This unit allows you to bring infinite physical notes (except books borrowed from the UWA library) to all tests and the final exam. You can't rely on what material they provide in the test/exam, it is very minimal to say the least. Hope this helps.
If you have issues or suggestions, raise them on GitHub. I accept pull requests for fixes or suggestions but the content must not be copyrighted under a non-GPL compatible license.
It is recommended to refer to use the PDF copy instead of whatever GitHub renders.
License and information
Notes are open-source and licensed under the GNU GPL-3.0. You must include the full-text of the license and follow its terms when using these notes or any diagrams in derivative works (but not when printing as notes)
Copyright (C) 2024 Peter Tanner
GPL copyright information
Copyright (C) 2024 Peter Tanner
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.
Other advice for this unit
Get more exam papers on OneSearch
You can access up to 6 more papers with this method (You normally only get the previous year's paper on LMS in week 12).
Note that ELEC5501 Advanced Communications is a different unit.
Listing of examination papers on OneSearch
Communications Systems ELEC3302 Examination paper [2008 Supplementary]
Communications Systems ELEC4402 Examination paper [2014 Semester 2]
Communications Systems ELEC3302 Examination paper [2014 Semester 2]
Communications Systems ELEC3302 Examination paper [2008 Semester 1]
Digital Communications and Networking ENGT4301 Examination paper [2005 Supplementary]
Digital Communications and Networking ELEC4301 Examination paper [2009 Supplementary]
Tests
A lot of the unit requires you to learn processes and apply them. This is quite time consuming to do during the semester and the marking of the tests will destroy your wam if you do not know the process (especially compared to signal processing and signals and systems), I do not recommend doing this unit during thesis year.
This formula sheet will attempt to condense all processes/formulas you may need in this unit.
You do not get given a formula sheet, so you are entirely dependent on your own notes (except for some exceptions, such as the erf(x) table). So bring good notes.
Doing this unit after signal processing is a good idea.
Fourier transform of continuous time periodic signal
Required for some questions on sampling:
Transform a continuous time-periodic signal xp(t)=∑n=−∞∞x(t−nTs) with period Ts:
Xp(f)=n=−∞∑∞Cnδ(f−nfs)fs=Ts1
Calculate Cn coefficient as follows from xp(t):
Cn=Ts1∫Tsxp(t)exp(−j2πfst)dt=Ts1X(nfs)(TODO: Check)x(t−nTs) is contained in the interval Ts
Shape functions
Random processes examples
X(t)⟹E[X(t)]X(t)⟹E[X(t)]Example: separate RV from expression=Acos(2πfct)A∼N(μ=5,σ2=1)=E[Acos(2πfct)]=E[A]cos(2πfct)=5cos(2πfct)Example: random phase=Bcos(2πfct+θ)θ∼U(0,2π)=E[Bcos(2πfct+θ)]=B∫02πuniform2π1cos(2πfct+θ)dθ=0
x(t)mamamaPcPsηBT=Accos(2πfct)[1+kam(t)]=Accos(2πfct)[1+mam(t)/Ac]CAM signalwhere m(t)=Amm^(t) and m^(t) is the normalized modulating signal=Ac∣mint(kam(t))∣ka is the amplitude sensitivity (volt−1), ma is the modulation index.=Amax+AminAmax−Amin (Symmetrical m(t))=kaAm (Symmetrical m(t))=2Ac2Carrier power=41ma2Ac2Signal power, total of all 4 sideband power, single-tone case=Total PowerSignal Power=Ps+PcPs=PxPsPower efficiency=2fm=2B
BT: Signal bandwidth
B: Bandwidth of modulating wave
Overmodulation (resulting in phase reversals at crossing points): ma>1
Double sideband suppressed carrier (DSB-SC)
xDSB(t)BT=Accos(2πfct)m(t)=2fm=2B
FM/PM
s(t)s(t)s(t)fi(t)ΔfmaxΔfmaxβD=Accos[2πfct+kpm(t)]Phase modulated (PM)=Accos(θi(t))=Accos[2πfct+2πkf∫−∞tm(τ)dτ]Frequency modulated (FM)=Accos[2πfct+βsin(2πfmt)]FM single tone=2π1dtdθi(t)=fc+kfm(t)=fc+Δfmaxm^(t)Instantaneous frequency=tmax∣fi(t)−fc∣=kftmax∣m(t)∣Maximum frequency deviation=kfAmMaximum frequency deviation (sinusoidal)=fmΔfmaxModulation index=WmΔfmaxDeviation ratio, where Wm is bandwidth of m(t) (Use FT)
Bessel function
Jn(β)1={J−n(β)−J−n(β)n is evenn is odd=n∈Z∑Jn2(β)Conservation of power
GWGN(f)Gx(f)Gx(f)Gx(f)Gx(f)PxPxP[Acos(2πft+ϕ)]ExRx(τ)Px=2N0=∣H(f)∣2Gw(f) (PSD)=G(f)Gw(f) (PSD)=T→∞limT∣XT(f)∣2 (PSD)=F[Rx(τ)] (WSS)=σx2=∫RGx(f)dfFor zero mean=σx2=t→∞limT1∫−T/2T/2∣x(t)∣2dtFor zero mean=2A2Power of sinusoid =∫−∞∞∣x(t)∣2dt=∫−∞∞∣X(f)∣2dfParseval’s theorem=F(Gx(f))PSD to Autocorrelation=Rx(0)Average power of WSS process x(t)
Analog signal x′(t) which can be reconstructed from a sampled signal xs(t): Put xs(t) through LPF with maximum frequency of fs/2 and minimum frequency of −fs/2. Anything outside of the BPF will be attenuated, therefore n which results in frequencies outside the BPF will evaluate to 0 and can be ignored.
Example: fs=5000⟹LPF∈[−2500,2500]
Then iterate for n=0,1,−1,2,−2,… until the first iteration where the result is 0 since all terms are eliminated by the LPF.
TODO: Add example
Then add all terms and transform Xˉs(f) back to time domain to get xs(t)
Fourier transform of continuous time periodic signal (1)
Required for some questions on sampling:
Transform a continuous time-periodic signal xp(t)=∑n=−∞∞x(t−nTs) with period Ts:
Xp(f)=n=−∞∑∞Cnδ(f−nfs)fs=Ts1
Calculate Cn coefficient as follows from xp(t):
Cn=Ts1∫Tsxp(t)exp(−j2πfst)dt=Ts1X(nfs)(TODO: Check)x(t−nTs) is contained in the interval Ts
Nyquist criterion for zero-ISI
Do not transmit more than 2B samples per second over a channel of B bandwidth.
Nyquist rate=2BNyquist interval=2B1
Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to images/sampling.png)
Cannot add directly due to copyright!
TODO: Make an open source replacement for this diagram Send a PR to GitHub.
Find transfer function h(t) of matched filter and apply to an input:
Note that x(T−t) is equivalent to horizontally flipping x(t) around x=T/2.
h(t)h(t)son(t)no(t)=s1(T−t)−s2(T−t)=s∗(T−t)((.)* is the conjugate)=h(t)∗sn(t)=∫∞∞h(τ)sn(t−τ)dτFilter output=h(t)∗n(t)Noise at filter output
2. Bit error rate of matched filter
Bit error rate (BER) from matched filter outputs and filter output noise
Q(x)EbTEbPavP(W)PRX(W)BERMatchedFilterBERunipolarNRZ|BASKBERpolarNRZ|BPSK=21−21erf(2x)⇔erf(2x)=1−2Q(x)=d2=∫−∞∞∣s1(t)−s2(t)∣2dtEnergy per bit/Distance=1/RbRb: Bitrate=PavT=Pav/RbEnergy per bit=Eb/T=EbRbAverage power=1010P(dB)=PTX(W)⋅1010Ploss(dB)Ploss is expressed with negative sign e.g. "-130 dB"=Q2N0d2=Q(2N0Eb)=QN0d2=Q(N0Eb)=QN02d2=Q(N02Eb)
Value tables for erf(x) and Q(x)
Q(x) function
You should use erf function table instead in exams using the identity Q(x)=21−21erf(2x). Use this for validation.
x
Q(x)
x
Q(x)
x
Q(x)
x
Q(x)
0.00
0.5
2.30
0.010724
4.55
2.6823×10−6
6.80
5.231×10−12
0.05
0.48006
2.35
0.0093867
4.60
2.1125×10−6
6.85
3.6925×10−12
0.10
0.46017
2.40
0.0081975
4.65
1.6597×10−6
6.90
2.6001×10−12
0.15
0.44038
2.45
0.0071428
4.70
1.3008×10−6
6.95
1.8264×10−12
0.20
0.42074
2.50
0.0062097
4.75
1.0171×10−6
7.00
1.2798×10−12
0.25
0.40129
2.55
0.0053861
4.80
7.9333×10−7
7.05
8.9459×10−13
0.30
0.38209
2.60
0.0046612
4.85
6.1731×10−7
7.10
6.2378×10−13
0.35
0.36317
2.65
0.0040246
4.90
4.7918×10−7
7.15
4.3389×10−13
0.40
0.34458
2.70
0.003467
4.95
3.7107×10−7
7.20
3.0106×10−13
0.45
0.32636
2.75
0.0029798
5.00
2.8665×10−7
7.25
2.0839×10−13
0.50
0.30854
2.80
0.0025551
5.05
2.2091×10−7
7.30
1.4388×10−13
0.55
0.29116
2.85
0.002186
5.10
1.6983×10−7
7.35
9.9103×10−14
0.60
0.27425
2.90
0.0018658
5.15
1.3024×10−7
7.40
6.8092×10−14
0.65
0.25785
2.95
0.0015889
5.20
9.9644×10−8
7.45
4.667×10−14
0.70
0.24196
3.00
0.0013499
5.25
7.605×10−8
7.50
3.1909×10−14
0.75
0.22663
3.05
0.0011442
5.30
5.7901×10−8
7.55
2.1763×10−14
0.80
0.21186
3.10
0.0009676
5.35
4.3977×10−8
7.60
1.4807×10−14
0.85
0.19766
3.15
0.00081635
5.40
3.332×10−8
7.65
1.0049×10−14
0.90
0.18406
3.20
0.00068714
5.45
2.5185×10−8
7.70
6.8033×10−15
0.95
0.17106
3.25
0.00057703
5.50
1.899×10−8
7.75
4.5946×10−15
1.00
0.15866
3.30
0.00048342
5.55
1.4283×10−8
7.80
3.0954×10−15
1.05
0.14686
3.35
0.00040406
5.60
1.0718×10−8
7.85
2.0802×10−15
1.10
0.13567
3.40
0.00033693
5.65
8.0224×10−9
7.90
1.3945×10−15
1.15
0.12507
3.45
0.00028029
5.70
5.9904×10−3
7.95
9.3256×10−16
1.20
0.11507
3.50
0.00023263
5.75
4.4622×10−9
8.00
6.221×10−16
1.25
0.10565
3.55
0.00019262
5.80
3.3157×10−9
8.05
4.1397×10−16
1.30
0.0968
3.60
0.00015911
5.85
2.4579×10−9
8.10
2.748×10−16
1.35
0.088508
3.65
0.00013112
5.90
1.8175×10−9
8.15
1.8196×10−16
1.40
0.080757
3.70
0.0001078
5.95
1.3407×10−9
8.20
1.2019×10−16
1.45
0.073529
3.75
8.8417×10−5
6.00
9.8659×10−10
8.25
7.9197×10−17
1.50
0.066807
3.80
7.2348×10−5
6.05
7.2423×10−10
8.30
5.2056×10−17
1.55
0.060571
3.85
5.9059×10−5
6.10
5.3034×10−10
8.35
3.4131×10−17
1.60
0.054799
3.90
4.8096×10−5
6.15
3.8741×10−10
8.40
2.2324×10−17
1.65
0.049471
3.95
3.9076×10−5
6.20
2.8232×10−10
8.45
1.4565×10−17
1.70
0.044565
4.00
3.1671×10−5
6.25
2.0523×10−10
8.50
9.4795×10−18
1.75
0.040059
4.05
2.5609×10−5
6.30
1.4882×10−10
8.55
6.1544×10−18
1.80
0.03593
4.10
2.0658×10−5
6.35
1.0766×10−10
8.60
3.9858×10−18
1.85
0.032157
4.15
1.6624×10−5
6.40
7.7688×10−11
8.65
2.575×10−18
1.90
0.028717
4.20
1.3346×10−5
6.45
5.5925×10−11
8.70
1.6594×10−18
1.95
0.025588
4.25
1.0689×10−5
6.50
4.016×10−11
8.75
1.0668×10−18
2.00
0.02275
4.30
8.5399×10−6
6.55
2.8769×10−11
8.80
6.8408×10−19
2.05
0.020182
4.35
6.8069×10−6
6.60
2.0558×10−11
8.85
4.376×10−19
2.10
0.017864
4.40
5.4125×10−6
6.65
1.4655×10−11
8.90
2.7923×10−19
2.15
0.015778
4.45
4.2935×10−6
6.70
1.0421×10−11
8.95
1.7774×10−19
2.20
0.013903
4.50
3.3977×10−6
6.75
7.3923×10−12
9.00
1.1286×10−19
2.25
0.012224
Adapted from table 6.1 M F Mesiya - Contemporary Communication Systems
erf(x) function
Q(x)=21−21erf(2x)
x
erf(x)
x
erf(x)
x
erf(x)
0.00
0.00000
0.75
0.71116
1.50
0.96611
0.05
0.05637
0.80
0.74210
1.55
0.97162
0.10
0.11246
0.85
0.77067
1.60
0.97635
0.15
0.16800
0.90
0.79691
1.65
0.98038
0.20
0.22270
0.95
0.82089
1.70
0.98379
0.25
0.27633
1.00
0.84270
1.75
0.98667
0.30
0.32863
1.05
0.86244
1.80
0.98909
0.35
0.37938
1.10
0.88021
1.85
0.99111
0.40
0.42839
1.15
0.89612
1.90
0.99279
0.45
0.47548
1.20
0.91031
1.95
0.99418
0.50
0.52050
1.25
0.92290
2.00
0.99532
0.55
0.56332
1.30
0.93401
2.50
0.99959
0.60
0.60386
1.35
0.94376
3.00
0.99998
0.65
0.64203
1.40
0.95229
3.30
0.999998**
0.70
0.67780
1.45
0.95970
**The value of erf(3.30) should be ≈0.999997 instead, but this value is quoted in the formula table.
Q(x) fast reference
Using identity.
x
Q(x)
2
0.07865
22
0.00234
Receiver output shit
ro(t)n={so1(t)+no(t)so2(t)+no(t)code 1code 0:AWGN with σo2
ISI, channel model
Raised cosine (RC) pulse
0≤α≤1
⚠ NOTE might not be safe to assume T′=T, if you can solve the question without T then use that method.
Nyquist criterion for zero ISI
DBNyquistα>2WUse W from table below depending on modulation scheme.=1+αW=BNyquistExcess BW=BNyquistBabs−BNyquist
Nomenclature
DTMW→Symbol Rate, Max. Signalling Rate→Symbol Duration→Symbol set size→Bandwidth
Bandwidth W and bit error rate of modulation schemes
To solve this type of question:
Use the formula for D below
Consult the BER table below to get the BER which relates the noise of the channel N0 to Eb and to Rb.
Linear modulation
Half
BPSK, QPSK, M-PSK, M-QAM, ASK, FSK
M-PAM, PAM
RZ unipolar, Manchester
NRZ Unipolar, NRZ Polar, Bipolar RZ
W=Babs-abs
W=Babs
W=Babs-abs=T1+α=(1+α)D
W=Babs=2T1+α=(1+α)D/2
D=1+αW symbol/s
D=1+α2W symbol/s
Rb bit/sM symbol/setT s/symbolEb=(D symbol/s)×(k bit/symbol)=2k=1/(D symbol/s)=PT=Pav/RbEnergy per bit
Table of bandpass signalling and BER
Binary Bandpass Signaling
Bnull-null (Hz)
Babs-abs=2Babs (Hz)
BER with Coherent Detection
BER with Noncoherent Detection
ASK, unipolar NRZ
2Rb
Rb(1+α)
Q(Eb/N0)
0.5exp(−Eb/(2N0))
BPSK
2Rb
Rb(1+α)
Q(2Eb/N0)
Requires coherent detection
Sunde's FSK
3Rb
Q(Eb/N0)
0.5exp(−Eb/(2N0))
DBPSK, M-ary Bandpass Signaling
2Rb
Rb(1+α)
0.5exp(−Eb/N0)
QPSK/OQPSK (M=4, PSK)
Rb
2Rb(1+α)
Q(2Eb/N0)
Requires coherent detection
MSK
1.5Rb
43Rb(1+α)
Q(2Eb/N0)
Requires coherent detection
M-PSK (M>4)
2Rb/log2M
log2MRb(1+α)
log2M2Q(2log2Msin2(π/M)Eb/N0)
Requires coherent detection
M-DPSK (M>4)
2Rb/log2M
2log2MRb(1+α)
log2M2Q(4log2Msin2(π/(2M))Eb/N0)
M-QAM (Square constellation)
2Rb/log2M
log2MRb(1+α)
log2M4(1−M1)Q(M−13log2MEb/N0)
Requires coherent detection
M-FSK Coherent
2log2M(M+3)Rb
log2MM−1Q((log2M)Eb/N0)
Noncoherent
2MRb/log2M
2log2MM−10.5exp(−(log2M)Eb/2N0)
Adapted from table 11.4 M F Mesiya - Contemporary Communication Systems
Different from bit error since a symbol can contain multiple bits
Information theory
Stats
P(A∣B)=P(B)P(B∣A)P(A)=P(B)P(A,B)
Entropy for discrete random variables
H(x)H(x)H(x,y)H(x,y)H(x∣y=yj)H(x∣y)H(x∣y)H(x∣y)H(x,y)≥0=−xi∈Ax∑pX(xi)log2(pX(xi))=−xi∈Ax∑yi∈Ay∑pXY(xi,yi)log2(pXY(xi,yi))Joint entropy=H(x)+H(y)Joint entropy if x and y independent=−xi∈Ax∑pX(xi∣y=yj)log2(pX(xi∣y=yj))Conditional entropy=−yj∈Ay∑pY(yj)H(x∣y=yj)Average conditional entropy, equivocation=−xi∈Ax∑yi∈Ay∑pX(xi,yj)log2(pX(xi∣y=yj))=H(x,y)−H(y)=H(x)+H(y∣x)=H(y)+H(x∣y)
Entropy is maximized when all have an equal probability.
Transition probability diagram
Example for binary erasure channel where X is input and Y is output:
Equivalent to:
P[Y=0∣X=0]P[Y=e∣X=0]P[Y=1∣X=1]P[Y=e∣X=1]P[X=0∣Y=0]P[Y=0]=1−p=p=1−p=p=0Note the direction=P[Y=0∣X=0]P[X=0]
Mutual information
Amount of entropy decrease of x after observation by y.
I(x;y)=H(x)−H(x∣y)=H(y)−H(y∣x)
Channel model
Vertical, x: input
Horizontal, y: output
Remember P is a matrix where each element is P(yj∣xi)
1. Find H(x)2. Find [pY(b0)pY(b1)…pY(bj)]=[pX(a0)pX(a1)…pX(ai)]×P3. Multiply each row in P by pX(ai) since pXY(ai,bi)=P(bi∣ai)P(ai)4. Find H(x,y) using each element from (3.)5. Find H(x∣y)=H(x,y)−H(y)6. Find I(x;y)=H(x)−H(x∣y)
Every row is a permutation of every other row, Every column is a permutation of every other column. Symmetric⟹Weakly symmetric
Weakly symmetric
Every row is a permutation of every other row, Every column has the same sum
Channel capacity of weakly symmetric channel
CNpCRb→Channel capacity (bits/channels used)→Output alphabet size→Probability vector, any row of the transition matrix=log2(N)−H(p)Capacity for weakly symmetric and symmetric channels<C for error-free transmission
Note that the channel capacity is realized when the channel inputs are uniformly distributed (i.e. P(x1)=P(x2)=⋯=P(xN)=N1)
Channel capacity of an AWGN channel
yi=xi+nini∼N(0,N0/2)
C=21log2(1+N0/2Pav)
Channel capacity of a bandwidth limited AWGN channel
PsyiCCSNR→Bandwidth limited average power=bandpassW(xi)+nini∼N(0,N0/2)=Wlog2(1+N0WPs)=Wlog2(1+SNR)=Ps/(N0W)
Shannon limit
Rb⟹RbN0Ebηηη<C<Wlog2(1+N0WPs)For bandwidth limited AWGN channel>η2η−1SNR per bit required for error-free transmission=WRbSpectral efficiency (bit/(s-Hz))≫1Bandwidth limited≪1Power limited
Channel code
Note: Define XOR (⊕) as exclusive OR, or modulo-2 addition.
Hamming weight
wH(x)
Number of '1' in codeword x
Hamming distance
dH(x1,x2)=wH(x1⊕x2)
Number of different bits between codewords x1 and x2 which is the hamming weight of the XOR of the two codes.
Minimum distance
dmin
IMPORTANT: x=0, excludes weight of all-zero codeword. For a linear block code, dmin=wmin
Linear block code
Code is (n,k)
n is the width of a codeword
2k codewords
A linear block code must be a subspace and satisfy both:
Zero vector must be present at least once
The XOR of any codeword pair in the code must result in a codeword that is already present in the code table.
dmin=wmin (Implied by (1) and (2).)
Code generation
Each generator vector is a binary string of size n. There are k generator vectors in G.
gig0G=[gi,0…gi,n−2gi,n−1]=[1010]Example for n=4=g0g1⋮gk−1=g0,0g1,0⋮gk−1,0……⋱…g0,n−2g1,n−2⋮gk−1,n−2g0,n−1g1,n−1⋮gk−1,n−1
A message block m is coded as x using the generation codewords in G:
mmx=[m0…mn−2mk−1]=[101001]Example for k=6=mG=m0g0+m1g1+⋯+mk−1gk−1
Systemic linear block code
Contains k message bits (Copy m as-is) and (n−k) parity bits after the message bits.
Gmxb=[IkP]=10⋮001⋮0……⋱…00⋮1p0,0p1,0⋮pk−1,0……⋱…p0,n−2p1,n−2⋮pk−1,n−2p0,n−1p1,n−1⋮pk−1,n−1=[m0…mn−2mk−1]=mG=m[IkP]=[mIkmP]=[mb]=mPParity bits of x
Parity check matrix H
Transpose P for the parity check matrix
HxHT=[PTIn−k]=[p0Tp1T…pk−1TIn−k]=p0,0p1,0⋮pn−1,0……⋱…p0,k−2p1,k−2⋮pn−1,k−2p0,k−1p1,k−1⋮pn−1,k−110⋮001⋮0……⋱…00⋮1=0⟹Codeword is valid
Procedure to find parity check matrix from list of codewords
From the number of codewords, find k=log2(N)
Partition codewords into k information bits and remaining bits into n−k parity bits. The information bits should be a simple counter (?).
Express parity bits as a linear combination of information bits
Put coefficients into P matrix and find H
Example:
x11001x20101x31100x41100x50101
Set x1,x2 as information bits. Express x3,x4,x5 in terms of x1,x2.
Transfer function in complex envelope form h~(t) should be divided by two.
Convolutions: do not forget width when using graphical method
2W for rectangle functions
Scale sampled spectrum by fs
2fc for spectrum after IF mixing.
Square transfer function for PSD Gy(f)=∣H(f)∣2Gx(f)
Square besselJ function for FM power ∣Jn(β)∣2
Bandwidth: only consider positive frequencies (so the bandwidth of an AM signal will be the range from the lowest to greatest sideband frequency. For a rectangular function, it will be from 0 to W).