(f)\leftrightarrow x_p(t)$ and **NOT** $\color{red}X_p(f)\leftrightarrow x_p(t-nT_s)$ -->
|
<!-- Remember $X_p(f)\leftrightarrow x_p(t)$ and **NOT** $\color{red}X_p(f)\leftrightarrow x_p(t-nT_s)$ -->
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
% C_n&=X_p(nf_s)\\
|
% C_n&=X_p(nf_s)\\
|
||||||
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
|
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
|
||||||
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
|
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
<!-- Reconstruct from $\bar{X_s}(f)$ within the range $[-f_s/2,f_s/2]$ -->
|
<!-- Reconstruct from $\bar{X_s}(f)$ within the range $[-f_s/2,f_s/2]$ -->
|
||||||
|
|
||||||
|
@ -428,15 +428,15 @@ Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidt
|
||||||
|
|
||||||
## Quantizer
|
## Quantizer
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\Delta &= \frac{x_\text{Max}-x_\text{Min}}{2^k} \quad\text{for $k$-bit quantizer (V/lsb)}\\
|
\Delta &= \frac{x_\text{Max}-x_\text{Min}}{2^k} \quad\text{for $k$-bit quantizer (V/lsb)}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Quantization noise
|
### Quantization noise
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
e &:= y-x\quad\text{Quantization error}\\
|
e &:= y-x\quad\text{Quantization error}\\
|
||||||
\mu_E &= E[E] = 0\quad\text{Zero mean}\\
|
\mu_E &= E[E] = 0\quad\text{Zero mean}\\
|
||||||
|
@ -444,7 +444,7 @@ $$
|
||||||
\text{SQNR}&=\frac{\text{Signal power}}{\text{Quantization noise}}\\
|
\text{SQNR}&=\frac{\text{Signal power}}{\text{Quantization noise}}\\
|
||||||
\text{SQNR(dB)}&=10\log_{10}(\text{SQNR})
|
\text{SQNR(dB)}&=10\log_{10}(\text{SQNR})
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Insert here figure 8.17 from M F Mesiya - Contemporary Communication Systems (Add image to `images/quantizer.png`)
|
### Insert here figure 8.17 from M F Mesiya - Contemporary Communication Systems (Add image to `images/quantizer.png`)
|
||||||
|
|
||||||
|
@ -455,7 +455,7 @@ $$
|
||||||
|
|
||||||
![binary_codes](images/Line_Codes.drawio.svg)
|
![binary_codes](images/Line_Codes.drawio.svg)
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
R_b&\rightarrow\text{Bit rate}\\
|
R_b&\rightarrow\text{Bit rate}\\
|
||||||
D&\rightarrow\text{Symbol rate | }R_d\text{ | }1/T_b\\
|
D&\rightarrow\text{Symbol rate | }R_d\text{ | }1/T_b\\
|
||||||
|
@ -469,7 +469,7 @@ $$
|
||||||
G_\text{unipolarNRZ}(f)&=\frac{A^2}{4R_b}\left(\text{sinc}^2\left(\frac{f}{R_b}\right)+R_b\delta(f)\right)\\
|
G_\text{unipolarNRZ}(f)&=\frac{A^2}{4R_b}\left(\text{sinc}^2\left(\frac{f}{R_b}\right)+R_b\delta(f)\right)\\
|
||||||
G_\text{unipolarRZ}(f)&=\frac{A^2}{16} \left(\sum _{l=-\infty }^{\infty } \delta \left(f-\frac{l}{T_b}\right) \left| \text{sinc}(\text{duty} \times l) \right| {}^2+T_b \left| \text{sinc}\left(\text{duty} \times f T_b\right) \right| {}^2\right), \text{NB}_0=2R_b
|
G_\text{unipolarRZ}(f)&=\frac{A^2}{16} \left(\sum _{l=-\infty }^{\infty } \delta \left(f-\frac{l}{T_b}\right) \left| \text{sinc}(\text{duty} \times l) \right| {}^2+T_b \left| \text{sinc}\left(\text{duty} \times f T_b\right) \right| {}^2\right), \text{NB}_0=2R_b
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
## Modulation and basis functions
|
## Modulation and basis functions
|
||||||
|
|
||||||
|
@ -479,25 +479,27 @@ $$
|
||||||
|
|
||||||
#### Basis functions
|
#### Basis functions
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\varphi_1(t) &= \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t)\quad0\leq t\leq T_b\\
|
\varphi_1(t) &= \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t)\quad0\leq t\leq T_b\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
#### Symbol mapping
|
#### Symbol mapping
|
||||||
|
|
||||||
$$b_n:\{1,0\}\to a_n:\{1,0\}$$
|
```math
|
||||||
|
b_n:\{1,0\}\to a_n:\{1,0\}
|
||||||
|
```
|
||||||
|
|
||||||
#### 2 possible waveforms
|
#### 2 possible waveforms
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
s_1(t)&=A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=\sqrt{2E_b}\varphi_1(t)\\
|
s_1(t)&=A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=\sqrt{2E_b}\varphi_1(t)\\
|
||||||
s_1(t)&=0\\
|
s_1(t)&=0\\
|
||||||
&\text{Since $E_b=E_\text{average}=\frac{1}{2}(\frac{{A_c}^2}{2}\times T_b + 0)=\frac{{A_c}^2}{4}T_b$}
|
&\text{Since $E_b=E_\text{average}=\frac{1}{2}(\frac{{A_c}^2}{2}\times T_b + 0)=\frac{{A_c}^2}{4}T_b$}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
Distance is $d=\sqrt{2E_b}$
|
Distance is $d=\sqrt{2E_b}$
|
||||||
|
|
||||||
|
@ -505,25 +507,27 @@ Distance is $d=\sqrt{2E_b}$
|
||||||
|
|
||||||
#### Basis functions
|
#### Basis functions
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\varphi_1(t) &= \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t)\quad0\leq t\leq T_b\\
|
\varphi_1(t) &= \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t)\quad0\leq t\leq T_b\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
#### Symbol mapping
|
#### Symbol mapping
|
||||||
|
|
||||||
$$b_n:\{1,0\}\to a_n:\{1,\color{lime}-1\color{white}\}$$
|
```math
|
||||||
|
b_n:\{1,0\}\to a_n:\{1,\color{green}-1\color{white}\}
|
||||||
|
```
|
||||||
|
|
||||||
#### 2 possible waveforms
|
#### 2 possible waveforms
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
s_1(t)&=A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=\sqrt{E_b}\varphi_1(t)\\
|
s_1(t)&=A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=\sqrt{E_b}\varphi_1(t)\\
|
||||||
s_1(t)&=-A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=-\sqrt{E_b}\varphi_2(t)\\
|
s_1(t)&=-A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=-\sqrt{E_b}\varphi_2(t)\\
|
||||||
&\text{Since $E_b=E_\text{average}=\frac{1}{2}(\frac{{A_c}^2}{2}\times T_b + \frac{{A_c}^2}{2}\times T_b)=\frac{{A_c}^2}{2}T_b$}
|
&\text{Since $E_b=E_\text{average}=\frac{1}{2}(\frac{{A_c}^2}{2}\times T_b + \frac{{A_c}^2}{2}\times T_b)=\frac{{A_c}^2}{2}T_b$}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
Distance is $d=2\sqrt{E_b}$
|
Distance is $d=2\sqrt{E_b}$
|
||||||
|
|
||||||
|
@ -531,45 +535,45 @@ Distance is $d=2\sqrt{E_b}$
|
||||||
|
|
||||||
#### Basis functions
|
#### Basis functions
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
T &= 2 T_b\quad\text{Time per symbol for two bits $T_b$}\\
|
T &= 2 T_b\quad\text{Time per symbol for two bits $T_b$}\\
|
||||||
\varphi_1(t) &= \sqrt{\frac{2}{T}}\cos(2\pi f_c t)\quad0\leq t\leq T\\
|
\varphi_1(t) &= \sqrt{\frac{2}{T}}\cos(2\pi f_c t)\quad0\leq t\leq T\\
|
||||||
\varphi_2(t) &= \sqrt{\frac{2}{T}}\sin(2\pi f_c t)\quad0\leq t\leq T\\
|
\varphi_2(t) &= \sqrt{\frac{2}{T}}\sin(2\pi f_c t)\quad0\leq t\leq T\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### 4 possible waveforms
|
### 4 possible waveforms
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
s_1(t)&=\sqrt{E_s/2}\left[\varphi_1(t)+\varphi_2(t)\right]\\
|
s_1(t)&=\sqrt{E_s/2}\left[\varphi_1(t)+\varphi_2(t)\right]\\
|
||||||
s_2(t)&=\sqrt{E_s/2}\left[\varphi_1(t)-\varphi_2(t)\right]\\
|
s_2(t)&=\sqrt{E_s/2}\left[\varphi_1(t)-\varphi_2(t)\right]\\
|
||||||
s_3(t)&=\sqrt{E_s/2}\left[-\varphi_1(t)+\varphi_2(t)\right]\\
|
s_3(t)&=\sqrt{E_s/2}\left[-\varphi_1(t)+\varphi_2(t)\right]\\
|
||||||
s_4(t)&=\sqrt{E_s/2}\left[-\varphi_1(t)-\varphi_2(t)\right]\\
|
s_4(t)&=\sqrt{E_s/2}\left[-\varphi_1(t)-\varphi_2(t)\right]\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
Note on energy per symbol: Since $|s_i(t)|=A_c$, have to normalize distance as follows:
|
Note on energy per symbol: Since $|s_i(t)|=A_c$, have to normalize distance as follows:
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
s_i(t)&=A_c\sqrt{T/2}/\sqrt{2}\times\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
|
s_i(t)&=A_c\sqrt{T/2}/\sqrt{2}\times\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
|
||||||
&=\sqrt{T{A_c}^2/4}\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
|
&=\sqrt{T{A_c}^2/4}\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
|
||||||
&=\sqrt{E_s/2}\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
|
&=\sqrt{E_s/2}\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
#### Signal
|
#### Signal
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\text{Symbol mapping: }& \left\{1,0\right\}\to\left\{1,-1\right\}\\
|
\text{Symbol mapping: }& \left\{1,0\right\}\to\left\{1,-1\right\}\\
|
||||||
I(t) &= b_{2n}\varphi_1(t)\quad\text{Even bits}\\
|
I(t) &= b_{2n}\varphi_1(t)\quad\text{Even bits}\\
|
||||||
Q(t) &= b_{2n+1}\varphi_2(t)\quad\text{Odd bits}\\
|
Q(t) &= b_{2n+1}\varphi_2(t)\quad\text{Odd bits}\\
|
||||||
x(t) &= A_c[I(t)\cos(2\pi f_c t)-Q(t)\sin(2\pi f_c t)]
|
x(t) &= A_c[I(t)\cos(2\pi f_c t)-Q(t)\sin(2\pi f_c t)]
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Example of waveform
|
### Example of waveform
|
||||||
|
|
||||||
|
@ -615,20 +619,20 @@ Remember that $T=2T_b$
|
||||||
|
|
||||||
Find transfer function $h(t)$ of matched filter and apply to an input:
|
Find transfer function $h(t)$ of matched filter and apply to an input:
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
h(t)&=s_1(T-t)-s_2(T-t)\\
|
h(t)&=s_1(T-t)-s_2(T-t)\\
|
||||||
h(t)&=s^*(T-t) \qquad\text{((.)* is the conjugate)}\\
|
h(t)&=s^*(T-t) \qquad\text{((.)* is the conjugate)}\\
|
||||||
s_{on}(t)&=h(t)*s_n(t)=\int_\infty^\infty h(\tau)s_n(t-\tau)d\tau\quad\text{Filter output}\\
|
s_{on}(t)&=h(t)*s_n(t)=\int_\infty^\infty h(\tau)s_n(t-\tau)d\tau\quad\text{Filter output}\\
|
||||||
n_o(t)&=h(t)*n(t)\quad\text{Noise at filter output}
|
n_o(t)&=h(t)*n(t)\quad\text{Noise at filter output}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### 2. Bit error rate
|
### 2. Bit error rate
|
||||||
|
|
||||||
Bit error rate (BER) from matched filter outputs and filter output noise
|
Bit error rate (BER) from matched filter outputs and filter output noise
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
% H_\text{opt}(f)&=\max_{H(f)}\left(\frac{s_{o1}-s_{o2}}{2\sigma_o}\right)
|
% H_\text{opt}(f)&=\max_{H(f)}\left(\frac{s_{o1}-s_{o2}}{2\sigma_o}\right)
|
||||||
|
|
||||||
|
@ -643,7 +647,7 @@ $$
|
||||||
\text{BER}_\text{unipolarNRZ|BASK}&=Q\left(\sqrt{\frac{d^2}{N_0}}\right)=Q\left(\sqrt{\frac{E_b}{N_0}}\right)\\
|
\text{BER}_\text{unipolarNRZ|BASK}&=Q\left(\sqrt{\frac{d^2}{N_0}}\right)=Q\left(\sqrt{\frac{E_b}{N_0}}\right)\\
|
||||||
\text{BER}_\text{polarNRZ|BPSK}&=Q\left(\sqrt{\frac{2d^2}{N_0}}\right)=Q\left(\sqrt{\frac{2E_b}{N_0}}\right)\\
|
\text{BER}_\text{polarNRZ|BPSK}&=Q\left(\sqrt{\frac{2d^2}{N_0}}\right)=Q\left(\sqrt{\frac{2E_b}{N_0}}\right)\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
<div style="page-break-after: always;"></div>
|
<div style="page-break-after: always;"></div>
|
||||||
|
|
||||||
|
@ -673,7 +677,7 @@ $$
|
||||||
|
|
||||||
| $x$ | $Q(x)$ | $x$ | $Q(x)$ | $x$ | $Q(x)$ | $x$ | $Q(x)$ |
|
| $x$ | $Q(x)$ | $x$ | $Q(x)$ | $x$ | $Q(x)$ | $x$ | $Q(x)$ |
|
||||||
| ------ | ---------- | ------ | ----------------------- | ------ | ------------------------ | ------ | ------------------------ |
|
| ------ | ---------- | ------ | ----------------------- | ------ | ------------------------ | ------ | ------------------------ |
|
||||||
| $0.00$ | $0.5 | $2.30$ | $0.010724$ | $4.55$ | $2.6823 \times 10^{-6}$ | $6.80$ | $5.231 \times 10^{-12}$ |
|
| $0.00$ | $0.5$ | $2.30$ | $0.010724$ | $4.55$ | $2.6823 \times 10^{-6}$ | $6.80$ | $5.231 \times 10^{-12}$ |
|
||||||
| $0.05$ | $0.48006$ | $2.35$ | $0.0093867$ | $4.60$ | $2.1125 \times 10^{-6}$ | $6.85$ | $3.6925 \times 10^{-12}$ |
|
| $0.05$ | $0.48006$ | $2.35$ | $0.0093867$ | $4.60$ | $2.1125 \times 10^{-6}$ | $6.85$ | $3.6925 \times 10^{-12}$ |
|
||||||
| $0.10$ | $0.46017$ | $2.40$ | $0.0081975$ | $4.65$ | $1.6597 \times 10^{-6}$ | $6.90$ | $2.6001 \times 10^{-12}$ |
|
| $0.10$ | $0.46017$ | $2.40$ | $0.0081975$ | $4.65$ | $1.6597 \times 10^{-6}$ | $6.90$ | $2.6001 \times 10^{-12}$ |
|
||||||
| $0.15$ | $0.44038$ | $2.45$ | $0.0071428$ | $4.70$ | $1.3008 \times 10^{-6}$ | $6.95$ | $1.8264 \times 10^{-12}$ |
|
| $0.15$ | $0.44038$ | $2.45$ | $0.0071428$ | $4.70$ | $1.3008 \times 10^{-6}$ | $6.95$ | $1.8264 \times 10^{-12}$ |
|
||||||
|
@ -726,7 +730,7 @@ Adapted from table 6.1 M F Mesiya - Contemporary Communication Systems
|
||||||
|
|
||||||
### Receiver output shit
|
### Receiver output shit
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
r_o(t)&=\begin{cases}
|
r_o(t)&=\begin{cases}
|
||||||
s_{o1}(t)+n_o(t) & \text{code 1}\\
|
s_{o1}(t)+n_o(t) & \text{code 1}\\
|
||||||
|
@ -734,14 +738,14 @@ $$
|
||||||
\end{cases}\\
|
\end{cases}\\
|
||||||
n&: \text{AWGN with }\sigma_o^2\\
|
n&: \text{AWGN with }\sigma_o^2\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
<!--
|
<!--
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
G_x(f)
|
G_x(f)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$ -->
|
``` -->
|
||||||
|
|
||||||
## ISI, channel model
|
## ISI, channel model
|
||||||
|
|
||||||
|
@ -751,20 +755,22 @@ TODO:
|
||||||
|
|
||||||
### Nomenclature
|
### Nomenclature
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
D&\rightarrow\text{Symbol Rate, Max. Signalling Rate}\\
|
D&\rightarrow\text{Symbol Rate, Max. Signalling Rate}\\
|
||||||
T&\rightarrow\text{Symbol Duration}\\
|
T&\rightarrow\text{Symbol Duration}\\
|
||||||
M&\rightarrow\text{Symbol set size}\\
|
M&\rightarrow\text{Symbol set size}\\
|
||||||
W&\rightarrow\text{Bandwidth}\\
|
W&\rightarrow\text{Bandwidth}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Raised cosine (RC) pulse
|
### Raised cosine (RC) pulse
|
||||||
|
|
||||||
![Raised cosine pulse](images/RC.drawio.svg)
|
![Raised cosine pulse](images/RC.drawio.svg)
|
||||||
|
|
||||||
$$0\leq\alpha\leq1$$
|
```math
|
||||||
|
0\leq\alpha\leq1
|
||||||
|
```
|
||||||
|
|
||||||
⚠ NOTE might not be safe to assume $T'=T$, if you can solve the question without $T$ then use that method.
|
⚠ NOTE might not be safe to assume $T'=T$, if you can solve the question without $T$ then use that method.
|
||||||
|
|
||||||
|
@ -773,50 +779,43 @@ To solve this type of question:
|
||||||
1. Use the formula for $D$ below
|
1. Use the formula for $D$ below
|
||||||
2. Consult the BER table below to get the BER which relates the noise of the channel $N_0$ to $E_b$ and to $R_b$.
|
2. Consult the BER table below to get the BER which relates the noise of the channel $N_0$ to $E_b$ and to $R_b$.
|
||||||
|
|
||||||
<!-- $$
|
|
||||||
V_\text{RC}(f)=\begin{cases}
|
|
||||||
T & 0\le|f|\le(1-\alpha)/2T\\
|
|
||||||
\frac{T}{2}\left(1+\cos\left[\right]\right)
|
|
||||||
\end{cases}
|
|
||||||
$$ -->
|
|
||||||
|
|
||||||
| Linear modulation ($M$-PSK, $M$-QAM) | NRZ unipolar encoding |
|
| Linear modulation ($M$-PSK, $M$-QAM) | NRZ unipolar encoding |
|
||||||
| --------------------------------------------------- | -------------------------------------------------- |
|
| --------------------------------------------------- | -------------------------------------------------- |
|
||||||
| $W=B_\text{\color{lime}abs-abs}$ | $W=B_\text{\color{lime}abs}$ |
|
| $W=B_\text{\color{green}abs-abs}$ | $W=B_\text{\color{green}abs}$ |
|
||||||
| $W=B_\text{abs-abs}=\frac{1+\alpha}{T}=(1+\alpha)D$ | $W=B_\text{abs}=\frac{1+\alpha}{2T}=(1+\alpha)D/2$ |
|
| $W=B_\text{abs-abs}=\frac{1+\alpha}{T}=(1+\alpha)D$ | $W=B_\text{abs}=\frac{1+\alpha}{2T}=(1+\alpha)D/2$ |
|
||||||
| $D=\frac{W\text{ symbol/s}}{1+\alpha}$ | $D=\frac{2W\text{ symbol/s}}{1+\alpha}$ |
|
| $D=\frac{W\text{ symbol/s}}{1+\alpha}$ | $D=\frac{2W\text{ symbol/s}}{1+\alpha}$ |
|
||||||
|
|
||||||
#### Symbol set size $M$
|
#### Symbol set size $M$
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
D\text{ symbol/s}&=\frac{2W\text{ Hz}}{1+\alpha}\\
|
D\text{ symbol/s}&=\frac{2W\text{ Hz}}{1+\alpha}\\
|
||||||
R_b\text{ bit/s}&=(D\text{ symbol/s})\times(k\text{ bit/symbol})\\
|
R_b\text{ bit/s}&=(D\text{ symbol/s})\times(k\text{ bit/symbol})\\
|
||||||
M\text{ symbol/set}&=2^k\\
|
M\text{ symbol/set}&=2^k\\
|
||||||
E_b&=PT=P_\text{av}/R_b\quad\text{Energy per bit}\\
|
E_b&=PT=P_\text{av}/R_b\quad\text{Energy per bit}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Nyquist stuff
|
### Nyquist stuff
|
||||||
|
|
||||||
#### Condition for 0 ISI
|
#### Condition for 0 ISI TODO:
|
||||||
|
|
||||||
$$
|
```math
|
||||||
P_r(kT)=\begin{cases}
|
P_r(kT)=\begin{cases}
|
||||||
1 & k=0\\
|
1 & k=0\\
|
||||||
0 & k\neq0
|
0 & k\neq0
|
||||||
\end{cases}
|
\end{cases}
|
||||||
$$
|
```
|
||||||
|
|
||||||
#### Other
|
#### Other
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\text{Excess BW}&=B_\text{abs}-B_\text{Nyquist}=\frac{1+\alpha}{2T}-\frac{1}{2T}=\frac{\alpha}{2T}\quad\text{FOR NRZ (Use correct $B_\text{abs}$)}\\
|
\text{Excess BW}&=B_\text{abs}-B_\text{Nyquist}=\frac{1+\alpha}{2T}-\frac{1}{2T}=\frac{\alpha}{2T}\quad\text{FOR NRZ (Use correct $B_\text{abs}$)}\\
|
||||||
\alpha&=\frac{\text{Excess BW}}{B_\text{Nyquist}}=\frac{B_\text{abs}-B_\text{Nyquist}}{B_\text{Nyquist}}\\
|
\alpha&=\frac{\text{Excess BW}}{B_\text{Nyquist}}=\frac{B_\text{abs}-B_\text{Nyquist}}{B_\text{Nyquist}}\\
|
||||||
T&=1/D
|
T&=1/D
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
<div style="page-break-after: always;"></div>
|
<div style="page-break-after: always;"></div>
|
||||||
|
|
||||||
|
@ -854,7 +853,7 @@ Adapted from table 11.4 M F Mesiya - Contemporary Communication Systems
|
||||||
|
|
||||||
### Entropy for discrete random variables
|
### Entropy for discrete random variables
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
H(x) &\geq 0\\
|
H(x) &\geq 0\\
|
||||||
H(x) &= -\sum_{x_i\in A_x} p_X(x_i) \log_2(p_X(x_i))\\
|
H(x) &= -\sum_{x_i\in A_x} p_X(x_i) \log_2(p_X(x_i))\\
|
||||||
|
@ -866,7 +865,7 @@ $$
|
||||||
H(x|y) &= H(x,y)-H(y)\\
|
H(x|y) &= H(x,y)-H(y)\\
|
||||||
H(x,y) &= H(x) + H(y|x) = H(y) + H(x|y)\\
|
H(x,y) &= H(x) + H(y|x) = H(y) + H(x|y)\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
Entropy is **maximized** when all have an equal probability.
|
Entropy is **maximized** when all have an equal probability.
|
||||||
|
|
||||||
|
@ -874,64 +873,63 @@ Entropy is **maximized** when all have an equal probability.
|
||||||
|
|
||||||
TODO: Cut out if not required
|
TODO: Cut out if not required
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
h(x) &= -\int_\mathbb{R}f_X(x)\log_2(f_X(x))dx
|
h(x) &= -\int_\mathbb{R}f_X(x)\log_2(f_X(x))dx
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Mutual information
|
### Mutual information
|
||||||
|
|
||||||
Amount of entropy decrease of $x$ after observation by $y$.
|
Amount of entropy decrease of $x$ after observation by $y$.
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
I(x;y) &= H(x)-H(x|y)=H(y)-H(y|x)\\
|
I(x;y) &= H(x)-H(x|y)=H(y)-H(y|x)\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Channel model
|
### Channel model
|
||||||
|
|
||||||
Vertical, $x$: input\
|
Vertical, $x$: input\
|
||||||
Horizontal, $y$: output
|
Horizontal, $y$: output
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\mathbf{P}=\left[\begin{matrix}
|
\mathbf{P}=\left[\begin{matrix}
|
||||||
p_{11} & p_{12} &\dots & p_{1N}\\
|
p_{11} & p_{12} &\dots & p_{1N}\\
|
||||||
p_{21} & p_{22} &\dots & p_{2N}\\
|
p_{21} & p_{22} &\dots & p_{2N}\\
|
||||||
\vdots & \vdots &\ddots & \vdots\\
|
\vdots & \vdots &\ddots & \vdots\\
|
||||||
p_{M1} & p_{M2} &\dots & p_{MN}\\
|
p_{M1} & p_{M2} &\dots & p_{MN}\\
|
||||||
\end{matrix}\right]
|
\end{matrix}\right]
|
||||||
$$
|
```
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{array}{c|cccc}
|
\begin{array}{c|cccc}
|
||||||
P(y_j|x_i)& y_1 & y_2 & \dots & y_N \\
|
P(y_j|x_i)& y_1 & y_2 & \dots & y_N \\\hline
|
||||||
\hline
|
|
||||||
x_1 & p_{11} & p_{12} & \dots & p_{1N} \\
|
x_1 & p_{11} & p_{12} & \dots & p_{1N} \\
|
||||||
x_2 & p_{21} & p_{22} & \dots & p_{2N} \\
|
x_2 & p_{21} & p_{22} & \dots & p_{2N} \\
|
||||||
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
||||||
x_M & p_{M1} & p_{M2} & \dots & p_{MN} \\
|
x_M & p_{M1} & p_{M2} & \dots & p_{MN} \\
|
||||||
\end{array}
|
\end{array}
|
||||||
$$
|
```
|
||||||
|
|
||||||
Input has probability distribution $p_X(a_i)=P(X=a_i)$
|
Input has probability distribution $p_X(a_i)=P(X=a_i)$
|
||||||
|
|
||||||
Channel maps alphabet $\{a_1,\dots,a_M\} \to \{b_1,\dots,b_N\}$
|
Channel maps alphabet $`\{a_1,\dots,a_M\} \to \{b_1,\dots,b_N\}`$
|
||||||
|
|
||||||
Output has probabiltiy distribution $p_Y(b_j)=P(y=b_j)$
|
Output has probabiltiy distribution $p_Y(b_j)=P(y=b_j)$
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
p_Y(b_j) &= \sum_{i=1}^{M}P[x=a_i,y=b_j]\quad 1\leq j\leq N \\
|
p_Y(b_j) &= \sum_{i=1}^{M}P[x=a_i,y=b_j]\quad 1\leq j\leq N \\
|
||||||
&= \sum_{i=1}^{M}P[X=a_i]P[Y=b_j|X=a_i]\\
|
&= \sum_{i=1}^{M}P[X=a_i]P[Y=b_j|X=a_i]\\
|
||||||
[\begin{matrix}p_Y(b_0)&p_Y(b_1)&\dots&p_Y(b_j)\end{matrix}] &= [\begin{matrix}p_X(a_0)&p_X(a_1)&\dots&p_X(a_i)\end{matrix}]\times\mathbf{P}
|
[\begin{matrix}p_Y(b_0)&p_Y(b_1)&\dots&p_Y(b_j)\end{matrix}] &= [\begin{matrix}p_X(a_0)&p_X(a_1)&\dots&p_X(a_i)\end{matrix}]\times\mathbf{P}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
#### Fast procedure to calculate $I(y;x)$
|
#### Fast procedure to calculate $I(y;x)$
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
&\text{1. Find }H(x)\\
|
&\text{1. Find }H(x)\\
|
||||||
&\text{2. Find }[\begin{matrix}p_Y(b_0)&p_Y(b_1)&\dots&p_Y(b_j)\end{matrix}] = [\begin{matrix}p_X(a_0)&p_X(a_1)&\dots&p_X(a_i)\end{matrix}]\times\mathbf{P}\\
|
&\text{2. Find }[\begin{matrix}p_Y(b_0)&p_Y(b_1)&\dots&p_Y(b_j)\end{matrix}] = [\begin{matrix}p_X(a_0)&p_X(a_1)&\dots&p_X(a_i)\end{matrix}]\times\mathbf{P}\\
|
||||||
|
@ -940,7 +938,7 @@ $$
|
||||||
&\text{5. Find }H(x|y)=H(x,y)-H(y)\\
|
&\text{5. Find }H(x|y)=H(x,y)-H(y)\\
|
||||||
&\text{6. Find }I(y;x)=H(x)-H(x|y)\\
|
&\text{6. Find }I(y;x)=H(x)-H(x|y)\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Channel types
|
### Channel types
|
||||||
|
|
||||||
|
@ -951,7 +949,7 @@ $$
|
||||||
|
|
||||||
#### Channel capacity of weakly symmetric channel
|
#### Channel capacity of weakly symmetric channel
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
C &\to\text{Channel capacity (bits/channels used)}\\
|
C &\to\text{Channel capacity (bits/channels used)}\\
|
||||||
N &\to\text{Output alphabet size}\\
|
N &\to\text{Output alphabet size}\\
|
||||||
|
@ -959,38 +957,38 @@ $$
|
||||||
C &= \log_2(N)-H(\mathbf{p})\quad\text{Capacity for weakly symmetric and symmetric channels}\\
|
C &= \log_2(N)-H(\mathbf{p})\quad\text{Capacity for weakly symmetric and symmetric channels}\\
|
||||||
R &< C \text{ for error-free transmission}
|
R &< C \text{ for error-free transmission}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
#### Channel capacity of an AWGN channel
|
#### Channel capacity of an AWGN channel
|
||||||
|
|
||||||
$$
|
```math
|
||||||
y_i=x_i+n_i\quad n_i\thicksim N(0,N_0/2)
|
y_i=x_i+n_i\quad n_i\thicksim N(0,N_0/2)
|
||||||
$$
|
```
|
||||||
|
|
||||||
$$
|
```math
|
||||||
C=\frac{1}{2}\log_2\left(1+\frac{P_\text{av}}{N_0/2}\right)
|
C=\frac{1}{2}\log_2\left(1+\frac{P_\text{av}}{N_0/2}\right)
|
||||||
$$
|
```
|
||||||
|
|
||||||
#### Channel capacity of a bandwidth AWGN channel
|
#### Channel capacity of a bandwidth AWGN channel
|
||||||
|
|
||||||
Note: Define XOR ($\oplus$) as exclusive OR, or modulo-2 addition.
|
Note: Define XOR ($\oplus$) as exclusive OR, or modulo-2 addition.
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
P_s&\to\text{Bandwidth limited average power}\\
|
P_s&\to\text{Bandwidth limited average power}\\
|
||||||
y_i&=\text{bandpass}_W(x_i)+n_i\quad n_i\thicksim N(0,N_0/2)\\
|
y_i&=\text{bandpass}_W(x_i)+n_i\quad n_i\thicksim N(0,N_0/2)\\
|
||||||
C&=W\log_2\left(1+\frac{P_s}{N_0 W}\right)\\
|
C&=W\log_2\left(1+\frac{P_s}{N_0 W}\right)\\
|
||||||
C&=W\log_2(1+\text{SNR})\quad\text{SNR}=P_s/(N_0 W)
|
C&=W\log_2(1+\text{SNR})\quad\text{SNR}=P_s/(N_0 W)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
## Channel code
|
## Channel code
|
||||||
|
|
||||||
| | | |
|
| | | |
|
||||||
| ---------------- | --------------------------------- | -------------------------------------------------------------------------------------------------------------------------- |
|
| ---------------- | --------------------------------- | ---------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| Hamming weight | $w_H(x)$ | Number of `'1'` in codeword $x$ |
|
| Hamming weight | $w_H(x)$ | Number of `'1'` in codeword $x$ |
|
||||||
| Hamming distance | $d_H(x_1,x_2)=w_H(x_1\oplus x_2)$ | Number of different bits between codewords $x_1$ and $x_2$ which is the hamming weight of the XOR of the two codes. |
|
| Hamming distance | $d_H(x_1,x_2)=w_H(x_1\oplus x_2)$ | Number of different bits between codewords $x_1$ and $x_2$ which is the hamming weight of the XOR of the two codes. |
|
||||||
| Minimum distance | $d_\text{min}$ | **IMPORTANT**: $x\neq\bold{0}$, excludes weight of all-zero codeword. For a linear block code, $d_\text{min}=w_\text{min}$ |
|
| Minimum distance | $d_\text{min}$ | **IMPORTANT**: $x\neq\textbf{0}$, excludes weight of all-zero codeword. For a linear block code, $d_\text{min}=w_\text{min}$ |
|
||||||
|
|
||||||
### Linear block code
|
### Linear block code
|
||||||
|
|
||||||
|
@ -1011,7 +1009,7 @@ For a linear block code, $d_\text{min}=w_\text{min}$
|
||||||
|
|
||||||
Each generator vector is a binary string of size $n$. There are $k$ generator vectors in $\mathbf{G}$.
|
Each generator vector is a binary string of size $n$. There are $k$ generator vectors in $\mathbf{G}$.
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\mathbf{g}_i&=[\begin{matrix}
|
\mathbf{g}_i&=[\begin{matrix}
|
||||||
g_{i,0}& \dots & g_{i,n-2} & g_{i,n-1}
|
g_{i,0}& \dots & g_{i,n-2} & g_{i,n-1}
|
||||||
|
@ -1029,11 +1027,11 @@ $$
|
||||||
g_{k-1,0}& \dots & g_{k-1,n-2} & g_{k-1,n-1}\\
|
g_{k-1,0}& \dots & g_{k-1,n-2} & g_{k-1,n-1}\\
|
||||||
\end{matrix}\right]
|
\end{matrix}\right]
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
A message block $\mathbf{m}$ is coded as $\mathbf{x}$ using the generation codewords in $\mathbf{G}$:
|
A message block $\mathbf{m}$ is coded as $\mathbf{x}$ using the generation codewords in $\mathbf{G}$:
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\mathbf{m}&=[\begin{matrix}
|
\mathbf{m}&=[\begin{matrix}
|
||||||
m_{0}& \dots & m_{n-2} & m_{k-1}
|
m_{0}& \dots & m_{n-2} & m_{k-1}
|
||||||
|
@ -1041,13 +1039,13 @@ $$
|
||||||
\color{darkgray}\mathbf{m}&\color{darkgray}=[101001]\quad\text{Example for $k=6$}\\
|
\color{darkgray}\mathbf{m}&\color{darkgray}=[101001]\quad\text{Example for $k=6$}\\
|
||||||
\mathbf{x} &= \mathbf{m}\mathbf{G}=m_0\mathbf{g}_0+m_1\mathbf{g}_1+\dots+m_{k-1}\mathbf{g}_{k-1}
|
\mathbf{x} &= \mathbf{m}\mathbf{G}=m_0\mathbf{g}_0+m_1\mathbf{g}_1+\dots+m_{k-1}\mathbf{g}_{k-1}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
### Systemic linear block code
|
### Systemic linear block code
|
||||||
|
|
||||||
Contains $k$ message bits (Copy $\mathbf{m}$ as-is) and $(n-k)$ parity bits after the message bits.
|
Contains $k$ message bits (Copy $\mathbf{m}$ as-is) and $(n-k)$ parity bits after the message bits.
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\mathbf{G}&=\begin{array}{c|c}[\mathbf{I}_k & \mathbf{P}]\end{array}=\left[
|
\mathbf{G}&=\begin{array}{c|c}[\mathbf{I}_k & \mathbf{P}]\end{array}=\left[
|
||||||
\begin{array}{c|c}
|
\begin{array}{c|c}
|
||||||
|
@ -1070,13 +1068,13 @@ $$
|
||||||
\mathbf{x} &= \mathbf{m}\mathbf{G}= \mathbf{m} \begin{array}{c|c}[\mathbf{I}_k & \mathbf{P}]\end{array}=\begin{array}{c|c}[\mathbf{mI}_k & \mathbf{mP}]\end{array}=\begin{array}{c|c}[\mathbf{m} & \mathbf{b}]\end{array}\\
|
\mathbf{x} &= \mathbf{m}\mathbf{G}= \mathbf{m} \begin{array}{c|c}[\mathbf{I}_k & \mathbf{P}]\end{array}=\begin{array}{c|c}[\mathbf{mI}_k & \mathbf{mP}]\end{array}=\begin{array}{c|c}[\mathbf{m} & \mathbf{b}]\end{array}\\
|
||||||
\mathbf{b} &= \mathbf{m}\mathbf{P}\quad\text{Parity bits of $\mathbf{x}$}
|
\mathbf{b} &= \mathbf{m}\mathbf{P}\quad\text{Parity bits of $\mathbf{x}$}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
#### Parity check matrix $\mathbf{H}$
|
#### Parity check matrix $\mathbf{H}$
|
||||||
|
|
||||||
Transpose $\mathbf{P}$ for the parity check matrix
|
Transpose $\mathbf{P}$ for the parity check matrix
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\mathbf{H}&=\begin{array}{c|c}[\mathbf{P}^\text{T} & \mathbf{I}_{n-k}]\end{array}\\
|
\mathbf{H}&=\begin{array}{c|c}[\mathbf{P}^\text{T} & \mathbf{I}_{n-k}]\end{array}\\
|
||||||
&=\left[
|
&=\left[
|
||||||
|
@ -1103,7 +1101,7 @@ $$
|
||||||
\end{matrix}\end{array}\right]\\
|
\end{matrix}\end{array}\right]\\
|
||||||
\mathbf{xH}^\text{T}&=\mathbf{0}\implies\text{Codeword is valid}
|
\mathbf{xH}^\text{T}&=\mathbf{0}\implies\text{Codeword is valid}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
#### Procedure to find parity check matrix from list of codewords
|
#### Procedure to find parity check matrix from list of codewords
|
||||||
|
|
||||||
|
@ -1114,30 +1112,28 @@ $$
|
||||||
|
|
||||||
Example:
|
Example:
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{array}{cccc}
|
\begin{array}{cccc}
|
||||||
x_1 & x_2 & x_3 & x_4 & x_5 \\
|
x_1 & x_2 & x_3 & x_4 & x_5 \\\hline
|
||||||
\hline
|
|
||||||
\color{magenta}1&\color{magenta}0&1&1&0\\
|
\color{magenta}1&\color{magenta}0&1&1&0\\
|
||||||
\color{magenta}0&\color{magenta}1&1&1&1\\
|
\color{magenta}0&\color{magenta}1&1&1&1\\
|
||||||
\color{magenta}0&\color{magenta}0&0&0&0\\
|
\color{magenta}0&\color{magenta}0&0&0&0\\
|
||||||
\color{magenta}1&\color{magenta}1&0&0&1\\
|
\color{magenta}1&\color{magenta}1&0&0&1\\
|
||||||
\end{array}
|
\end{array}
|
||||||
$$
|
```
|
||||||
|
|
||||||
Set $x_1,x_2$ as information bits. Express $x_3,x_4,x_5$ in terms of $x_1,x_2$.
|
Set $x_1,x_2$ as information bits. Express $x_3,x_4,x_5$ in terms of $x_1,x_2$.
|
||||||
|
|
||||||
$$
|
```math
|
||||||
\begin{align*}
|
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
|
\begin{aligned}
|
||||||
x_3 &= x_1\oplus x_2\\
|
x_3 &= x_1\oplus x_2\\
|
||||||
x_4 &= x_1\oplus x_2\\
|
x_4 &= x_1\oplus x_2\\
|
||||||
x_5 &= x_2\\
|
x_5 &= x_2\\
|
||||||
\end{align*}
|
\end{aligned}
|
||||||
\implies\textbf{P}&=
|
\implies\textbf{P}&=
|
||||||
\begin{array}{c|ccc}
|
\begin{array}{c|cc}
|
||||||
& x_1 & x_2 \\
|
& x_1 & x_2 \\\hline
|
||||||
\hline
|
|
||||||
x_3&1&1&\\
|
x_3&1&1&\\
|
||||||
x_4&1&1&\\
|
x_4&1&1&\\
|
||||||
x_5&0&1&\\
|
x_5&0&1&\\
|
||||||
|
@ -1156,7 +1152,7 @@ $$
|
||||||
0 & 0 & 1\\
|
0 & 0 & 1\\
|
||||||
\end{matrix}\end{array}\right]
|
\end{matrix}\end{array}\right]
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
```
|
||||||
|
|
||||||
#### Error detection and correction
|
#### Error detection and correction
|
||||||
|
|
||||||
|
@ -1166,6 +1162,6 @@ $$
|
||||||
|
|
||||||
## CHECKLIST
|
## CHECKLIST
|
||||||
|
|
||||||
- Transfer function in complex envelope form ($\tilde{h}(t)$) should be divided by two.
|
- Transfer function in complex envelope form $\tilde{h}(t)$ should be divided by two.
|
||||||
- Convolutions: do not forget width when using graphical method
|
- Convolutions: do not forget width when using graphical method
|
||||||
- todo: add more items to check
|
- todo: add more items to check
|
||||||
|
|
BIN
README.pdf
Normal file
BIN
README.pdf
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user