This unit allows you to bring infinite physical notes (except books borrowed from the UWA library) to all tests and the final exam. You can't rely on what material they provide in the test/exam, it is very _minimal_ to say the least. Hope this helps.
If you have issues or suggestions, [raise them on GitHub](https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems/issues/new). I accept [pull requests](https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems/pulls) for fixes or suggestions but the content must not be copyrighted under a non-GPL compatible license.
## [Download PDF 📄](https://raw.githubusercontent.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems/refs/heads/master/README.pdf)
It is recommended to refer to use [the PDF copy](https://raw.githubusercontent.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems/refs/heads/master/README.pdf) instead of whatever GitHub renders.
### License and information
Notes are open-source and licensed under the GNU GPL-3.0. **You must include the [full-text of the license](COPYING.txt) and follow its terms when using these notes or any diagrams in derivative works** (but not when printing as notes)
Copyright (C) 2024 Peter Tanner
GPL copyright information
Copyright (C) 2024 Peter Tanner
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
## Other advice for this unit
### Get more exam papers on OneSearch
- You can access up to **6** more papers with this method (You normally only get the previous year's paper on LMS in week 12).
- Either [search "Communications" and filter by type "Examination Papers"](https://onesearch.library.uwa.edu.au/discovery/search?query=any%2Ccontains%2Ccommunications&tab=Everything&search_scope=MyInst_and_CI&vid=61UWA_INST%3AUWA&facet=rtype%2Cinclude%2Cexampaper&lang=en&offset=0)
- Or search old unit codes
- ELEC4301 Digital Communications and Networking
- ENGT4301 Digital Communications and Networking
- ELEC3302 Communications Systems
- Note that ELEC5501 Advanced Communications is a different unit.
- To be honest, you select (relevant) questions from these for class test study as well.
Listing of examination papers on OneSearch
- Communications Systems ELEC3302 Examination paper [2008 Supplementary]
- Communications Systems ELEC4402 Examination paper [2014 Semester 2]
- Communications Systems ELEC3302 Examination paper [2014 Semester 2]
- Communications Systems ELEC3302 Examination paper [2008 Semester 1]
- Digital Communications and Networking ENGT4301 Examination paper [2005 Supplementary]
- Digital Communications and Networking ELEC4301 Examination paper [2009 Supplementary]
### Tests
- A lot of the unit requires you to learn processes and apply them. This is quite time consuming to do during the semester and the marking of the tests will destroy your wam if you do not know the process (especially compared to signal processing and signals and systems), I do not recommend doing this unit during thesis year.
- This formula sheet will attempt to condense all processes/formulas you may need in this unit.
- **You do not get given a formula sheet**, so you are entirely dependent on your own notes (except for some exceptions, such as the $\text{erf}(x)$ table). So bring good notes.
- Doing this unit after signal processing is a good idea.
- Try to practice questions from the exam papers on OneSearch mentioned above before class test, since you don't get past questions for the tests.
### Final exam 2024
As quoted from the lectures:
- No short questions
- 10 calculation questions
- From exam front page: Any printed or written material (e.g. dictionaries, textbooks, statutes, cases, legislation, annotations, lecture notes, tutorials with solutions, notes) except UWA Library books. Photocopied or printed eBook of a textbook is permitted.
- So yes you can still bring as many papers as you want to the final, unlike in signals and systems/signal processing where the final only allowed two pages.
**[https://www.petertanner.dev/posts/Idiots-guide-to-ELEC4402-Communications-Systems/](https://www.petertanner.dev/posts/Idiots-guide-to-ELEC4402-Communications-Systems/)**
**Notes are open-source and licensed under the [GNU GPL-3.0](https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems/blob/master/COPYING.txt). Suggest any corrections or changes on [GitHub](https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems).**
## Fourier transform identities and properties
| Time domain $x(t)$ | Frequency domain $X(f)$ |
| ---------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
| $\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)$ | $T \text{sinc}(fT)$ |
| $\text{sinc}(2Wt)$ | $\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$ |
| $\exp(-at)u(t),\quad a>0$ | $\frac{1}{a + j2\pi f}$ |
| $\exp(-a\lvert t \rvert),\quad a>0$ | $\frac{2a}{a^2 + (2\pi f)^2}$ |
| $\exp(-\pi t^2)$ | $\exp(-\pi f^2)$ |
| $1 - \frac{\lvert t \rvert}{T},\quad\lvert t \rvert < T\quad\text{tri}(t/T)$ | $T \text{sinc}^2(fT)$ |
| $\delta(t)$ | $1$ |
| $1$ | $\delta(f)$ |
| $\delta(t - t_0)$ | $\exp(-j2\pi f t_0)$ |
| $\exp(j2\pi f_c t)$ | $\delta(f - f_c)$ |
| $\cos(2\pi f_c t)$ | $\frac{1}{2}[\delta(f - f_c) + \delta(f + f_c)]$ |
| $\cos(2\pi f_c t+\theta)$ | $\frac{1}{2}[\delta(f - f_c)\exp(j\theta) + \delta(f + f_c)\exp(-j\theta)]\quad\text{Use for coherent recv.}$ |
| $\sin(2\pi f_c t)$ | $\frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]$ |
| $\sin(2\pi f_c t+\theta)$ | $\frac{1}{2j} [\delta(f - f_c)\exp(j\theta) - \delta(f + f_c)\exp(-j\theta)]$ |
| $\text{sgn}(t)$ | $\frac{1}{j\pi f}$ |
| $\frac{1}{\pi t}$ | $-j \text{sgn}(f)$ |
| $u(t)$ | $\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}$ |
| $\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$ | $\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)=f_0 \sum_{n=-\infty}^{\infty} \delta\left(f - n f_0\right)$ |
| Time domain $x(t)$ | Frequency domain $X(f)$ | Property |
| ---------------------------------------- | ------------------------------------------------ | ----------------------------- |
| $g(t-a)$ | $\exp(-j2\pi fa)G(f)$ | Time shifting |
| $\exp(-j2\pi f_c t)g(t)$ | $G(f-f_c)$ | Frequency shifting |
| $g(bt)$ | $\frac{G(f/b)}{\|b\|}$ | Time scaling |
| $g(bt-a)$ | $\frac{1}{\|b\|}\exp(-j2\pi a(f/b))\cdot G(f/b)$ | Time scaling and shifting |
| $\frac{d}{dt}g(t)$ | $j2\pi fG(f)\quad$ | Differentiation wrt time |
| $tg(t)$ | $\frac{1}{2\pi}\frac{d}{df}G(f)\quad$ | Differentiation wrt frequency |
| $g^*(t)$ | $G^*(-f)$ | Conjugate functions |
| $G(t)$ | $g(-f)$ | Duality |
| $\int_{-\infty}^t g(\tau)d\tau$ | $\frac{1}{j2\pi f}G(f)+\frac{G(0)}{2}\delta(f)$ | Integration wrt time |
| $g(t)h(t)$ | $G(f)*H(f)$ | Time multiplication |
| $g(t)*h(t)$ | $G(f)H(f)$ | Time convolution |
| $ag(t)+bh(t)$ | $aG(f)+bH(f)$ | Linearity $a,b$ constants |
| $\int_{-\infty}^\infty x(t)y^*(t)dt$ | $\int_{-\infty}^\infty X(f)Y^*(f)df$ | Parseval's theorem |
| $E_x=\int_{-\infty}^\infty \|x(t)\|^2dt$ | $E_x=\int_{-\infty}^\infty \|X(f)\|^2df$ | Parseval's theorem |
| Description | Property |
| ----------------------------------- | ----------------- |
| $g(0)=\int_{-\infty}^\infty G(f)df$ | Area under $G(f)$ |
| $G(0)=\int_{-\infty}^\infty G(t)dt$ | Area under $g(t)$ |
```math
\begin{align*}
u(t) &= \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}&\text{Unit Step Function}\\
\text{sgn}(t) &= \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}&\text{Signum Function}\\
\text{sinc}(2Wt) &= \frac{\sin(2\pi W t)}{2\pi W t}&\text{sinc Function}\\
\text{rect}(t) = \Pi(t) &= \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & \lvert t \rvert > 0.5 \end{cases}&\text{Rectangular/Gate Function}\\
\text{tri}(t/T) &= \begin{cases} 1 - \frac{|t|}{T}, & \lvert t\rvert < T \\ 0, & \lvert t \rvert \geq T \end{cases}=\frac{1}{T}\Pi(t/T)*\Pi(t/T)&\text{Triangle Function}\\
g(t)*h(t)=(g*h)(t)&=\int_\infty^\infty g(\tau)h(t-\tau)d\tau&\text{Convolution}\\
\end{align*}
```
### Fourier transform of continuous time periodic signal
Required for some questions on **sampling**:
Transform a continuous time-periodic signal $x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s)$ with period $T_s$:
```math
X_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
```
Calculate $C_n$ coefficient as follows from $x_p(t)$:
```math
\begin{align*}
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
\end{align*}
```
### Shape functions
![rect and tri functions](images/rect.drawio.svg)
### Random processes examples
$$
\begin{align*}
&\text{Example: separate RV from expression}\\
X(t) &= A\cos(2\pi f_c t)\quad A\thicksim \mathcal{N}(\mu=5,\sigma^2=1)\\
\implies E[X(t)] &= E[A\cos(2\pi f_c t)] = E[A]\cos(2\pi f_c t) = 5\cos(2\pi f_c t)\\
&\text{Example: random phase}\\
X(t) &= B\cos(2\pi f_c t+\theta)\quad \theta\thicksim \mathcal{U}(0,2\pi)\\
\implies E[X(t)] &= E[B\cos(2\pi f_c t+\theta)] = B\int_0^{2\pi}\underbrace{\frac{1}{2\pi}}_{\text{uniform}}\cos(2\pi f_c t+\theta)d\theta=0
\end{align*}
$$
### Wide sense stationary (WSS)
Two conditions for WSS:
| Constant mean | Autocorrelation only dependent on time difference |
| ---------------------------------- | ------------------------------------------------- |
| $\mu_X(t) = \mu_X\text{ Constant}$ | $R_{XX}(t_1,t_2)=R_X(t_1-t_2)=R_X(\tau)$ |
| $\mu_X(t)=E[X(t)]$ | $E[X(t_1)X(t_2)]=E[X(t)X(t+\tau)]$ |
### Ergodicity
```math
\begin{align*}
\braket{X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t)dt\\
\braket{X(t+\tau)X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t+\tau)x(t)dt\\
E[\braket{X(t)}_T]&=\frac{1}{2T}\int_{-T}^{T}x(t)dt=\frac{1}{2T}\int_{-T}^{T}m_Xdt=m_X\\
\end{align*}
```
| Type | Normal | Mean square sense |
| ----------------------------------- | ----------------------------------------------------- | --------------------------------------------------------- |
| ergodic in mean | $\lim_{T\to\infty}\braket{X(t)}_T=m_X(t)=m_X$ | $\lim_{T\to\infty}\text{VAR}[\braket{X(t)}_T]=0$ |
| ergodic in autocorrelation function | $\lim_{T\to\infty}\braket{X(t+\tau)X(t)}_T=R_X(\tau)$ | $\lim_{T\to\infty}\text{VAR}[\braket{X(t+\tau)X(t)}_T]=0$ |
Note: **A WSS random process needs to be both ergodic in mean and autocorrelation to be considered an ergodic process**
### Other identities
```math
\begin{align*}
f*(g*h) &=(f*g)*h\quad\text{Convolution associative}\\
a(f*g) &= (af)*g \quad\text{Convolution associative}\\
\sum_{x=-\infty}^\infty(f(x a)\delta(\omega-x b))&=f\left(\frac{\omega a}{b}\right)
\end{align*}
```
### Other trig
```math
\begin{align*}
\cos2\theta=2 \cos^2 \theta-1&\Leftrightarrow\frac{\cos2\theta+1}{2}=\cos^2\theta\\
e^{-j\alpha}-e^{j\alpha}&=-2j \sin(\alpha)\\
e^{-j\alpha}+e^{j\alpha}&=2 \cos(\alpha)\\
\cos(-A)&=\cos(A)\\
\sin(-A)&=-\sin(A)\\
\sin(A+\pi/2)&=\cos(A)\\
\sin(A-\pi/2)&=-\cos(A)\\
\cos(A-\pi/2)&=\sin(A)\\
\cos(A+\pi/2)&=-\sin(A)\\
\int_{x\in\mathbb{R}}\text{sinc}(A x) &= \frac{1}{|A|}\\
\end{align*}
```
```math
\begin{align*}
\cos(A+B) &= \cos (A) \cos (B)-\sin (A) \sin (B) \\
\sin(A+B) &= \sin (A) \cos (B)+\cos (A) \sin (B) \\
\cos(A)\cos(B) &= \frac{1}{2} (\cos (A-B)+\cos (A+B)) \\
\cos(A)\sin(B) &= \frac{1}{2} (\sin (A+B)-\sin (A-B)) \\
\sin(A)\sin(B) &= \frac{1}{2} (\cos (A-B)-\cos (A+B)) \\
\end{align*}
```
```math
\begin{align*}
\cos(A)+\cos(B) &= 2 \cos \left(\frac{A}{2}-\frac{B}{2}\right) \cos \left(\frac{A}{2}+\frac{B}{2}\right) \\
\cos(A)-\cos(B) &= -2 \sin \left(\frac{A}{2}-\frac{B}{2}\right) \sin \left(\frac{A}{2}+\frac{B}{2}\right) \\
\sin(A)+\sin(B) &= 2 \sin \left(\frac{A}{2}+\frac{B}{2}\right) \cos \left(\frac{A}{2}-\frac{B}{2}\right) \\
\sin(A)-\sin(B) &= 2 \sin \left(\frac{A}{2}-\frac{B}{2}\right) \cos \left(\frac{A}{2}+\frac{B}{2}\right) \\
\cos(A)+\sin(B)&= -2 \sin \left(\frac{A}{2}-\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}+\frac{B}{2}+\frac{\pi }{4}\right) \\
\cos(A)-\sin(B)&= -2 \sin \left(\frac{A}{2}+\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}-\frac{B}{2}+\frac{\pi }{4}\right) \\
\end{align*}
```
## IQ/Complex envelope
Def. $\tilde{g}(t)=g_I(t)+jg_Q(t)$ as the complex envelope. Best to convert to $e^{j\theta}$ form.
### Convert complex envelope representation to time-domain representation of signal
```math
\begin{align*}
g(t)&=g_I(t)\cos(2\pi f_c t)-g_Q(t)\sin(2\pi f_c t)\\
&=\text{Re}[\tilde{g}(t)\exp{(j2\pi f_c t)}]\\
&=A(t)\cos(2\pi f_c t+\phi(t))\\
A(t)&=|g(t)|=\sqrt{g_I^2(t)+g_Q^2(t)}\quad\text{Amplitude}\\
\phi(t)&\quad\text{Phase}\\
g_I(t)&=A(t)\cos(\phi(t))\quad\text{In-phase component}\\
g_Q(t)&=A(t)\sin(\phi(t))\quad\text{Quadrature-phase component}\\
\end{align*}
```
### For transfer function
```math
\begin{align*}
h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
&=2\text{Re}[\tilde{h}(t)\exp{(j2\pi f_c t)}]\\
\Rightarrow\tilde{h}(t)&=h_I(t)/2+jh_Q(t)/2=A(t)/2\exp{(j\phi(t))}
\end{align*}
```
## AM
### Conventional AM modulation (CAM)
```math
\begin{align*}
x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right]\quad\text{CAM signal}\\
&\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
m_a &= \frac{|\min_t(k_a m(t))|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
P_c &=\frac{ {A_c}^2}{2}\quad\text{Carrier power}\\
P_s &=\frac{1}{4}{m_a}^2{A_c}^2\quad\text{Signal power, \textbf{total} of all 4 sideband power, \textbf{single-tone} case}\\
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_s}{P_s+P_c}=\frac{P_s}{P_x}\quad\text{Power efficiency}\\
B_T&=2f_m=2B\\
\end{align*}
```
$B_T$: Signal bandwidth
$B$: Bandwidth of modulating wave
Overmodulation (resulting in phase reversals at crossing points): $m_a>1$
### Double sideband suppressed carrier (DSB-SC)
```math
\begin{align*}
x_\text{DSB}(t) &= A_c \cos{(2\pi f_c t)} m(t)\\
B_T&=2f_m=2B
\end{align*}
```
## FM/PM
```math
\begin{align*}
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
s(t) &= A_c\cos(\theta_i(t))=A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_{-\infty}^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)=f_c+k_f m(t)=f_c+\Delta f_\text{max}\hat m(t)\quad\text{Instantaneous frequency}\\
\Delta f_\text{max}&=\max_t|f_i(t)-f_c|=k_f \max_t |m(t)|\quad\text{Maximum frequency deviation}\\
\Delta f_\text{max}&=k_f A_m\quad\text{Maximum frequency deviation (sinusoidal)}\\
\beta&=\frac{\Delta f_\text{max}}{f_m}\quad\text{Modulation index}\\
D&=\frac{\Delta f_\text{max}}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
\end{align*}
```
### Bessel function
```math
\begin{align*}
J_n(\beta)&=\begin{cases}
J_{-n}(\beta) & \text{$n$ is even}\\
-J_{-n}(\beta) & \text{$n$ is odd}
\end{cases}\\
1&=\sum_{n\in\mathbb{Z}}{J_n}^2(\beta)&\text{Conservation of power}\\
\end{align*}
```
### Bessel form of FM signal
```math
\begin{align*}
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\\
\Longleftrightarrow s(t) &= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\cos[2\pi(f_c+nf_m)t]
\end{align*}
```
### FM signal power
```math
\begin{align*}
P_\text{av}&=\frac{ {A_c}^2}{2}&\text{Av. power of full signal}\\
P_\text{i}&=\frac{ {A_c}^2|{J_\text{i}}(\beta)|^2}{2}&\text{Av. power of band $i$}\\
i=0&\implies f_c+0f_m&\text{Middle band}\\
i=1&\implies f_c+1f_m&\text{1st sideband}\\
i=-1&\implies f_c-1f_m&\text{-1st sideband}\\
&\dots\\
\end{align*}
```
### Carson's rule to find $B$ (98% power bandwidth rule)
```math
\begin{align*}
B &= 2(\beta + 1)f_m\\
B &= 2(\Delta f_\text{max}+f_m)\\
B &= 2(D+1)W_m\\
B &= \begin{cases}
2(\Delta f_\text{max}+f_m)=2(\Delta f_\text{max}+W_m) & \text{FM, sinusoidal message}\\
2(\Delta\phi_\text{max} + 1)f_m=2(\Delta \phi_\text{max}+1)W_m & \text{PM, sinusoidal message}
\end{cases}\\\\
& D<1,\beta<1 \implies \text{Narrowband}\quad D>1,\beta>1\implies \text{Wideband}
\end{align*}
```
### Complex envelope of a FM signal
```math
\begin{align*}
s(t)&=A_c\cos(2\pi f_c t+\beta\sin(2\pi f_m t))\\
\Longleftrightarrow \tilde{s}(t) &= A_c\exp(j\beta\sin(2\pi f_m t))\\
s(t)&=\text{Re}[\tilde{s}(t)\exp{(j2\pi f_c t)}]\\
\tilde{s}(t) &= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\exp(j2\pi f_m t)
\end{align*}
```
## Power, energy and autocorrelation
```math
\begin{align*}
G_\text{WGN}(f)&=\frac{N_0}{2}\\
G_x(f)&=|H(f)|^2G_w(f)\text{ (PSD)}\\
G_x(f)&=G(f)G_w(f)\text{ (PSD)}\\
G_x(f)&=\lim_{T\to\infty}\frac{|X_T(f)|^2}{T}\text{ (PSD)}\\
G_x(f)&=\mathfrak{F}[R_x(\tau)]\text{ (WSS)}\\
P_x&={\sigma_x}^2=\int_\mathbb{R}G_x(f)df\quad\text{For zero mean}\\
P_x&={\sigma_x}^2=\lim_{t\to\infty}\frac{1}{T}\int_{-T/2}^{T/2}|x(t)|^2dt\quad\text{For zero mean}\\
P[A\cos(2\pi f t+\phi)]&=\frac{A^2}{2}\quad\text{Power of sinusoid }\\
E_x&=\int_{-\infty}^{\infty}|x(t)|^2dt=\int_{-\infty}^{\infty}|X(f)|^2df\quad\text{Parseval's theorem}\\
R_x(\tau) &= \mathfrak{F}(G_x(f))\quad\text{PSD to Autocorrelation}\\
P_x &= R_x(0)\quad\text{Average power of WSS process $x(t)$}\\
\end{align*}
```
### White noise
```math
\begin{align*}
R_W(\tau)&=\frac{N_0}{2}\delta(\tau)=\frac{kT}{2}\delta(\tau)=\sigma^2\delta(\tau)\\
G_w(f)&=\frac{N_0}{2}\\
\end{align*}
```
## Noise performance
Use formualas from previous section, [Power, energy and autocorrelation](#power-energy-and-autocorrelation).\
Use these formulas in particular:
```math
\begin{align*}
G_\text{WGN}(f)&=\frac{N_0}{2}\\
G_x(f)&=|H(f)|^2G_w(f)&\text{Note the square in $|H(f)|^2$}\\
P_x&={\sigma_x}^2=\int_\mathbb{R}G_x(f)df&\text{Often perform graphical integration}\\
\end{align*}
```
```math
\begin{align*}
\text{CNR}_\text{in} &= \frac{P_\text{in}}{P_\text{noise}}\\
\text{CNR}_\text{in,FM} &= \frac{A^2}{2WN_0}\\
\text{SNR}_\text{FM} &= \frac{3A^2k_f^2P}{2N_0W^3}\\
\text{SNR(dB)} &= 10\log_{10}(\text{SNR}) \quad\text{Decibels from ratio}
\end{align*}
```
## Sampling
```math
\begin{align*}
t&=nT_s\\
T_s&=\frac{1}{f_s}\\
x_s(t)&=x(t)\delta_s(t)=x(t)\sum_{n\in\mathbb{Z}}\delta(t-nT_s)=\sum_{n\in\mathbb{Z}}x(nT_s)\delta(t-nT_s)\\
X_s(f)&=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
\implies X_s(f)&=\sum_{n\in\mathbb{Z}}f_s X\left(f-n f_s\right)\quad\text{Sampling (FT)}\\
B&>\frac{1}{2}f_s\implies 2B>f_s\rightarrow\text{Aliasing}\\
\end{align*}
```
### Procedure to reconstruct sampled signal
Analog signal $x'(t)$ which can be reconstructed from a sampled signal $x_s(t)$: Put $x_s(t)$ through LPF with maximum frequency of $f_s/2$ and minimum frequency of $-f_s/2$. Anything outside of the BPF will be attenuated, therefore $n$ which results in frequencies outside the BPF will evaluate to $0$ and can be ignored.
Example: $f_s=5000\implies \text{LPF}\in[-2500,2500]$
Then iterate for $n=0,1,-1,2,-2,\dots$ until the first iteration where the result is 0 since all terms are eliminated by the LPF.
TODO: Add example
Then add all terms and transform $\bar X_s(f)$ back to time domain to get $x_s(t)$
### Fourier transform of continuous time periodic signal (1)
Required for some questions on **sampling**:
Transform a continuous time-periodic signal $x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s)$ with period $T_s$:
```math
X_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
```
Calculate $C_n$ coefficient as follows from $x_p(t)$:
```math
\begin{align*}
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
\end{align*}
```
### Nyquist criterion for zero-ISI
Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidth.
```math
\text{Nyquist rate} = 2B\quad\text{Nyquist interval}=\frac{1}{2B}
```
![By Bob K - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=94674142](images/Nyquist_frequency_&_rate.svg)
### Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to `images/sampling.png`)
Cannot add directly due to copyright!
**TODO: Make an open source replacement for this diagram [Send a PR to GitHub](https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems/issues/new).**
Code
tBitstream[bitstream_, Tb_, title_] :=
Module[{timeSteps, gridLines, plot},
timeSteps =
Flatten[Table[{(n - 1) Tb, bitstream[[n]]}, {n, 1,
Length[bitstream]}] /. {t_, v_} :> { {t, v}, {t + Tb, v}}, 1];
gridLines = {Join[
Table[{n Tb, Dashed}, {n, 1, 2 Length[bitstream], 2}],
Table[{n Tb, Thin}, {n, 0, 2 Length[bitstream], 2}]], None};
plot =
Labeled[ListLinePlot[timeSteps, InterpolationOrder -> 0,
PlotRange -> Full, GridLines -> gridLines, PlotStyle -> Thick,
Ticks -> {Table[{n Tb,
Row[{n, "\!\(\*SubscriptBox[\(T\), \(b\)]\)"}]}, {n, 0,
Length[bitstream]}], {-1, 0, 1}},
LabelStyle -> Directive[Bold, 12],
PlotRangePadding -> {Scaled[.05]}, AspectRatio -> 0.1,
ImageSize -> Large], {Style[title, "Text", 16]}, {Right}]];
tBitstream[{0, 1, 0, 0, 1, 0, 1, 1, 1, 0}, 1, "Bitstream Step Plot"]
tBitstream[{-1, -1, -1, -1, 1, 1, 1, 1, 1, 1}, 1, "I(t)"]
tBitstream[{1, 1, -1, -1, -1, -1, 1, 1, -1, -1}, 1, "Q(t)"]
Remember that $T=2T_b$
| | |
| ----------------------- | ---------------------------------- |
| $b_n$ | ![QPSK bits](images/qpsk-bits.svg) |
| $I(t)$ (Odd, 1st bits) | ![QPSK bits](images/qpsk-it.svg) |
| $Q(t)$ (Even, 2nd bits) | ![QPSK bits](images/qpsk-qt.svg) |