Idiot's guide to ELEC4402 communication systems
This unit allows you to bring infinite physical notes (except books borrowed from the UWA library) to all tests and the final exam. You can't rely on what material they provide in the test/exam, it is very minimal to say the least. Hope this helps.
If you have issues or suggestions, raise them on GitHub . I accept pull requests for fixes or suggestions but the content must not be copyrighted under a non-GPL compatible license.
It is recommended to refer to use the PDF copy instead of whatever GitHub renders.
Notes are open-source and licensed under the GNU GPL-3.0. You must include the full-text of the license and follow its terms when using these notes or any diagrams in derivative works (but not when printing as notes)
Copyright (C) 2024 Peter Tanner
GPL copyright information
Copyright (C) 2024 Peter Tanner
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
Other advice for this unit
Get more exam papers on OneSearch
You can access up to 6 more papers with this method (You normally only get the previous year's paper on LMS in week 12).
Either search "Communications" and filter by type "Examination Papers"
Or search old unit codes
ELEC4301 Digital Communications and Networking
ENGT4301 Digital Communications and Networking
ELEC3302 Communications Systems
Note that ELEC5501 Advanced Communications is a different unit.
Listing of examination papers on OneSearch
Communications Systems ELEC3302 Examination paper [2008 Supplementary]
Communications Systems ELEC4402 Examination paper [2014 Semester 2]
Communications Systems ELEC3302 Examination paper [2014 Semester 2]
Communications Systems ELEC3302 Examination paper [2008 Semester 1]
Digital Communications and Networking ENGT4301 Examination paper [2005 Supplementary]
Digital Communications and Networking ELEC4301 Examination paper [2009 Supplementary]
Tests
A lot of the unit requires you to learn processes and apply them. This is quite time consuming to do during the semester and the marking of the tests will destroy your wam if you do not know the process (especially compared to signal processing and signals and systems), I do not recommend doing this unit during thesis year.
This formula sheet will attempt to condense all processes/formulas you may need in this unit.
You do not get given a formula sheet , so you are entirely dependent on your own notes (except for some exceptions, such as the erf ( x ) \text{erf}(x) erf ( x ) table). So bring good notes.
Doing this unit after signal processing is a good idea.
Printable notes begins on next page (in PDF)
Time Function
Fourier Transform
rect ( t T ) Π ( t T ) \text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right) rect ( T t ) Π ( T t )
T sinc ( f T ) T \text{sinc}(fT) T sinc ( f T )
sinc ( 2 W t ) \text{sinc}(2Wt) sinc ( 2 W t )
1 2 W rect ( f 2 W ) 1 2 W Π ( f 2 W ) \frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right) 2 W 1 rect ( 2 W f ) 2 W 1 Π ( 2 W f )
exp ( − a t ) u ( t ) , a > 0 \exp(-at)u(t),\quad a>0 exp ( − a t ) u ( t ) , a > 0
1 a + j 2 π f \frac{1}{a + j2\pi f} a + j 2 π f 1
exp ( − a ∣ t ∣ ) , a > 0 \exp(-a\lvert t \rvert),\quad a>0 exp ( − a ∣ t ∣) , a > 0
2 a a 2 + ( 2 π f ) 2 \frac{2a}{a^2 + (2\pi f)^2} a 2 + ( 2 π f ) 2 2 a
exp ( − π t 2 ) \exp(-\pi t^2) exp ( − π t 2 )
exp ( − π f 2 ) \exp(-\pi f^2) exp ( − π f 2 )
1 − ∣ t ∣ T , ∣ t ∣ < T 1 - \frac{\lvert t \rvert}{T},\quad\lvert t \rvert < T 1 − T ∣ t ∣ , ∣ t ∣ < T
T sinc 2 ( f T ) T \text{sinc}^2(fT) T sinc 2 ( f T )
δ ( t ) \delta(t) δ ( t )
1 1 1
1 1 1
δ ( f ) \delta(f) δ ( f )
δ ( t − t 0 ) \delta(t - t_0) δ ( t − t 0 )
exp ( − j 2 π f t 0 ) \exp(-j2\pi f t_0) exp ( − j 2 π f t 0 )
g ( t − a ) g(t-a) g ( t − a )
exp ( − j 2 π f a ) G ( f ) shift property \exp(-j2\pi fa)G(f)\quad\text{shift property} exp ( − j 2 π f a ) G ( f ) shift property
g ( b t ) g(bt) g ( b t )
G ( f / b ) ∣ b ∣ scaling property \frac{G(f/b)}{|b|}\quad\text{scaling property} ∣ b ∣ G ( f / b ) scaling property
g ( b t − a ) g(bt-a) g ( b t − a )
1 ∣ b ∣ exp ( − j 2 π a ( f / b ) ) ⋅ G ( f / b ) shift and scale \frac{1}{|b|}\exp(-j2\pi a(f/b))\cdot G(f/b)\quad\text{shift and scale} ∣ b ∣ 1 exp ( − j 2 πa ( f / b )) ⋅ G ( f / b ) shift and scale
d d t g ( t ) \frac{d}{dt}g(t) d t d g ( t )
j 2 π f G ( f ) differentiation property j2\pi fG(f)\quad\text{differentiation property} j 2 π f G ( f ) differentiation property
G ( t ) G(t) G ( t )
g ( − f ) duality property g(-f)\quad\text{duality property} g ( − f ) duality property
g ( t ) h ( t ) g(t)h(t) g ( t ) h ( t )
G ( f ) ∗ H ( f ) G(f)*H(f) G ( f ) ∗ H ( f )
g ( t ) ∗ h ( t ) g(t)*h(t) g ( t ) ∗ h ( t )
G ( f ) H ( f ) G(f)H(f) G ( f ) H ( f )
exp ( j 2 π f c t ) \exp(j2\pi f_c t) exp ( j 2 π f c t )
δ ( f − f c ) \delta(f - f_c) δ ( f − f c )
cos ( 2 π f c t ) \cos(2\pi f_c t) cos ( 2 π f c t )
1 2 [ δ ( f − f c ) + δ ( f + f c ) ] \frac{1}{2}[\delta(f - f_c) + \delta(f + f_c)] 2 1 [ δ ( f − f c ) + δ ( f + f c )]
sin ( 2 π f c t ) \sin(2\pi f_c t) sin ( 2 π f c t )
1 2 j [ δ ( f − f c ) − δ ( f + f c ) ] \frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)] 2 j 1 [ δ ( f − f c ) − δ ( f + f c )]
sgn ( t ) \text{sgn}(t) sgn ( t )
1 j π f \frac{1}{j\pi f} jπ f 1
1 π t \frac{1}{\pi t} π t 1
− j sgn ( f ) -j \text{sgn}(f) − j sgn ( f )
u ( t ) u(t) u ( t )
1 2 δ ( f ) + 1 j 2 π f \frac{1}{2} \delta(f) + \frac{1}{j2\pi f} 2 1 δ ( f ) + j 2 π f 1
∑ n = − ∞ ∞ δ ( t − n T 0 ) \sum_{n=-\infty}^{\infty} \delta(t - nT_0) ∑ n = − ∞ ∞ δ ( t − n T 0 )
1 T 0 ∑ n = − ∞ ∞ δ ( f − n T 0 ) = f 0 ∑ n = − ∞ ∞ δ ( f − n f 0 ) \frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)=f_0 \sum_{n=-\infty}^{\infty} \delta\left(f - n f_0\right) T 0 1 ∑ n = − ∞ ∞ δ ( f − T 0 n ) = f 0 ∑ n = − ∞ ∞ δ ( f − n f 0 )
u ( t ) = { 1 , t > 0 1 2 , t = 0 0 , t < 0 Unit Step Function sgn ( t ) = { + 1 , t > 0 0 , t = 0 − 1 , t < 0 Signum Function sinc ( 2 W t ) = sin ( 2 π W t ) 2 π W t sinc Function rect ( t ) = Π ( t ) = { 1 , − 0.5 < t < 0.5 0 , ∣ t ∣ > 0.5 Rectangular/Gate Function g ( t ) ∗ h ( t ) = ( g ∗ h ) ( t ) = ∫ ∞ ∞ g ( τ ) h ( t − τ ) d τ Convolution \begin{align*}
u(t) &= \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}&\text{Unit Step Function}\\
\text{sgn}(t) &= \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}&\text{Signum Function}\\
\text{sinc}(2Wt) &= \frac{\sin(2\pi W t)}{2\pi W t}&\text{sinc Function}\\
\text{rect}(t) = \Pi(t) &= \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & \lvert t \rvert > 0.5 \end{cases}&\text{Rectangular/Gate Function}\\
g(t)*h(t)=(g*h)(t)&=\int_\infty^\infty g(\tau)h(t-\tau)d\tau&\text{Convolution}\\
\end{align*}
u ( t ) sgn ( t ) sinc ( 2 W t ) rect ( t ) = Π ( t ) g ( t ) ∗ h ( t ) = ( g ∗ h ) ( t ) = ⎩ ⎨ ⎧ 1 , 2 1 , 0 , t > 0 t = 0 t < 0 = ⎩ ⎨ ⎧ + 1 , 0 , − 1 , t > 0 t = 0 t < 0 = 2 πW t sin ( 2 πW t ) = { 1 , 0 , − 0.5 < t < 0.5 ∣ t ∣ > 0.5 = ∫ ∞ ∞ g ( τ ) h ( t − τ ) d τ Unit Step Function Signum Function sinc Function Rectangular/Gate Function Convolution
Required for some questions on sampling :
Transform a continuous time-periodic signal x p ( t ) = ∑ n = − ∞ ∞ x ( t − n T s ) x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s) x p ( t ) = ∑ n = − ∞ ∞ x ( t − n T s ) with period T s T_s T s :
X p ( f ) = ∑ n = − ∞ ∞ C n δ ( f − n f s ) f s = 1 T s X_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
X p ( f ) = n = − ∞ ∑ ∞ C n δ ( f − n f s ) f s = T s 1
Calculate C n C_n C n coefficient as follows from x p ( t ) x_p(t) x p ( t ) :
C n = 1 T s ∫ T s x p ( t ) exp ( − j 2 π f s t ) d t = 1 T s X ( n f s ) (TODO: Check) x ( t − n T s ) is contained in the interval T s \begin{align*}
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
\end{align*}
C n = T s 1 ∫ T s x p ( t ) exp ( − j 2 π f s t ) d t = T s 1 X ( n f s ) (TODO: Check) x ( t − n T s ) is contained in the interval T s
rect \text{rect} rect function
Bessel function
∑ n ∈ Z J n 2 ( β ) = 1 J n ( β ) = ( − 1 ) n J − n ( β ) \begin{align*}
\sum_{n\in\mathbb{Z}}{J_n}^2(\beta)&=1\\
J_n(\beta)&=(-1)^nJ_{-n}(\beta)
\end{align*}
n ∈ Z ∑ J n 2 ( β ) J n ( β ) = 1 = ( − 1 ) n J − n ( β )
White noise
R W ( τ ) = N 0 2 δ ( τ ) = k T 2 δ ( τ ) = σ 2 δ ( τ ) G w ( f ) = N 0 2 N 0 = k T G y ( f ) = ∣ H ( f ) ∣ 2 G w ( f ) G y ( f ) = G ( f ) G w ( f ) \begin{align*}
R_W(\tau)&=\frac{N_0}{2}\delta(\tau)=\frac{kT}{2}\delta(\tau)=\sigma^2\delta(\tau)\\
G_w(f)&=\frac{N_0}{2}\\
N_0&=kT\\
G_y(f)&=|H(f)|^2G_w(f)\\
G_y(f)&=G(f)G_w(f)\\
\end{align*}
R W ( τ ) G w ( f ) N 0 G y ( f ) G y ( f ) = 2 N 0 δ ( τ ) = 2 k T δ ( τ ) = σ 2 δ ( τ ) = 2 N 0 = k T = ∣ H ( f ) ∣ 2 G w ( f ) = G ( f ) G w ( f )
WSS
μ X ( t ) = μ X Constant R X X ( t 1 , t 2 ) = R X ( t 1 − t 2 ) = R X ( τ ) E [ X ( t 1 ) X ( t 2 ) ] = E [ X ( t ) X ( t + τ ) ] \begin{align*}
\mu_X(t) &= \mu_X\text{ Constant}\\
R_{XX}(t_1,t_2)&=R_X(t_1-t_2)=R_X(\tau)\\
E[X(t_1)X(t_2)]&=E[X(t)X(t+\tau)]
\end{align*}
μ X ( t ) R XX ( t 1 , t 2 ) E [ X ( t 1 ) X ( t 2 )] = μ X Constant = R X ( t 1 − t 2 ) = R X ( τ ) = E [ X ( t ) X ( t + τ )]
Ergodicity
⟨ X ( t ) ⟩ T = 1 2 T ∫ − T T x ( t ) d t ⟨ X ( t + τ ) X ( t ) ⟩ T = 1 2 T ∫ − T T x ( t + τ ) x ( t ) d t E [ ⟨ X ( t ) ⟩ T ] = 1 2 T ∫ − T T x ( t ) d t = 1 2 T ∫ − T T m X d t = m X \begin{align*}
\braket{X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t)dt\\
\braket{X(t+\tau)X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t+\tau)x(t)dt\\
E[\braket{X(t)}_T]&=\frac{1}{2T}\int_{-T}^{T}x(t)dt=\frac{1}{2T}\int_{-T}^{T}m_Xdt=m_X\\
\end{align*}
⟨ X ( t ) ⟩ T ⟨ X ( t + τ ) X ( t ) ⟩ T E [ ⟨ X ( t ) ⟩ T ] = 2 T 1 ∫ − T T x ( t ) d t = 2 T 1 ∫ − T T x ( t + τ ) x ( t ) d t = 2 T 1 ∫ − T T x ( t ) d t = 2 T 1 ∫ − T T m X d t = m X
Type
Normal
Mean square sense
ergodic in mean
lim T → ∞ ⟨ X ( t ) ⟩ T = m X ( t ) = m X \lim_{T\to\infty}\braket{X(t)}_T=m_X(t)=m_X T → ∞ lim ⟨ X ( t ) ⟩ T = m X ( t ) = m X
lim T → ∞ VAR [ ⟨ X ( t ) ⟩ T ] = 0 \lim_{T\to\infty}\text{VAR}[\braket{X(t)}_T]=0 T → ∞ lim VAR [ ⟨ X ( t ) ⟩ T ] = 0
ergodic in autocorrelation function
lim T → ∞ ⟨ X ( t + τ ) X ( t ) ⟩ T = R X ( τ ) \lim_{T\to\infty}\braket{X(t+\tau)X(t)}_T=R_X(\tau) T → ∞ lim ⟨ X ( t + τ ) X ( t ) ⟩ T = R X ( τ )
lim T → ∞ VAR [ ⟨ X ( t + τ ) X ( t ) ⟩ T ] = 0 \lim_{T\to\infty}\text{VAR}[\braket{X(t+\tau)X(t)}_T]=0 T → ∞ lim VAR [ ⟨ X ( t + τ ) X ( t ) ⟩ T ] = 0
Note: A WSS random process needs to be both ergodic in mean and autocorrelation to be considered an ergodic process
Other identities
f ∗ ( g ∗ h ) = ( f ∗ g ) ∗ h Convolution associative a ( f ∗ g ) = ( a f ) ∗ g Convolution associative ∑ x = − ∞ ∞ ( f ( x a ) δ ( ω − x b ) ) = f ( ω a b ) \begin{align*}
f*(g*h) &=(f*g)*h\quad\text{Convolution associative}\\
a(f*g) &= (af)*g \quad\text{Convolution associative}\\
\sum_{x=-\infty}^\infty(f(x a)\delta(\omega-x b))&=f\left(\frac{\omega a}{b}\right)
\end{align*}
f ∗ ( g ∗ h ) a ( f ∗ g ) x = − ∞ ∑ ∞ ( f ( x a ) δ ( ω − x b )) = ( f ∗ g ) ∗ h Convolution associative = ( a f ) ∗ g Convolution associative = f ( b ωa )
Other trig
cos 2 θ = 2 cos 2 θ − 1 ⇔ cos 2 θ + 1 2 = cos 2 θ e − j α − e j α = − 2 j sin ( α ) e − j α + e j α = 2 cos ( α ) cos ( − A ) = cos ( A ) sin ( − A ) = − sin ( A ) sin ( A + π / 2 ) = cos ( A ) sin ( A − π / 2 ) = − cos ( A ) cos ( A − π / 2 ) = sin ( A ) cos ( A + π / 2 ) = − sin ( A ) ∫ x ∈ R sinc ( A x ) = 1 ∣ A ∣ \begin{align*}
\cos2\theta=2 \cos^2 \theta-1&\Leftrightarrow\frac{\cos2\theta+1}{2}=\cos^2\theta\\
e^{-j\alpha}-e^{j\alpha}&=-2j \sin(\alpha)\\
e^{-j\alpha}+e^{j\alpha}&=2 \cos(\alpha)\\
\cos(-A)&=\cos(A)\\
\sin(-A)&=-\sin(A)\\
\sin(A+\pi/2)&=\cos(A)\\
\sin(A-\pi/2)&=-\cos(A)\\
\cos(A-\pi/2)&=\sin(A)\\
\cos(A+\pi/2)&=-\sin(A)\\
\int_{x\in\mathbb{R}}\text{sinc}(A x) &= \frac{1}{|A|}\\
\end{align*}
cos 2 θ = 2 cos 2 θ − 1 e − j α − e j α e − j α + e j α cos ( − A ) sin ( − A ) sin ( A + π /2 ) sin ( A − π /2 ) cos ( A − π /2 ) cos ( A + π /2 ) ∫ x ∈ R sinc ( A x ) ⇔ 2 cos 2 θ + 1 = cos 2 θ = − 2 j sin ( α ) = 2 cos ( α ) = cos ( A ) = − sin ( A ) = cos ( A ) = − cos ( A ) = sin ( A ) = − sin ( A ) = ∣ A ∣ 1
cos ( A + B ) = cos ( A ) cos ( B ) − sin ( A ) sin ( B ) sin ( A + B ) = sin ( A ) cos ( B ) + cos ( A ) sin ( B ) cos ( A ) cos ( B ) = 1 2 ( cos ( A − B ) + cos ( A + B ) ) cos ( A ) sin ( B ) = 1 2 ( sin ( A + B ) − sin ( A − B ) ) sin ( A ) sin ( B ) = 1 2 ( cos ( A − B ) − cos ( A + B ) ) \begin{align*}
\cos(A+B) &= \cos (A) \cos (B)-\sin (A) \sin (B) \\
\sin(A+B) &= \sin (A) \cos (B)+\cos (A) \sin (B) \\
\cos(A)\cos(B) &= \frac{1}{2} (\cos (A-B)+\cos (A+B)) \\
\cos(A)\sin(B) &= \frac{1}{2} (\sin (A+B)-\sin (A-B)) \\
\sin(A)\sin(B) &= \frac{1}{2} (\cos (A-B)-\cos (A+B)) \\
\end{align*}
cos ( A + B ) sin ( A + B ) cos ( A ) cos ( B ) cos ( A ) sin ( B ) sin ( A ) sin ( B ) = cos ( A ) cos ( B ) − sin ( A ) sin ( B ) = sin ( A ) cos ( B ) + cos ( A ) sin ( B ) = 2 1 ( cos ( A − B ) + cos ( A + B )) = 2 1 ( sin ( A + B ) − sin ( A − B )) = 2 1 ( cos ( A − B ) − cos ( A + B ))
cos ( A ) + cos ( B ) = 2 cos ( A 2 − B 2 ) cos ( A 2 + B 2 ) cos ( A ) − cos ( B ) = − 2 sin ( A 2 − B 2 ) sin ( A 2 + B 2 ) sin ( A ) + sin ( B ) = 2 sin ( A 2 + B 2 ) cos ( A 2 − B 2 ) sin ( A ) − sin ( B ) = 2 sin ( A 2 − B 2 ) cos ( A 2 + B 2 ) cos ( A ) + sin ( B ) = − 2 sin ( A 2 − B 2 − π 4 ) sin ( A 2 + B 2 + π 4 ) cos ( A ) − sin ( B ) = − 2 sin ( A 2 + B 2 − π 4 ) sin ( A 2 − B 2 + π 4 ) \begin{align*}
\cos(A)+\cos(B) &= 2 \cos \left(\frac{A}{2}-\frac{B}{2}\right) \cos \left(\frac{A}{2}+\frac{B}{2}\right) \\
\cos(A)-\cos(B) &= -2 \sin \left(\frac{A}{2}-\frac{B}{2}\right) \sin \left(\frac{A}{2}+\frac{B}{2}\right) \\
\sin(A)+\sin(B) &= 2 \sin \left(\frac{A}{2}+\frac{B}{2}\right) \cos \left(\frac{A}{2}-\frac{B}{2}\right) \\
\sin(A)-\sin(B) &= 2 \sin \left(\frac{A}{2}-\frac{B}{2}\right) \cos \left(\frac{A}{2}+\frac{B}{2}\right) \\
\cos(A)+\sin(B)&= -2 \sin \left(\frac{A}{2}-\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}+\frac{B}{2}+\frac{\pi }{4}\right) \\
\cos(A)-\sin(B)&= -2 \sin \left(\frac{A}{2}+\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}-\frac{B}{2}+\frac{\pi }{4}\right) \\
\end{align*}
cos ( A ) + cos ( B ) cos ( A ) − cos ( B ) sin ( A ) + sin ( B ) sin ( A ) − sin ( B ) cos ( A ) + sin ( B ) cos ( A ) − sin ( B ) = 2 cos ( 2 A − 2 B ) cos ( 2 A + 2 B ) = − 2 sin ( 2 A − 2 B ) sin ( 2 A + 2 B ) = 2 sin ( 2 A + 2 B ) cos ( 2 A − 2 B ) = 2 sin ( 2 A − 2 B ) cos ( 2 A + 2 B ) = − 2 sin ( 2 A − 2 B − 4 π ) sin ( 2 A + 2 B + 4 π ) = − 2 sin ( 2 A + 2 B − 4 π ) sin ( 2 A − 2 B + 4 π )
IQ/Complex envelope
Def. g ~ ( t ) = g I ( t ) + j g Q ( t ) \tilde{g}(t)=g_I(t)+jg_Q(t) g ~ ( t ) = g I ( t ) + j g Q ( t ) as the complex envelope. Best to convert to e j θ e^{j\theta} e j θ form.
Convert complex envelope representation to time-domain representation of signal
g ( t ) = g I ( t ) cos ( 2 π f c t ) − g Q ( t ) sin ( 2 π f c t ) = Re [ g ~ ( t ) exp ( j 2 π f c t ) ] = A ( t ) cos ( 2 π f c t + ϕ ( t ) ) A ( t ) = ∣ g ( t ) ∣ = g I 2 ( t ) + g Q 2 ( t ) Amplitude ϕ ( t ) Phase g I ( t ) = A ( t ) cos ( ϕ ( t ) ) In-phase component g Q ( t ) = A ( t ) sin ( ϕ ( t ) ) Quadrature-phase component \begin{align*}
g(t)&=g_I(t)\cos(2\pi f_c t)-g_Q(t)\sin(2\pi f_c t)\\
&=\text{Re}[\tilde{g}(t)\exp{(j2\pi f_c t)}]\\
&=A(t)\cos(2\pi f_c t+\phi(t))\\
A(t)&=|g(t)|=\sqrt{g_I^2(t)+g_Q^2(t)}\quad\text{Amplitude}\\
\phi(t)&\quad\text{Phase}\\
g_I(t)&=A(t)\cos(\phi(t))\quad\text{In-phase component}\\
g_Q(t)&=A(t)\sin(\phi(t))\quad\text{Quadrature-phase component}\\
\end{align*}
g ( t ) A ( t ) ϕ ( t ) g I ( t ) g Q ( t ) = g I ( t ) cos ( 2 π f c t ) − g Q ( t ) sin ( 2 π f c t ) = Re [ g ~ ( t ) exp ( j 2 π f c t ) ] = A ( t ) cos ( 2 π f c t + ϕ ( t )) = ∣ g ( t ) ∣ = g I 2 ( t ) + g Q 2 ( t ) Amplitude Phase = A ( t ) cos ( ϕ ( t )) In-phase component = A ( t ) sin ( ϕ ( t )) Quadrature-phase component
For transfer function
h ( t ) = h I ( t ) cos ( 2 π f c t ) − h Q ( t ) sin ( 2 π f c t ) = 2 Re [ h ~ ( t ) exp ( j 2 π f c t ) ] ⇒ h ~ ( t ) = h I ( t ) / 2 + j h Q ( t ) / 2 = A ( t ) / 2 exp ( j ϕ ( t ) ) \begin{align*}
h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
&=2\text{Re}[\tilde{h}(t)\exp{(j2\pi f_c t)}]\\
\Rightarrow\tilde{h}(t)&=h_I(t)/2+jh_Q(t)/2=A(t)/2\exp{(j\phi(t))}
\end{align*}
h ( t ) ⇒ h ~ ( t ) = h I ( t ) cos ( 2 π f c t ) − h Q ( t ) sin ( 2 π f c t ) = 2 Re [ h ~ ( t ) exp ( j 2 π f c t ) ] = h I ( t ) /2 + j h Q ( t ) /2 = A ( t ) /2 exp ( j ϕ ( t ))
AM
CAM
m a = min t ∣ k a m ( t ) ∣ A c k a is the amplitude sensitivity ( volt − 1 ), m a is the modulation index. m a = A max − A min A max + A min (Symmetrical m ( t ) ) m a = k a A m (Symmetrical m ( t ) ) x ( t ) = A c cos ( 2 π f c t ) [ 1 + k a m ( t ) ] = A c cos ( 2 π f c t ) [ 1 + m a m ( t ) / A c ] , where m ( t ) = A m m ^ ( t ) and m ^ ( t ) is the normalized modulating signal P c = A c 2 2 Carrier power P x = 1 4 m a 2 A c 2 η = Signal Power Total Power = P x P x + P c B T = 2 f m = 2 B \begin{align*}
m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right], \\
&\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
P_c &=\frac{ {A_c}^2}{2}\quad\text{Carrier power}\\
P_x &=\frac{1}{4}{m_a}^2{A_c}^2\\
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_x}{P_x+P_c}\\
B_T&=2f_m=2B
\end{align*}
m a m a m a x ( t ) P c P x η B T = A c min t ∣ k a m ( t ) ∣ k a is the amplitude sensitivity ( volt − 1 ), m a is the modulation index. = A max + A min A max − A min (Symmetrical m ( t ) ) = k a A m (Symmetrical m ( t ) ) = A c cos ( 2 π f c t ) [ 1 + k a m ( t ) ] = A c cos ( 2 π f c t ) [ 1 + m a m ( t ) / A c ] , where m ( t ) = A m m ^ ( t ) and m ^ ( t ) is the normalized modulating signal = 2 A c 2 Carrier power = 4 1 m a 2 A c 2 = Total Power Signal Power = P x + P c P x = 2 f m = 2 B
B T B_T B T : Signal bandwidth
B B B : Bandwidth of modulating wave
Overmodulation (resulting in phase reversals at crossing points): m a > 1 m_a>1 m a > 1
DSB-SC
x DSB ( t ) = A c cos ( 2 π f c t ) m ( t ) B T = 2 f m = 2 B \begin{align*}
x_\text{DSB}(t) &= A_c \cos{(2\pi f_c t)} m(t)\\
B_T&=2f_m=2B
\end{align*}
x DSB ( t ) B T = A c cos ( 2 π f c t ) m ( t ) = 2 f m = 2 B
FM/PM
s ( t ) = A c cos [ 2 π f c t + k p m ( t ) ] Phase modulated (PM) s ( t ) = A c cos [ 2 π f c t + 2 π k f ∫ 0 t m ( τ ) d τ ] Frequency modulated (FM) s ( t ) = A c cos [ 2 π f c t + β sin ( 2 π f m t ) ] FM single tone β = Δ f f m = k f A m Modulation index Δ f = β f m = k f A m f m = max t ( k f m ( t ) ) − min t ( k f m ( t ) ) Maximum frequency deviation D = Δ f W m Deviation ratio, where W m is bandwidth of m ( t ) (Use FT) \begin{align*}
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
s(t) &= A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_0^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
\beta&=\frac{\Delta f}{f_m}=k_f A_m\quad\text{Modulation index}\\
\Delta f&=\beta f_m=k_f A_m f_m = \max_t(k_f m(t))- \min_t(k_f m(t))\quad\text{Maximum frequency deviation}\\
D&=\frac{\Delta f}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}
\end{align*}
s ( t ) s ( t ) s ( t ) β Δ f D = A c cos [ 2 π f c t + k p m ( t ) ] Phase modulated (PM) = A c cos [ 2 π f c t + 2 π k f ∫ 0 t m ( τ ) d τ ] Frequency modulated (FM) = A c cos [ 2 π f c t + β sin ( 2 π f m t ) ] FM single tone = f m Δ f = k f A m Modulation index = β f m = k f A m f m = t max ( k f m ( t )) − t min ( k f m ( t )) Maximum frequency deviation = W m Δ f Deviation ratio, where W m is bandwidth of m ( t ) (Use FT)
s ( t ) = A c cos [ 2 π f c t + β sin ( 2 π f m t ) ] ⇔ s ( t ) = A c ∑ n = − ∞ ∞ J n ( β ) cos [ 2 π ( f c + n f m ) t ] \begin{align*}
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right] \Leftrightarrow s(t)= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\cos[2\pi(f_c+nf_m)t]
\end{align*}
s ( t ) = A c cos [ 2 π f c t + β sin ( 2 π f m t ) ] ⇔ s ( t ) = A c n = − ∞ ∑ ∞ J n ( β ) cos [ 2 π ( f c + n f m ) t ]
FM signal power
P av = A c 2 2 P band_index = A c 2 J band_index 2 ( β ) 2 band_index = 0 ⟹ f c + 0 f m band_index = 1 ⟹ f c + 1 f m , … \begin{align*}
P_\text{av}&=\frac{ {A_c}^2}{2}\\
P_\text{band\_index}&=\frac{ {A_c}^2{J_\text{band\_index}}^2(\beta)}{2}\\
\text{band\_index}&=0\implies f_c+0f_m\\
\text{band\_index}&=1\implies f_c+1f_m,\dots\\
\end{align*}
P av P band_index band_index band_index = 2 A c 2 = 2 A c 2 J band_index 2 ( β ) = 0 ⟹ f c + 0 f m = 1 ⟹ f c + 1 f m , …
Carson's rule to find B B B (98% power bandwidth rule)
B = 2 M f m = 2 ( β + 1 ) f m = 2 ( Δ f + f m ) = 2 ( k f A m + f m ) = 2 ( D + 1 ) W m B = { 2 ( Δ f + f m ) FM, sinusoidal message 2 ( Δ ϕ + 1 ) f m PM, sinusoidal message \begin{align*}
B &= 2Mf_m = 2(\beta + 1)f_m\\
&= 2(\Delta f+f_m)\\
&= 2(k_f A_m+f_m)\\
&= 2(D+1)W_m\\
B &= \begin{cases}
2(\Delta f+f_m) & \text{FM, sinusoidal message}\\
2(\Delta\phi + 1)f_m & \text{PM, sinusoidal message}
\end{cases}\\
\end{align*}
B B = 2 M f m = 2 ( β + 1 ) f m = 2 ( Δ f + f m ) = 2 ( k f A m + f m ) = 2 ( D + 1 ) W m = { 2 ( Δ f + f m ) 2 ( Δ ϕ + 1 ) f m FM, sinusoidal message PM, sinusoidal message
Δ f \Delta f Δ f of arbitrary modulating signal
Find instantaneous frequency f FM f_\text{FM} f FM .
M M M : Number of pairs of significant sidebands
s ( t ) = A c cos ( θ FM ( t ) ) f FM ( t ) = 1 2 π d θ FM ( t ) d t A m = max t ∣ m ( t ) ∣ Δ f = max t ( f FM ( t ) ) − f c W m = max ( frequencies in θ FM ( t ) ... ) Example: sinc ( A t + t ) + 2 cos ( 2 π t ) = sin ( 2 π ( ( A t + t ) / 2 ) ) π ( A t + t ) + 2 cos ( 2 π t ) → W m = max ( A + 1 2 , 1 ) D = Δ f W m B T = 2 ( D + 1 ) W m \begin{align*}
s(t)&=A_c\cos(\theta_\text{FM}(t))\\
f_\text{FM}(t) &= \frac{1}{2\pi}\frac{d\theta_\text{FM}(t)}{dt}\\
A_m &= \max_t|m(t)|\\
\Delta f &= \max_t(f_\text{FM}(t)) - f_c\\
W_m &= \text{max}(\text{frequencies in $\theta_\text{FM}(t)$...}) \\
\text{Example: }&\text{sinc}(At+t)+2\cos(2\pi t)=\frac{\sin(2\pi((At+t)/2))}{\pi(At+t)}+2\cos(2\pi t)\to W_m=\max\left(\frac{A+1}{2},1\right)\\
D &= \frac{\Delta f}{W_m}\\
B_T &= 2(D+1)W_m
\end{align*}
s ( t ) f FM ( t ) A m Δ f W m Example: D B T = A c cos ( θ FM ( t )) = 2 π 1 d t d θ FM ( t ) = t max ∣ m ( t ) ∣ = t max ( f FM ( t )) − f c = max ( frequencies in θ FM ( t ) ... ) sinc ( A t + t ) + 2 cos ( 2 π t ) = π ( A t + t ) sin ( 2 π (( A t + t ) /2 )) + 2 cos ( 2 π t ) → W m = max ( 2 A + 1 , 1 ) = W m Δ f = 2 ( D + 1 ) W m
Complex envelope
s ( t ) = A c cos ( 2 π f c t + β sin ( 2 π f m t ) ) ⇔ s ~ ( t ) = A c exp ( j β sin ( 2 π f m t ) ) s ( t ) = Re [ s ~ ( t ) exp ( j 2 π f c t ) ] s ~ ( t ) = A c ∑ n = − ∞ ∞ J n ( β ) exp ( j 2 π f m t ) \begin{align*}
s(t)&=A_c\cos(2\pi f_c t+\beta\sin(2\pi f_m t)) \Leftrightarrow \tilde{s}(t) = A_c\exp(j\beta\sin(2\pi f_m t))\\
s(t)&=\text{Re}[\tilde{s}(t)\exp{(j2\pi f_c t)}]\\
\tilde{s}(t) &= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\exp(j2\pi f_m t)
\end{align*}
s ( t ) s ( t ) s ~ ( t ) = A c cos ( 2 π f c t + β sin ( 2 π f m t )) ⇔ s ~ ( t ) = A c exp ( j β sin ( 2 π f m t )) = Re [ s ~ ( t ) exp ( j 2 π f c t ) ] = A c n = − ∞ ∑ ∞ J n ( β ) exp ( j 2 π f m t )
Band
Narrowband
Wideband
D < 1 , β < 1 D<1,\beta<1 D < 1 , β < 1
D > 1 , β > 1 D>1,\beta>1 D > 1 , β > 1
Power, energy and autocorrelation
G WGN ( f ) = N 0 2 G x ( f ) = ∣ H ( f ) ∣ 2 G w ( f ) (PSD) G x ( f ) = G ( f ) G w ( f ) (PSD) G x ( f ) = lim T → ∞ ∣ X T ( f ) ∣ 2 T (PSD) G x ( f ) = F [ R x ( τ ) ] (WSS) P = σ 2 = ∫ R G x ( f ) d f P = σ 2 = lim t → ∞ 1 T ∫ − T / 2 T / 2 ∣ x ( t ) ∣ 2 d t P [ A cos ( 2 π f t + ϕ ) ] = A 2 2 Power of sinusoid E = ∫ − ∞ ∞ ∣ x ( t ) ∣ 2 d t = ∣ X ( f ) ∣ 2 R x ( τ ) = F ( G x ( f ) ) PSD to Autocorrelation \begin{align*}
G_\text{WGN}(f)&=\frac{N_0}{2}\\
G_x(f)&=|H(f)|^2G_w(f)\text{ (PSD)}\\
G_x(f)&=G(f)G_w(f)\text{ (PSD)}\\
G_x(f)&=\lim_{T\to\infty}\frac{|X_T(f)|^2}{T}\text{ (PSD)}\\
G_x(f)&=\mathfrak{F}[R_x(\tau)]\text{ (WSS)}\\
P&=\sigma^2=\int_\mathbb{R}G_x(f)df\\
P&=\sigma^2=\lim_{t\to\infty}\frac{1}{T}\int_{-T/2}^{T/2}|x(t)|^2dt\\
P[A\cos(2\pi f t+\phi)]&=\frac{A^2}{2}\quad\text{Power of sinusoid }\\
E&=\int_{-\infty}^{\infty}|x(t)|^2dt=|X(f)|^2\\
R_x(\tau) &= \mathfrak{F}(G_x(f))\quad\text{PSD to Autocorrelation}
\end{align*}
G WGN ( f ) G x ( f ) G x ( f ) G x ( f ) G x ( f ) P P P [ A cos ( 2 π f t + ϕ )] E R x ( τ ) = 2 N 0 = ∣ H ( f ) ∣ 2 G w ( f ) (PSD) = G ( f ) G w ( f ) (PSD) = T → ∞ lim T ∣ X T ( f ) ∣ 2 (PSD) = F [ R x ( τ )] (WSS) = σ 2 = ∫ R G x ( f ) df = σ 2 = t → ∞ lim T 1 ∫ − T /2 T /2 ∣ x ( t ) ∣ 2 d t = 2 A 2 Power of sinusoid = ∫ − ∞ ∞ ∣ x ( t ) ∣ 2 d t = ∣ X ( f ) ∣ 2 = F ( G x ( f )) PSD to Autocorrelation
CNR in = P in P noise CNR in,FM = A 2 2 W N 0 SNR FM = 3 A 2 k f 2 P 2 N 0 W 3 SNR(dB) = 10 log 10 ( SNR ) Decibels from ratio \begin{align*}
\text{CNR}_\text{in} &= \frac{P_\text{in}}{P_\text{noise}}\\
\text{CNR}_\text{in,FM} &= \frac{A^2}{2WN_0}\\
\text{SNR}_\text{FM} &= \frac{3A^2k_f^2P}{2N_0W^3}\\
\text{SNR(dB)} &= 10\log_{10}(\text{SNR}) \quad\text{Decibels from ratio}
\end{align*}
CNR in CNR in,FM SNR FM SNR(dB) = P noise P in = 2 W N 0 A 2 = 2 N 0 W 3 3 A 2 k f 2 P = 10 log 10 ( SNR ) Decibels from ratio
Sampling
t = n T s T s = 1 f s x s ( t ) = x ( t ) δ s ( t ) = x ( t ) ∑ n ∈ Z δ ( t − n T s ) = ∑ n ∈ Z x ( n T s ) δ ( t − n T s ) X s ( f ) = X ( f ) ∗ ∑ n ∈ Z δ ( f − n T s ) = X ( f ) ∗ ∑ n ∈ Z δ ( f − n f s ) B > 1 2 f s , 2 B > f s → Aliasing \begin{align*}
t&=nT_s\\
T_s&=\frac{1}{f_s}\\
x_s(t)&=x(t)\delta_s(t)=x(t)\sum_{n\in\mathbb{Z}}\delta(t-nT_s)=\sum_{n\in\mathbb{Z}}x(nT_s)\delta(t-nT_s)\\
X_s(f)&=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
B&>\frac{1}{2}f_s, 2B>f_s\rightarrow\text{Aliasing}\\
\end{align*}
t T s x s ( t ) X s ( f ) B = n T s = f s 1 = x ( t ) δ s ( t ) = x ( t ) n ∈ Z ∑ δ ( t − n T s ) = n ∈ Z ∑ x ( n T s ) δ ( t − n T s ) = X ( f ) ∗ n ∈ Z ∑ δ ( f − T s n ) = X ( f ) ∗ n ∈ Z ∑ δ ( f − n f s ) > 2 1 f s , 2 B > f s → Aliasing
Procedure to reconstruct sampled signal
Analog signal x ′ ( t ) x'(t) x ′ ( t ) which can be reconstructed from a sampled signal x s ( t ) x_s(t) x s ( t ) : Put x s ( t ) x_s(t) x s ( t ) through LPF with maximum frequency of f s / 2 f_s/2 f s /2 and minimum frequency of − f s / 2 -f_s/2 − f s /2 . Anything outside of the BPF will be attenuated, therefore n n n which results in frequencies outside the BPF will evaluate to 0 0 0 and can be ignored.
Example: f s = 5000 ⟹ LPF ∈ [ − 2500 , 2500 ] f_s=5000\implies \text{LPF}\in[-2500,2500] f s = 5000 ⟹ LPF ∈ [ − 2500 , 2500 ]
Then iterate for n = 0 , 1 , − 1 , 2 , − 2 , … n=0,1,-1,2,-2,\dots n = 0 , 1 , − 1 , 2 , − 2 , … until the first iteration where the result is 0 since all terms are eliminated by the LPF.
TODO: Add example
Then add all terms and transform X ˉ s ( f ) \bar X_s(f) X ˉ s ( f ) back to time domain to get x s ( t ) x_s(t) x s ( t )
Required for some questions on sampling :
Transform a continuous time-periodic signal x p ( t ) = ∑ n = − ∞ ∞ x ( t − n T s ) x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s) x p ( t ) = ∑ n = − ∞ ∞ x ( t − n T s ) with period T s T_s T s :
X p ( f ) = ∑ n = − ∞ ∞ C n δ ( f − n f s ) f s = 1 T s X_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
X p ( f ) = n = − ∞ ∑ ∞ C n δ ( f − n f s ) f s = T s 1
Calculate C n C_n C n coefficient as follows from x p ( t ) x_p(t) x p ( t ) :
C n = 1 T s ∫ T s x p ( t ) exp ( − j 2 π f s t ) d t = 1 T s X ( n f s ) (TODO: Check) x ( t − n T s ) is contained in the interval T s \begin{align*}
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
\end{align*}
C n = T s 1 ∫ T s x p ( t ) exp ( − j 2 π f s t ) d t = T s 1 X ( n f s ) (TODO: Check) x ( t − n T s ) is contained in the interval T s
Nyquist criterion for zero-ISI
Do not transmit more than 2 B 2B 2 B samples per second over a channel of B B B bandwidth.
Cannot add directly due to copyright!
Quantizer
Δ = x Max − x Min 2 k for k -bit quantizer (V/lsb) \begin{align*}
\Delta &= \frac{x_\text{Max}-x_\text{Min}}{2^k} \quad\text{for $k$-bit quantizer (V/lsb)}\\
\end{align*}
Δ = 2 k x Max − x Min for k -bit quantizer (V/lsb)
Quantization noise
e : = y − x Quantization error μ E = E [ E ] = 0 Zero mean σ E 2 = E [ E 2 ] − 0 2 = ∫ − Δ / 2 Δ / 2 e 2 × ( 1 Δ ) d e Where E ∼ 1 / Δ uniform over ( − Δ / 2 , Δ / 2 ) SQNR = Signal power Quantization noise SQNR(dB) = 10 log 10 ( SQNR ) \begin{align*}
e &:= y-x\quad\text{Quantization error}\\
\mu_E &= E[E] = 0\quad\text{Zero mean}\\
{\sigma_E}^2&=E[E^2]-0^2=\int_{-\Delta/2}^{\Delta/2}e^2\times\left(\frac{1}{\Delta}\right) de\quad\text{Where $E\thicksim 1/\Delta$ uniform over $(-\Delta/2,\Delta/2)$}\\
\text{SQNR}&=\frac{\text{Signal power}}{\text{Quantization noise}}\\
\text{SQNR(dB)}&=10\log_{10}(\text{SQNR})
\end{align*}
e μ E σ E 2 SQNR SQNR(dB) := y − x Quantization error = E [ E ] = 0 Zero mean = E [ E 2 ] − 0 2 = ∫ − Δ/2 Δ/2 e 2 × ( Δ 1 ) d e Where E ∼ 1/Δ uniform over ( − Δ/2 , Δ/2 ) = Quantization noise Signal power = 10 log 10 ( SQNR )
Cannot add directly due to copyright!
Line codes
R b → Bit rate D → Symbol rate | R d | 1 / T b A → m a V ( f ) → Pulse shape V rectangle ( f ) = T sinc ( f T × DutyCycle ) G MunipolarNRZ ( f ) = ( M 2 − 1 ) A 2 D 12 ∣ V ( f ) ∣ 2 + ( M − 1 ) 2 4 ( D A ) 2 ∑ l = − ∞ ∞ ∣ V ( l D ) ∣ 2 δ ( f − l D ) G MpolarNRZ ( f ) = ( M 2 − 1 ) A 2 D 3 ∣ V ( f ) ∣ 2 G unipolarNRZ ( f ) = A 2 4 R b ( sinc 2 ( f R b ) + R b δ ( f ) ) , NB 0 = R b G polarNRZ ( f ) = A 2 R b sinc 2 ( f R b ) G unipolarNRZ ( f ) = A 2 4 R b ( sinc 2 ( f R b ) + R b δ ( f ) ) G unipolarRZ ( f ) = A 2 16 ( ∑ l = − ∞ ∞ δ ( f − l T b ) ∣ sinc ( duty × l ) ∣ 2 + T b ∣ sinc ( duty × f T b ) ∣ 2 ) , NB 0 = 2 R b \begin{align*}
R_b&\rightarrow\text{Bit rate}\\
D&\rightarrow\text{Symbol rate | }R_d\text{ | }1/T_b\\
A&\rightarrow m_a\\
V(f)&\rightarrow\text{Pulse shape}\\
V_\text{rectangle}(f)&=T\text{sinc}(fT\times\text{DutyCycle})\\
G_\text{MunipolarNRZ}(f)&=\frac{(M^2-1)A^2D}{12}|V(f)|^2+\frac{(M-1)^2}{4}(DA)^2\sum_{l=-\infty}^{\infty}|V(lD)|^2\delta(f-lD)\\
G_\text{MpolarNRZ}(f)&=\frac{(M^2-1)A^2D}{3}|V(f)|^2\\
G_\text{unipolarNRZ}(f)&=\frac{A^2}{4R_b}\left(\text{sinc}^2\left(\frac{f}{R_b}\right)+R_b\delta(f)\right), \text{NB}_0=R_b\\
G_\text{polarNRZ}(f)&=\frac{A^2}{R_b}\text{sinc}^2\left(\frac{f}{R_b}\right)\\
G_\text{unipolarNRZ}(f)&=\frac{A^2}{4R_b}\left(\text{sinc}^2\left(\frac{f}{R_b}\right)+R_b\delta(f)\right)\\
G_\text{unipolarRZ}(f)&=\frac{A^2}{16} \left(\sum _{l=-\infty }^{\infty } \delta \left(f-\frac{l}{T_b}\right) \left| \text{sinc}(\text{duty} \times l) \right| {}^2+T_b \left| \text{sinc}\left(\text{duty} \times f T_b\right) \right| {}^2\right), \text{NB}_0=2R_b
\end{align*}
R b D A V ( f ) V rectangle ( f ) G MunipolarNRZ ( f ) G MpolarNRZ ( f ) G unipolarNRZ ( f ) G polarNRZ ( f ) G unipolarNRZ ( f ) G unipolarRZ ( f ) → Bit rate → Symbol rate | R d | 1/ T b → m a → Pulse shape = T sinc ( f T × DutyCycle ) = 12 ( M 2 − 1 ) A 2 D ∣ V ( f ) ∣ 2 + 4 ( M − 1 ) 2 ( D A ) 2 l = − ∞ ∑ ∞ ∣ V ( l D ) ∣ 2 δ ( f − l D ) = 3 ( M 2 − 1 ) A 2 D ∣ V ( f ) ∣ 2 = 4 R b A 2 ( sinc 2 ( R b f ) + R b δ ( f ) ) , NB 0 = R b = R b A 2 sinc 2 ( R b f ) = 4 R b A 2 ( sinc 2 ( R b f ) + R b δ ( f ) ) = 16 A 2 ( l = − ∞ ∑ ∞ δ ( f − T b l ) ∣ sinc ( duty × l ) ∣ 2 + T b ∣ sinc ( duty × f T b ) ∣ 2 ) , NB 0 = 2 R b
Modulation and basis functions
BASK
Basis functions
φ 1 ( t ) = 2 T b cos ( 2 π f c t ) 0 ≤ t ≤ T b \begin{align*}
\varphi_1(t) &= \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t)\quad0\leq t\leq T_b\\
\end{align*}
φ 1 ( t ) = T b 2 cos ( 2 π f c t ) 0 ≤ t ≤ T b
Symbol mapping
b n : { 1 , 0 } → a n : { 1 , 0 } b_n:\{1,0\}\to a_n:\{1,0\}
b n : { 1 , 0 } → a n : { 1 , 0 }
s 1 ( t ) = A c T b 2 φ 1 ( t ) = 2 E b φ 1 ( t ) s 1 ( t ) = 0 Since E b = E average = 1 2 ( A c 2 2 × T b + 0 ) = A c 2 4 T b \begin{align*}
s_1(t)&=A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=\sqrt{2E_b}\varphi_1(t)\\
s_1(t)&=0\\
&\text{Since $E_b=E_\text{average}=\frac{1}{2}(\frac{ {A_c}^2}{2}\times T_b + 0)=\frac{ {A_c}^2}{4}T_b$}
\end{align*}
s 1 ( t ) s 1 ( t ) = A c 2 T b φ 1 ( t ) = 2 E b φ 1 ( t ) = 0 Since E b = E average = 2 1 ( 2 A c 2 × T b + 0 ) = 4 A c 2 T b
Distance is d = 2 E b d=\sqrt{2E_b} d = 2 E b
BPSK
Basis functions
φ 1 ( t ) = 2 T b cos ( 2 π f c t ) 0 ≤ t ≤ T b \begin{align*}
\varphi_1(t) &= \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t)\quad0\leq t\leq T_b\\
\end{align*}
φ 1 ( t ) = T b 2 cos ( 2 π f c t ) 0 ≤ t ≤ T b
Symbol mapping
b n : { 1 , 0 } → a n : { 1 , − 1 } b_n:\{1,0\}\to a_n:\{1,\color{green}-1\color{white}\}
b n : { 1 , 0 } → a n : { 1 , − 1 }
s 1 ( t ) = A c T b 2 φ 1 ( t ) = E b φ 1 ( t ) s 1 ( t ) = − A c T b 2 φ 1 ( t ) = − E b φ 2 ( t ) Since E b = E average = 1 2 ( A c 2 2 × T b + A c 2 2 × T b ) = A c 2 2 T b \begin{align*}
s_1(t)&=A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=\sqrt{E_b}\varphi_1(t)\\
s_1(t)&=-A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=-\sqrt{E_b}\varphi_2(t)\\
&\text{Since $E_b=E_\text{average}=\frac{1}{2}(\frac{ {A_c}^2}{2}\times T_b + \frac{ {A_c}^2}{2}\times T_b)=\frac{ {A_c}^2}{2}T_b$}
\end{align*}
s 1 ( t ) s 1 ( t ) = A c 2 T b φ 1 ( t ) = E b φ 1 ( t ) = − A c 2 T b φ 1 ( t ) = − E b φ 2 ( t ) Since E b = E average = 2 1 ( 2 A c 2 × T b + 2 A c 2 × T b ) = 2 A c 2 T b
Distance is d = 2 E b d=2\sqrt{E_b} d = 2 E b
QPSK (M = 4 M=4 M = 4 PSK)
Basis functions
T = 2 T b Time per symbol for two bits T b φ 1 ( t ) = 2 T cos ( 2 π f c t ) 0 ≤ t ≤ T φ 2 ( t ) = 2 T sin ( 2 π f c t ) 0 ≤ t ≤ T \begin{align*}
T &= 2 T_b\quad\text{Time per symbol for two bits $T_b$}\\
\varphi_1(t) &= \sqrt{\frac{2}{T}}\cos(2\pi f_c t)\quad0\leq t\leq T\\
\varphi_2(t) &= \sqrt{\frac{2}{T}}\sin(2\pi f_c t)\quad0\leq t\leq T\\
\end{align*}
T φ 1 ( t ) φ 2 ( t ) = 2 T b Time per symbol for two bits T b = T 2 cos ( 2 π f c t ) 0 ≤ t ≤ T = T 2 sin ( 2 π f c t ) 0 ≤ t ≤ T
s 1 ( t ) = E s / 2 [ φ 1 ( t ) + φ 2 ( t ) ] s 2 ( t ) = E s / 2 [ φ 1 ( t ) − φ 2 ( t ) ] s 3 ( t ) = E s / 2 [ − φ 1 ( t ) + φ 2 ( t ) ] s 4 ( t ) = E s / 2 [ − φ 1 ( t ) − φ 2 ( t ) ] \begin{align*}
s_1(t)&=\sqrt{E_s/2}\left[\varphi_1(t)+\varphi_2(t)\right]\\
s_2(t)&=\sqrt{E_s/2}\left[\varphi_1(t)-\varphi_2(t)\right]\\
s_3(t)&=\sqrt{E_s/2}\left[-\varphi_1(t)+\varphi_2(t)\right]\\
s_4(t)&=\sqrt{E_s/2}\left[-\varphi_1(t)-\varphi_2(t)\right]\\
\end{align*}
s 1 ( t ) s 2 ( t ) s 3 ( t ) s 4 ( t ) = E s /2 [ φ 1 ( t ) + φ 2 ( t ) ] = E s /2 [ φ 1 ( t ) − φ 2 ( t ) ] = E s /2 [ − φ 1 ( t ) + φ 2 ( t ) ] = E s /2 [ − φ 1 ( t ) − φ 2 ( t ) ]
Note on energy per symbol: Since ∣ s i ( t ) ∣ = A c |s_i(t)|=A_c ∣ s i ( t ) ∣ = A c , have to normalize distance as follows:
s i ( t ) = A c T / 2 / 2 × [ α 1 i φ 1 ( t ) + α 2 i φ 2 ( t ) ] = T A c 2 / 4 [ α 1 i φ 1 ( t ) + α 2 i φ 2 ( t ) ] = E s / 2 [ α 1 i φ 1 ( t ) + α 2 i φ 2 ( t ) ] \begin{align*}
s_i(t)&=A_c\sqrt{T/2}/\sqrt{2}\times\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
&=\sqrt{T{A_c}^2/4}\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
&=\sqrt{E_s/2}\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
\end{align*}
s i ( t ) = A c T /2 / 2 × [ α 1 i φ 1 ( t ) + α 2 i φ 2 ( t ) ] = T A c 2 /4 [ α 1 i φ 1 ( t ) + α 2 i φ 2 ( t ) ] = E s /2 [ α 1 i φ 1 ( t ) + α 2 i φ 2 ( t ) ]
Signal
Symbol mapping: { 1 , 0 } → { 1 , − 1 } I ( t ) = b 2 n φ 1 ( t ) Even bits Q ( t ) = b 2 n + 1 φ 2 ( t ) Odd bits x ( t ) = A c [ I ( t ) cos ( 2 π f c t ) − Q ( t ) sin ( 2 π f c t ) ] \begin{align*}
\text{Symbol mapping: }& \left\{1,0\right\}\to\left\{1,-1\right\}\\
I(t) &= b_{2n}\varphi_1(t)\quad\text{Even bits}\\
Q(t) &= b_{2n+1}\varphi_2(t)\quad\text{Odd bits}\\
x(t) &= A_c[I(t)\cos(2\pi f_c t)-Q(t)\sin(2\pi f_c t)]
\end{align*}
Symbol mapping: I ( t ) Q ( t ) x ( t ) { 1 , 0 } → { 1 , − 1 } = b 2 n φ 1 ( t ) Even bits = b 2 n + 1 φ 2 ( t ) Odd bits = A c [ I ( t ) cos ( 2 π f c t ) − Q ( t ) sin ( 2 π f c t )]
Code
tBitstream[bitstream_, Tb_, title_] :=
Module[{timeSteps, gridLines, plot},
timeSteps =
Flatten[Table[{(n - 1) Tb, bitstream[[n]]}, {n, 1,
Length[bitstream]}] /. {t_, v_} :> { {t, v}, {t + Tb, v}}, 1];
gridLines = {Join[
Table[{n Tb, Dashed}, {n, 1, 2 Length[bitstream], 2}],
Table[{n Tb, Thin}, {n, 0, 2 Length[bitstream], 2}]], None};
plot =
Labeled[ListLinePlot[timeSteps, InterpolationOrder -> 0,
PlotRange -> Full, GridLines -> gridLines, PlotStyle -> Thick,
Ticks -> {Table[{n Tb,
Row[{n, "\!\(\*SubscriptBox[\(T\), \(b\)]\)"}]}, {n, 0,
Length[bitstream]}], {-1, 0, 1}},
LabelStyle -> Directive[Bold, 12],
PlotRangePadding -> {Scaled[.05]}, AspectRatio -> 0.1,
ImageSize -> Large], {Style[title, "Text", 16]}, {Right}]];
tBitstream[{0, 1, 0, 0, 1, 0, 1, 1, 1, 0}, 1, "Bitstream Step Plot"]
tBitstream[{-1, -1, -1, -1, 1, 1, 1, 1, 1, 1}, 1, "I(t)"]
tBitstream[{1, 1, -1, -1, -1, -1, 1, 1, -1, -1}, 1, "Q(t)"]
Remember that T = 2 T b T=2T_b T = 2 T b
b n b_n b n
I ( t ) I(t) I ( t ) (Odd, 1st bits)
Q ( t ) Q(t) Q ( t ) (Even, 2nd bits)
Matched filter
1. Filter function
Find transfer function h ( t ) h(t) h ( t ) of matched filter and apply to an input:
h ( t ) = s 1 ( T − t ) − s 2 ( T − t ) h ( t ) = s ∗ ( T − t ) ((.)* is the conjugate) s o n ( t ) = h ( t ) ∗ s n ( t ) = ∫ ∞ ∞ h ( τ ) s n ( t − τ ) d τ Filter output n o ( t ) = h ( t ) ∗ n ( t ) Noise at filter output \begin{align*}
h(t)&=s_1(T-t)-s_2(T-t)\\
h(t)&=s^*(T-t) \qquad\text{((.)* is the conjugate)}\\
s_{on}(t)&=h(t)*s_n(t)=\int_\infty^\infty h(\tau)s_n(t-\tau)d\tau\quad\text{Filter output}\\
n_o(t)&=h(t)*n(t)\quad\text{Noise at filter output}
\end{align*}
h ( t ) h ( t ) s o n ( t ) n o ( t ) = s 1 ( T − t ) − s 2 ( T − t ) = s ∗ ( T − t ) ((.)* is the conjugate) = h ( t ) ∗ s n ( t ) = ∫ ∞ ∞ h ( τ ) s n ( t − τ ) d τ Filter output = h ( t ) ∗ n ( t ) Noise at filter output
2. Bit error rate
Bit error rate (BER) from matched filter outputs and filter output noise
Q ( x ) = 1 2 − 1 2 erf ( x 2 ) ⇔ erf ( x 2 ) = 1 − 2 Q ( x ) E b = d 2 = ∫ − ∞ ∞ ∣ s 1 ( t ) − s 2 ( t ) ∣ 2 d t Energy per bit/Distance T = 1 / R b R b : Bitrate E b = P av T = P av / R b Energy per bit P av = E b / T = E b R b Average power P ( W ) = 1 0 P ( dB ) 10 P RX ( W ) = P TX ( W ) ⋅ 1 0 P loss ( dB ) 10 P loss is expressed with negative sign e.g. "-130 dB" BER MatchedFilter = Q ( d 2 2 N 0 ) = Q ( E b 2 N 0 ) BER unipolarNRZ|BASK = Q ( d 2 N 0 ) = Q ( E b N 0 ) BER polarNRZ|BPSK = Q ( 2 d 2 N 0 ) = Q ( 2 E b N 0 ) \begin{align*}
Q(x)&=\frac{1}{2}-\frac{1}{2}\text{erf}\left(\frac{x}{\sqrt{2}}\right)\Leftrightarrow\text{erf}\left(\frac{x}{\sqrt{2}}\right)=1-2Q(x)\\
E_b&=d^2=\int_{-\infty}^\infty|s_1(t)-s_2(t)|^2dt\quad\text{Energy per bit/Distance}\\
T&=1/R_b\quad\text{$R_b$: Bitrate}\\
E_b&=P_\text{av}T=P_\text{av}/R_b\quad\text{Energy per bit}\\
P_\text{av}&=E_b/T=E_bR_b\quad\text{Average power}\\
P(\text{W})&=10^{\frac{P(\text{dB})}{10}}\\
P_\text{RX}(W)&=P_\text{TX}(W)\cdot10^{\frac{P_\text{loss}(\text{dB})}{10}}\quad \text{$P_\text{loss}$ is expressed with negative sign e.g. "-130 dB"}\\
\text{BER}_\text{MatchedFilter}&=Q\left(\sqrt{\frac{d^2}{2N_0}}\right)=Q\left(\sqrt{\frac{E_b}{2N_0}}\right)\\
\text{BER}_\text{unipolarNRZ|BASK}&=Q\left(\sqrt{\frac{d^2}{N_0}}\right)=Q\left(\sqrt{\frac{E_b}{N_0}}\right)\\
\text{BER}_\text{polarNRZ|BPSK}&=Q\left(\sqrt{\frac{2d^2}{N_0}}\right)=Q\left(\sqrt{\frac{2E_b}{N_0}}\right)\\
\end{align*}
Q ( x ) E b T E b P av P ( W ) P RX ( W ) BER MatchedFilter BER unipolarNRZ|BASK BER polarNRZ|BPSK = 2 1 − 2 1 erf ( 2 x ) ⇔ erf ( 2 x ) = 1 − 2 Q ( x ) = d 2 = ∫ − ∞ ∞ ∣ s 1 ( t ) − s 2 ( t ) ∣ 2 d t Energy per bit/Distance = 1/ R b R b : Bitrate = P av T = P av / R b Energy per bit = E b / T = E b R b Average power = 1 0 10 P ( dB ) = P TX ( W ) ⋅ 1 0 10 P loss ( dB ) P loss is expressed with negative sign e.g. "-130 dB" = Q 2 N 0 d 2 = Q ( 2 N 0 E b ) = Q N 0 d 2 = Q ( N 0 E b ) = Q N 0 2 d 2 = Q ( N 0 2 E b )
Value tables for erf ( x ) \text{erf}(x) erf ( x ) and Q ( x ) Q(x) Q ( x )
Q ( x ) Q(x) Q ( x ) function
x x x
Q ( x ) Q(x) Q ( x )
x x x
Q ( x ) Q(x) Q ( x )
x x x
Q ( x ) Q(x) Q ( x )
x x x
Q ( x ) Q(x) Q ( x )
0.00 0.00 0.00
0.5 0.5 0.5
2.30 2.30 2.30
0.010724 0.010724 0.010724
4.55 4.55 4.55
2.6823 × 1 0 − 6 2.6823 \times 10^{-6} 2.6823 × 1 0 − 6
6.80 6.80 6.80
5.231 × 1 0 − 12 5.231 \times 10^{-12} 5.231 × 1 0 − 12
0.05 0.05 0.05
0.48006 0.48006 0.48006
2.35 2.35 2.35
0.0093867 0.0093867 0.0093867
4.60 4.60 4.60
2.1125 × 1 0 − 6 2.1125 \times 10^{-6} 2.1125 × 1 0 − 6
6.85 6.85 6.85
3.6925 × 1 0 − 12 3.6925 \times 10^{-12} 3.6925 × 1 0 − 12
0.10 0.10 0.10
0.46017 0.46017 0.46017
2.40 2.40 2.40
0.0081975 0.0081975 0.0081975
4.65 4.65 4.65
1.6597 × 1 0 − 6 1.6597 \times 10^{-6} 1.6597 × 1 0 − 6
6.90 6.90 6.90
2.6001 × 1 0 − 12 2.6001 \times 10^{-12} 2.6001 × 1 0 − 12
0.15 0.15 0.15
0.44038 0.44038 0.44038
2.45 2.45 2.45
0.0071428 0.0071428 0.0071428
4.70 4.70 4.70
1.3008 × 1 0 − 6 1.3008 \times 10^{-6} 1.3008 × 1 0 − 6
6.95 6.95 6.95
1.8264 × 1 0 − 12 1.8264 \times 10^{-12} 1.8264 × 1 0 − 12
0.20 0.20 0.20
0.42074 0.42074 0.42074
2.50 2.50 2.50
0.0062097 0.0062097 0.0062097
4.75 4.75 4.75
1.0171 × 1 0 − 6 1.0171 \times 10^{-6} 1.0171 × 1 0 − 6
7.00 7.00 7.00
1.2798 × 1 0 − 12 1.2798 \times 10^{-12} 1.2798 × 1 0 − 12
0.25 0.25 0.25
0.40129 0.40129 0.40129
2.55 2.55 2.55
0.0053861 0.0053861 0.0053861
4.80 4.80 4.80
7.9333 × 1 0 − 7 7.9333 \times 10^{-7} 7.9333 × 1 0 − 7
7.05 7.05 7.05
8.9459 × 1 0 − 13 8.9459 \times 10^{-13} 8.9459 × 1 0 − 13
0.30 0.30 0.30
0.38209 0.38209 0.38209
2.60 2.60 2.60
0.0046612 0.0046612 0.0046612
4.85 4.85 4.85
6.1731 × 1 0 − 7 6.1731 \times 10^{-7} 6.1731 × 1 0 − 7
7.10 7.10 7.10
6.2378 × 1 0 − 13 6.2378 \times 10^{-13} 6.2378 × 1 0 − 13
0.35 0.35 0.35
0.36317 0.36317 0.36317
2.65 2.65 2.65
0.0040246 0.0040246 0.0040246
4.90 4.90 4.90
4.7918 × 1 0 − 7 4.7918 \times 10^{-7} 4.7918 × 1 0 − 7
7.15 7.15 7.15
4.3389 × 1 0 − 13 4.3389 \times 10^{-13} 4.3389 × 1 0 − 13
0.40 0.40 0.40
0.34458 0.34458 0.34458
2.70 2.70 2.70
0.003467 0.003467 0.003467
4.95 4.95 4.95
3.7107 × 1 0 − 7 3.7107 \times 10^{-7} 3.7107 × 1 0 − 7
7.20 7.20 7.20
3.0106 × 1 0 − 13 3.0106 \times 10^{-13} 3.0106 × 1 0 − 13
0.45 0.45 0.45
0.32636 0.32636 0.32636
2.75 2.75 2.75
0.0029798 0.0029798 0.0029798
5.00 5.00 5.00
2.8665 × 1 0 − 7 2.8665 \times 10^{-7} 2.8665 × 1 0 − 7
7.25 7.25 7.25
2.0839 × 1 0 − 13 2.0839 \times 10^{-13} 2.0839 × 1 0 − 13
0.50 0.50 0.50
0.30854 0.30854 0.30854
2.80 2.80 2.80
0.0025551 0.0025551 0.0025551
5.05 5.05 5.05
2.2091 × 1 0 − 7 2.2091 \times 10^{-7} 2.2091 × 1 0 − 7
7.30 7.30 7.30
1.4388 × 1 0 − 13 1.4388 \times 10^{-13} 1.4388 × 1 0 − 13
0.55 0.55 0.55
0.29116 0.29116 0.29116
2.85 2.85 2.85
0.002186 0.002186 0.002186
5.10 5.10 5.10
1.6983 × 1 0 − 7 1.6983 \times 10^{-7} 1.6983 × 1 0 − 7
7.35 7.35 7.35
9.9103 × 1 0 − 14 9.9103 \times 10^{-14} 9.9103 × 1 0 − 14
0.60 0.60 0.60
0.27425 0.27425 0.27425
2.90 2.90 2.90
0.0018658 0.0018658 0.0018658
5.15 5.15 5.15
1.3024 × 1 0 − 7 1.3024 \times 10^{-7} 1.3024 × 1 0 − 7
7.40 7.40 7.40
6.8092 × 1 0 − 14 6.8092 \times 10^{-14} 6.8092 × 1 0 − 14
0.65 0.65 0.65
0.25785 0.25785 0.25785
2.95 2.95 2.95
0.0015889 0.0015889 0.0015889
5.20 5.20 5.20
9.9644 × 1 0 − 8 9.9644 \times 10^{-8} 9.9644 × 1 0 − 8
7.45 7.45 7.45
4.667 × 1 0 − 14 4.667 \times 10^{-14} 4.667 × 1 0 − 14
0.70 0.70 0.70
0.24196 0.24196 0.24196
3.00 3.00 3.00
0.0013499 0.0013499 0.0013499
5.25 5.25 5.25
7.605 × 1 0 − 8 7.605 \times 10^{-8} 7.605 × 1 0 − 8
7.50 7.50 7.50
3.1909 × 1 0 − 14 3.1909 \times 10^{-14} 3.1909 × 1 0 − 14
0.75 0.75 0.75
0.22663 0.22663 0.22663
3.05 3.05 3.05
0.0011442 0.0011442 0.0011442
5.30 5.30 5.30
5.7901 × 1 0 − 8 5.7901 \times 10^{-8} 5.7901 × 1 0 − 8
7.55 7.55 7.55
2.1763 × 1 0 − 14 2.1763 \times 10^{-14} 2.1763 × 1 0 − 14
0.80 0.80 0.80
0.21186 0.21186 0.21186
3.10 3.10 3.10
0.0009676 0.0009676 0.0009676
5.35 5.35 5.35
4.3977 × 1 0 − 8 4.3977 \times 10^{-8} 4.3977 × 1 0 − 8
7.60 7.60 7.60
1.4807 × 1 0 − 14 1.4807 \times 10^{-14} 1.4807 × 1 0 − 14
0.85 0.85 0.85
0.19766 0.19766 0.19766
3.15 3.15 3.15
0.00081635 0.00081635 0.00081635
5.40 5.40 5.40
3.332 × 1 0 − 8 3.332 \times 10^{-8} 3.332 × 1 0 − 8
7.65 7.65 7.65
1.0049 × 1 0 − 14 1.0049 \times 10^{-14} 1.0049 × 1 0 − 14
0.90 0.90 0.90
0.18406 0.18406 0.18406
3.20 3.20 3.20
0.00068714 0.00068714 0.00068714
5.45 5.45 5.45
2.5185 × 1 0 − 8 2.5185 \times 10^{-8} 2.5185 × 1 0 − 8
7.70 7.70 7.70
6.8033 × 1 0 − 15 6.8033 \times 10^{-15} 6.8033 × 1 0 − 15
0.95 0.95 0.95
0.17106 0.17106 0.17106
3.25 3.25 3.25
0.00057703 0.00057703 0.00057703
5.50 5.50 5.50
1.899 × 1 0 − 8 1.899 \times 10^{-8} 1.899 × 1 0 − 8
7.75 7.75 7.75
4.5946 × 1 0 − 15 4.5946 \times 10^{-15} 4.5946 × 1 0 − 15
1.00 1.00 1.00
0.15866 0.15866 0.15866
3.30 3.30 3.30
0.00048342 0.00048342 0.00048342
5.55 5.55 5.55
1.4283 × 1 0 − 8 1.4283 \times 10^{-8} 1.4283 × 1 0 − 8
7.80 7.80 7.80
3.0954 × 1 0 − 15 3.0954 \times 10^{-15} 3.0954 × 1 0 − 15
1.05 1.05 1.05
0.14686 0.14686 0.14686
3.35 3.35 3.35
0.00040406 0.00040406 0.00040406
5.60 5.60 5.60
1.0718 × 1 0 − 8 1.0718 \times 10^{-8} 1.0718 × 1 0 − 8
7.85 7.85 7.85
2.0802 × 1 0 − 15 2.0802 \times 10^{-15} 2.0802 × 1 0 − 15
1.10 1.10 1.10
0.13567 0.13567 0.13567
3.40 3.40 3.40
0.00033693 0.00033693 0.00033693
5.65 5.65 5.65
8.0224 × 1 0 − 9 8.0224 \times 10^{-9} 8.0224 × 1 0 − 9
7.90 7.90 7.90
1.3945 × 1 0 − 15 1.3945 \times 10^{-15} 1.3945 × 1 0 − 15
1.15 1.15 1.15
0.12507 0.12507 0.12507
3.45 3.45 3.45
0.00028029 0.00028029 0.00028029
5.70 5.70 5.70
5.9904 × 1 0 − 3 5.9904 \times 10^{-3} 5.9904 × 1 0 − 3
7.95 7.95 7.95
9.3256 × 1 0 − 16 9.3256 \times 10^{-16} 9.3256 × 1 0 − 16
1.20 1.20 1.20
0.11507 0.11507 0.11507
3.50 3.50 3.50
0.00023263 0.00023263 0.00023263
5.75 5.75 5.75
4.4622 × 1 0 − 9 4.4622 \times 10^{-9} 4.4622 × 1 0 − 9
8.00 8.00 8.00
6.221 × 1 0 − 16 6.221 \times 10^{-16} 6.221 × 1 0 − 16
1.25 1.25 1.25
0.10565 0.10565 0.10565
3.55 3.55 3.55
0.00019262 0.00019262 0.00019262
5.80 5.80 5.80
3.3157 × 1 0 − 9 3.3157 \times 10^{-9} 3.3157 × 1 0 − 9
8.05 8.05 8.05
4.1397 × 1 0 − 16 4.1397 \times 10^{-16} 4.1397 × 1 0 − 16
1.30 1.30 1.30
0.0968 0.0968 0.0968
3.60 3.60 3.60
0.00015911 0.00015911 0.00015911
5.85 5.85 5.85
2.4579 × 1 0 − 9 2.4579 \times 10^{-9} 2.4579 × 1 0 − 9
8.10 8.10 8.10
2.748 × 1 0 − 16 2.748 \times 10^{-16} 2.748 × 1 0 − 16
1.35 1.35 1.35
0.088508 0.088508 0.088508
3.65 3.65 3.65
0.00013112 0.00013112 0.00013112
5.90 5.90 5.90
1.8175 × 1 0 − 9 1.8175 \times 10^{-9} 1.8175 × 1 0 − 9
8.15 8.15 8.15
1.8196 × 1 0 − 16 1.8196 \times 10^{-16} 1.8196 × 1 0 − 16
1.40 1.40 1.40
0.080757 0.080757 0.080757
3.70 3.70 3.70
0.0001078 0.0001078 0.0001078
5.95 5.95 5.95
1.3407 × 1 0 − 9 1.3407 \times 10^{-9} 1.3407 × 1 0 − 9
8.20 8.20 8.20
1.2019 × 1 0 − 16 1.2019 \times 10^{-16} 1.2019 × 1 0 − 16
1.45 1.45 1.45
0.073529 0.073529 0.073529
3.75 3.75 3.75
8.8417 × 1 0 − 5 8.8417 \times 10^{-5} 8.8417 × 1 0 − 5
6.00 6.00 6.00
9.8659 × 1 0 − 10 9.8659 \times 10^{-10} 9.8659 × 1 0 − 10
8.25 8.25 8.25
7.9197 × 1 0 − 17 7.9197 \times 10^{-17} 7.9197 × 1 0 − 17
1.50 1.50 1.50
0.066807 0.066807 0.066807
3.80 3.80 3.80
7.2348 × 1 0 − 5 7.2348 \times 10^{-5} 7.2348 × 1 0 − 5
6.05 6.05 6.05
7.2423 × 1 0 − 10 7.2423 \times 10^{-10} 7.2423 × 1 0 − 10
8.30 8.30 8.30
5.2056 × 1 0 − 17 5.2056 \times 10^{-17} 5.2056 × 1 0 − 17
1.55 1.55 1.55
0.060571 0.060571 0.060571
3.85 3.85 3.85
5.9059 × 1 0 − 5 5.9059 \times 10^{-5} 5.9059 × 1 0 − 5
6.10 6.10 6.10
5.3034 × 1 0 − 10 5.3034 \times 10^{-10} 5.3034 × 1 0 − 10
8.35 8.35 8.35
3.4131 × 1 0 − 17 3.4131 \times 10^{-17} 3.4131 × 1 0 − 17
1.60 1.60 1.60
0.054799 0.054799 0.054799
3.90 3.90 3.90
4.8096 × 1 0 − 5 4.8096 \times 10^{-5} 4.8096 × 1 0 − 5
6.15 6.15 6.15
3.8741 × 1 0 − 10 3.8741 \times 10^{-10} 3.8741 × 1 0 − 10
8.40 8.40 8.40
2.2324 × 1 0 − 17 2.2324 \times 10^{-17} 2.2324 × 1 0 − 17
1.65 1.65 1.65
0.049471 0.049471 0.049471
3.95 3.95 3.95
3.9076 × 1 0 − 5 3.9076 \times 10^{-5} 3.9076 × 1 0 − 5
6.20 6.20 6.20
2.8232 × 1 0 − 10 2.8232 \times 10^{-10} 2.8232 × 1 0 − 10
8.45 8.45 8.45
1.4565 × 1 0 − 17 1.4565 \times 10^{-17} 1.4565 × 1 0 − 17
1.70 1.70 1.70
0.044565 0.044565 0.044565
4.00 4.00 4.00
3.1671 × 1 0 − 5 3.1671 \times 10^{-5} 3.1671 × 1 0 − 5
6.25 6.25 6.25
2.0523 × 1 0 − 10 2.0523 \times 10^{-10} 2.0523 × 1 0 − 10
8.50 8.50 8.50
9.4795 × 1 0 − 18 9.4795 \times 10^{-18} 9.4795 × 1 0 − 18
1.75 1.75 1.75
0.040059 0.040059 0.040059
4.05 4.05 4.05
2.5609 × 1 0 − 5 2.5609 \times 10^{-5} 2.5609 × 1 0 − 5
6.30 6.30 6.30
1.4882 × 1 0 − 10 1.4882 \times 10^{-10} 1.4882 × 1 0 − 10
8.55 8.55 8.55
6.1544 × 1 0 − 18 6.1544 \times 10^{-18} 6.1544 × 1 0 − 18
1.80 1.80 1.80
0.03593 0.03593 0.03593
4.10 4.10 4.10
2.0658 × 1 0 − 5 2.0658 \times 10^{-5} 2.0658 × 1 0 − 5
6.35 6.35 6.35
1.0766 × 1 0 − 10 1.0766 \times 10^{-10} 1.0766 × 1 0 − 10
8.60 8.60 8.60
3.9858 × 1 0 − 18 3.9858 \times 10^{-18} 3.9858 × 1 0 − 18
1.85 1.85 1.85
0.032157 0.032157 0.032157
4.15 4.15 4.15
1.6624 × 1 0 − 5 1.6624 \times 10^{-5} 1.6624 × 1 0 − 5
6.40 6.40 6.40
7.7688 × 1 0 − 11 7.7688 \times 10^{-11} 7.7688 × 1 0 − 11
8.65 8.65 8.65
2.575 × 1 0 − 18 2.575 \times 10^{-18} 2.575 × 1 0 − 18
1.90 1.90 1.90
0.028717 0.028717 0.028717
4.20 4.20 4.20
1.3346 × 1 0 − 5 1.3346 \times 10^{-5} 1.3346 × 1 0 − 5
6.45 6.45 6.45
5.5925 × 1 0 − 11 5.5925 \times 10^{-11} 5.5925 × 1 0 − 11
8.70 8.70 8.70
1.6594 × 1 0 − 18 1.6594 \times 10^{-18} 1.6594 × 1 0 − 18
1.95 1.95 1.95
0.025588 0.025588 0.025588
4.25 4.25 4.25
1.0689 × 1 0 − 5 1.0689 \times 10^{-5} 1.0689 × 1 0 − 5
6.50 6.50 6.50
4.016 × 1 0 − 11 4.016 \times 10^{-11} 4.016 × 1 0 − 11
8.75 8.75 8.75
1.0668 × 1 0 − 18 1.0668 \times 10^{-18} 1.0668 × 1 0 − 18
2.00 2.00 2.00
0.02275 0.02275 0.02275
4.30 4.30 4.30
8.5399 × 1 0 − 6 8.5399 \times 10^{-6} 8.5399 × 1 0 − 6
6.55 6.55 6.55
2.8769 × 1 0 − 11 2.8769 \times 10^{-11} 2.8769 × 1 0 − 11
8.80 8.80 8.80
6.8408 × 1 0 − 19 6.8408 \times 10^{-19} 6.8408 × 1 0 − 19
2.05 2.05 2.05
0.020182 0.020182 0.020182
4.35 4.35 4.35
6.8069 × 1 0 − 6 6.8069 \times 10^{-6} 6.8069 × 1 0 − 6
6.60 6.60 6.60
2.0558 × 1 0 − 11 2.0558 \times 10^{-11} 2.0558 × 1 0 − 11
8.85 8.85 8.85
4.376 × 1 0 − 19 4.376 \times 10^{-19} 4.376 × 1 0 − 19
2.10 2.10 2.10
0.017864 0.017864 0.017864
4.40 4.40 4.40
5.4125 × 1 0 − 6 5.4125 \times 10^{-6} 5.4125 × 1 0 − 6
6.65 6.65 6.65
1.4655 × 1 0 − 11 1.4655 \times 10^{-11} 1.4655 × 1 0 − 11
8.90 8.90 8.90
2.7923 × 1 0 − 19 2.7923 \times 10^{-19} 2.7923 × 1 0 − 19
2.15 2.15 2.15
0.015778 0.015778 0.015778
4.45 4.45 4.45
4.2935 × 1 0 − 6 4.2935 \times 10^{-6} 4.2935 × 1 0 − 6
6.70 6.70 6.70
1.0421 × 1 0 − 11 1.0421 \times 10^{-11} 1.0421 × 1 0 − 11
8.95 8.95 8.95
1.7774 × 1 0 − 19 1.7774 \times 10^{-19} 1.7774 × 1 0 − 19
2.20 2.20 2.20
0.013903 0.013903 0.013903
4.50 4.50 4.50
3.3977 × 1 0 − 6 3.3977 \times 10^{-6} 3.3977 × 1 0 − 6
6.75 6.75 6.75
7.3923 × 1 0 − 12 7.3923 \times 10^{-12} 7.3923 × 1 0 − 12
9.00 9.00 9.00
1.1286 × 1 0 − 19 1.1286 \times 10^{-19} 1.1286 × 1 0 − 19
2.25 2.25 2.25
0.012224 0.012224 0.012224
Adapted from table 6.1 M F Mesiya - Contemporary Communication Systems
erf ( x ) \text{erf}(x) erf ( x ) function
x x x
erf ( x ) \text{erf}(x) erf ( x )
x x x
erf ( x ) \text{erf}(x) erf ( x )
x x x
erf ( x ) \text{erf}(x) erf ( x )
0.00 0.00 0.00
0.00000 0.00000 0.00000
0.75 0.75 0.75
0.71116 0.71116 0.71116
1.50 1.50 1.50
0.96611 0.96611 0.96611
0.05 0.05 0.05
0.05637 0.05637 0.05637
0.80 0.80 0.80
0.74210 0.74210 0.74210
1.55 1.55 1.55
0.97162 0.97162 0.97162
0.10 0.10 0.10
0.11246 0.11246 0.11246
0.85 0.85 0.85
0.77067 0.77067 0.77067
1.60 1.60 1.60
0.97635 0.97635 0.97635
0.15 0.15 0.15
0.16800 0.16800 0.16800
0.90 0.90 0.90
0.79691 0.79691 0.79691
1.65 1.65 1.65
0.98038 0.98038 0.98038
0.20 0.20 0.20
0.22270 0.22270 0.22270
0.95 0.95 0.95
0.82089 0.82089 0.82089
1.70 1.70 1.70
0.98379 0.98379 0.98379
0.25 0.25 0.25
0.27633 0.27633 0.27633
1.00 1.00 1.00
0.84270 0.84270 0.84270
1.75 1.75 1.75
0.98667 0.98667 0.98667
0.30 0.30 0.30
0.32863 0.32863 0.32863
1.05 1.05 1.05
0.86244 0.86244 0.86244
1.80 1.80 1.80
0.98909 0.98909 0.98909
0.35 0.35 0.35
0.37938 0.37938 0.37938
1.10 1.10 1.10
0.88021 0.88021 0.88021
1.85 1.85 1.85
0.99111 0.99111 0.99111
0.40 0.40 0.40
0.42839 0.42839 0.42839
1.15 1.15 1.15
0.89612 0.89612 0.89612
1.90 1.90 1.90
0.99279 0.99279 0.99279
0.45 0.45 0.45
0.47548 0.47548 0.47548
1.20 1.20 1.20
0.91031 0.91031 0.91031
1.95 1.95 1.95
0.99418 0.99418 0.99418
0.50 0.50 0.50
0.52050 0.52050 0.52050
1.25 1.25 1.25
0.92290 0.92290 0.92290
2.00 2.00 2.00
0.99532 0.99532 0.99532
0.55 0.55 0.55
0.56332 0.56332 0.56332
1.30 1.30 1.30
0.93401 0.93401 0.93401
2.50 2.50 2.50
0.99959 0.99959 0.99959
0.60 0.60 0.60
0.60386 0.60386 0.60386
1.35 1.35 1.35
0.94376 0.94376 0.94376
3.00 3.00 3.00
0.99998 0.99998 0.99998
0.65 0.65 0.65
0.64203 0.64203 0.64203
1.40 1.40 1.40
0.95229 0.95229 0.95229
3.30 3.30 3.30
0.999998 0.999998 0.999998 **
0.70 0.70 0.70
0.67780 0.67780 0.67780
1.45 1.45 1.45
0.95970 0.95970 0.95970
**The value of erf ( 3.30 ) \text{erf}(3.30) erf ( 3.30 ) should be ≈ 0.999997 \approx0.999997 ≈ 0.999997 instead, but this value is quoted in the formula table.
Receiver output shit
r o ( t ) = { s o 1 ( t ) + n o ( t ) code 1 s o 2 ( t ) + n o ( t ) code 0 n : AWGN with σ o 2 \begin{align*}
r_o(t)&=\begin{cases}
s_{o1}(t)+n_o(t) & \text{code 1}\\
s_{o2}(t)+n_o(t) & \text{code 0}\\
\end{cases}\\
n&: \text{AWGN with }\sigma_o^2\\
\end{align*}
r o ( t ) n = { s o 1 ( t ) + n o ( t ) s o 2 ( t ) + n o ( t ) code 1 code 0 : AWGN with σ o 2
ISI, channel model
Nyquist criterion for zero ISI
TODO:
Nomenclature
D → Symbol Rate, Max. Signalling Rate T → Symbol Duration M → Symbol set size W → Bandwidth \begin{align*}
D&\rightarrow\text{Symbol Rate, Max. Signalling Rate}\\
T&\rightarrow\text{Symbol Duration}\\
M&\rightarrow\text{Symbol set size}\\
W&\rightarrow\text{Bandwidth}\\
\end{align*}
D T M W → Symbol Rate, Max. Signalling Rate → Symbol Duration → Symbol set size → Bandwidth
Raised cosine (RC) pulse
0 ≤ α ≤ 1 0\leq\alpha\leq1
0 ≤ α ≤ 1
⚠ NOTE might not be safe to assume T ′ = T T'=T T ′ = T , if you can solve the question without T T T then use that method.
To solve this type of question:
Use the formula for D D D below
Consult the BER table below to get the BER which relates the noise of the channel N 0 N_0 N 0 to E b E_b E b and to R b R_b R b .
Linear modulation (M M M -PSK, BPSK, M M M -QAM)
NRZ unipolar encoding, BASK
W = B abs-abs W=B_\text{\color{green}abs-abs} W = B abs-abs
W = B abs W=B_\text{\color{green}abs} W = B abs
W = B abs-abs = 1 + α T = ( 1 + α ) D W=B_\text{abs-abs}=\frac{1+\alpha}{T}=(1+\alpha)D W = B abs-abs = T 1 + α = ( 1 + α ) D
W = B abs = 1 + α 2 T = ( 1 + α ) D / 2 W=B_\text{abs}=\frac{1+\alpha}{2T}=(1+\alpha)D/2 W = B abs = 2 T 1 + α = ( 1 + α ) D /2
D = W symbol/s 1 + α D=\frac{W\text{ symbol/s}}{1+\alpha} D = 1 + α W symbol/s
D = 2 W symbol/s 1 + α D=\frac{2W\text{ symbol/s}}{1+\alpha} D = 1 + α 2 W symbol/s
R b bit/s = ( D symbol/s ) × ( k bit/symbol ) M symbol/set = 2 k E b = P T = P av / R b Energy per bit \begin{align*}
R_b\text{ bit/s}&=(D\text{ symbol/s})\times(k\text{ bit/symbol})\\
M\text{ symbol/set}&=2^k\\
E_b&=PT=P_\text{av}/R_b\quad\text{Energy per bit}\\
\end{align*}
R b bit/s M symbol/set E b = ( D symbol/s ) × ( k bit/symbol ) = 2 k = PT = P av / R b Energy per bit
Nyquist stuff
TODO: Condition for 0 ISI
P r ( k T ) = { 1 k = 0 0 k ≠ 0 P_r(kT)=\begin{cases}
1 & k=0\\
0 & k\neq0
\end{cases}
P r ( k T ) = { 1 0 k = 0 k = 0
Other
Excess BW = B abs − B Nyquist = 1 + α 2 T − 1 2 T = α 2 T FOR NRZ (Use correct B abs ) α = Excess BW B Nyquist = B abs − B Nyquist B Nyquist T = 1 / D \begin{align*}
\text{Excess BW}&=B_\text{abs}-B_\text{Nyquist}=\frac{1+\alpha}{2T}-\frac{1}{2T}=\frac{\alpha}{2T}\quad\text{FOR NRZ (Use correct $B_\text{abs}$)}\\
\alpha&=\frac{\text{Excess BW}}{B_\text{Nyquist}}=\frac{B_\text{abs}-B_\text{Nyquist}}{B_\text{Nyquist}}\\
T&=1/D
\end{align*}
Excess BW α T = B abs − B Nyquist = 2 T 1 + α − 2 T 1 = 2 T α FOR NRZ (Use correct B abs ) = B Nyquist Excess BW = B Nyquist B abs − B Nyquist = 1/ D
Table of bandpass signalling and BER
Binary Bandpass Signaling
B null-null B_\text{null-null} B null-null (Hz)
B abs-abs = 2 B abs B_\text{abs-abs}\color{red}=2B_\text{abs} B abs-abs = 2 B abs (Hz)
BER with Coherent Detection
BER with Noncoherent Detection
ASK, unipolar NRZ
2 R b 2R_b 2 R b
R b ( 1 + α ) R_b (1 + \alpha) R b ( 1 + α )
Q ( E b / N 0 ) Q\left( \sqrt{E_b / N_0} \right) Q ( E b / N 0 )
0.5 exp ( − E b / ( 2 N 0 ) ) 0.5\exp(-E_b / (2N_0)) 0.5 exp ( − E b / ( 2 N 0 ))
BPSK
2 R b 2R_b 2 R b
R b ( 1 + α ) R_b (1 + \alpha) R b ( 1 + α )
Q ( 2 E b / N 0 ) Q\left( \sqrt{2E_b / N_0} \right) Q ( 2 E b / N 0 )
Requires coherent detection
Sunde's FSK
3 R b 3R_b 3 R b
Q ( E b / N 0 ) Q\left( \sqrt{E_b / N_0} \right) Q ( E b / N 0 )
0.5 exp ( − E b / ( 2 N 0 ) ) 0.5\exp(-E_b / (2N_0)) 0.5 exp ( − E b / ( 2 N 0 ))
DBPSK, M M M -ary Bandpass Signaling
2 R b 2R_b 2 R b
R b ( 1 + α ) R_b (1 + \alpha) R b ( 1 + α )
0.5 exp ( − E b / N 0 ) 0.5\exp(-E_b / N_0) 0.5 exp ( − E b / N 0 )
QPSK/OQPSK (M = 4 M=4 M = 4 , PSK )
R b R_b R b
R b ( 1 + α ) 2 \frac{R_b (1 + \alpha)}{2} 2 R b ( 1 + α )
Q ( 2 E b / N 0 ) Q\left( \sqrt{2E_b / N_0} \right) Q ( 2 E b / N 0 )
Requires coherent detection
MSK
1.5 R b 1.5R_b 1.5 R b
3 R b ( 1 + α ) 4 \frac{3R_b (1 + \alpha)}{4} 4 3 R b ( 1 + α )
Q ( 2 E b / N 0 ) Q\left( \sqrt{2E_b / N_0} \right) Q ( 2 E b / N 0 )
Requires coherent detection
M M M -PSK (M > 4 M > 4 M > 4 )
2 R b / log 2 M 2R_b / \log_2 M 2 R b / log 2 M
R b ( 1 + α ) log 2 M \frac{R_b (1 + \alpha)}{\log_2 M} l o g 2 M R b ( 1 + α )
2 log 2 M Q ( 2 log 2 M sin 2 ( π / M ) E b / N 0 ) \frac{2}{\log_2 M} Q\left( \sqrt{2 \log_2 M \sin^2 \left( \pi / M \right) E_b / N_0} \right) l o g 2 M 2 Q ( 2 log 2 M sin 2 ( π / M ) E b / N 0 )
Requires coherent detection
M M M -DPSK (M > 4 M > 4 M > 4 )
2 R b / log 2 M 2R_b / \log_2 M 2 R b / log 2 M
R b ( 1 + α ) 2 log 2 M \frac{R_b (1 + \alpha)}{2 \log_2 M} 2 l o g 2 M R b ( 1 + α )
2 log 2 M Q ( 4 log 2 M sin 2 ( π / ( 2 M ) ) E b / N 0 ) \frac{2}{\log_2 M} Q\left( \sqrt{4 \log_2 M \sin^2 \left( \pi / (2M) \right) E_b / N_0} \right) l o g 2 M 2 Q ( 4 log 2 M sin 2 ( π / ( 2 M ) ) E b / N 0 )
M M M -QAM (Square constellation)
2 R b / log 2 M 2R_b / \log_2 M 2 R b / log 2 M
R b ( 1 + α ) log 2 M \frac{R_b (1 + \alpha)}{\log_2 M} l o g 2 M R b ( 1 + α )
4 log 2 M ( 1 − 1 M ) Q ( 3 log 2 M M − 1 E b / N 0 ) \frac{4}{\log_2 M} \left( 1 - \frac{1}{\sqrt{M}} \right) Q\left( \sqrt{\frac{3 \log_2 M}{M - 1} E_b / N_0} \right) l o g 2 M 4 ( 1 − M 1 ) Q ( M − 1 3 l o g 2 M E b / N 0 )
Requires coherent detection
M M M -FSK Coherent
( M + 3 ) R b 2 log 2 M \frac{(M + 3) R_b}{2 \log_2 M} 2 l o g 2 M ( M + 3 ) R b
M − 1 log 2 M Q ( ( log 2 M ) E b / N 0 ) \frac{M - 1}{\log_2 M} Q\left( \sqrt{(\log_2 M) E_b / N_0} \right) l o g 2 M M − 1 Q ( ( log 2 M ) E b / N 0 )
Noncoherent
2 M R b / log 2 M 2M R_b / \log_2 M 2 M R b / log 2 M
M − 1 2 log 2 M 0.5 exp ( − ( log 2 M ) E b / 2 N 0 ) \frac{M - 1}{2 \log_2 M} 0.5\exp({-(\log_2 M) E_b / 2N_0}) 2 l o g 2 M M − 1 0.5 exp ( − ( log 2 M ) E b /2 N 0 )
Adapted from table 11.4 M F Mesiya - Contemporary Communication Systems
PSD of modulated signals
Modulation
G x ( f ) G_x(f) G x ( f )
Quadrature
A c 2 4 [ G I ( f − f c ) + G I ( f + f c ) + G Q ( f − f c ) + G Q ( f + f c ) ] \color{red}\frac{ {A_c}^2}{4}[G_I(f-f_c)+G_I(f+f_c)+G_Q(f-f_c)+G_Q(f+f_c)] 4 A c 2 [ G I ( f − f c ) + G I ( f + f c ) + G Q ( f − f c ) + G Q ( f + f c )]
Linear
∣ V ( f ) ∣ 2 2 ∑ l = − ∞ ∞ R ( l ) exp ( − j 2 π l f T ) What?? \color{red}\frac{|V(f)|^2}{2}\sum_{l=-\infty}^\infty R(l)\exp(-j2\pi l f T)\quad\text{What??} 2 ∣ V ( f ) ∣ 2 ∑ l = − ∞ ∞ R ( l ) e x p ( − j 2 π l f T ) What??
Symbol error probability
Minimum distance between any two point
Different from bit error since a symbol can contain multiple bits
Entropy for discrete random variables
H ( x ) ≥ 0 H ( x ) = − ∑ x i ∈ A x p X ( x i ) log 2 ( p X ( x i ) ) H ( x , y ) = − ∑ x i ∈ A x ∑ y i ∈ A y p X Y ( x i , y i ) log 2 ( p X Y ( x i , y i ) ) Joint entropy H ( x , y ) = H ( x ) + H ( y ) Joint entropy if x and y independent H ( x ∣ y = y j ) = − ∑ x i ∈ A x p X ( x i ∣ y = y j ) log 2 ( p X ( x i ∣ y = y j ) ) Conditional entropy H ( x ∣ y ) = − ∑ y j ∈ A y p Y ( y j ) H ( x ∣ y = y j ) Average conditional entropy, equivocation H ( x ∣ y ) = − ∑ x i ∈ A x ∑ y i ∈ A y p X ( x i , y j ) log 2 ( p X ( x i ∣ y = y j ) ) H ( x ∣ y ) = H ( x , y ) − H ( y ) H ( x , y ) = H ( x ) + H ( y ∣ x ) = H ( y ) + H ( x ∣ y ) \begin{align*}
H(x) &\geq 0\\
H(x) &= -\sum_{x_i\in A_x} p_X(x_i) \log_2(p_X(x_i))\\
H(x,y) &= -\sum_{x_i\in A_x}\sum_{y_i\in A_y} p_{XY}(x_i,y_i)\log_2(p_{XY}(x_i,y_i)) \quad\text{Joint entropy}\\
H(x,y) &= H(x)+H(y) \quad\text{Joint entropy if $x$ and $y$ independent}\\
H(x|y=y_j) &= -\sum_{x_i\in A_x} p_X(x_i|y=y_j) \log_2(p_X(x_i|y=y_j)) \quad\text{Conditional entropy}\\
H(x|y) &= -\sum_{y_j\in A_y} p_Y(y_j) H(x|y=y_j) \quad\text{Average conditional entropy, equivocation}\\
H(x|y) &= -\sum_{x_i\in A_x}\sum_{y_i\in A_y} p_X(x_i,y_j) \log_2(p_X(x_i|y=y_j))\\
H(x|y) &= H(x,y)-H(y)\\
H(x,y) &= H(x) + H(y|x) = H(y) + H(x|y)\\
\end{align*}
H ( x ) H ( x ) H ( x , y ) H ( x , y ) H ( x ∣ y = y j ) H ( x ∣ y ) H ( x ∣ y ) H ( x ∣ y ) H ( x , y ) ≥ 0 = − x i ∈ A x ∑ p X ( x i ) log 2 ( p X ( x i )) = − x i ∈ A x ∑ y i ∈ A y ∑ p X Y ( x i , y i ) log 2 ( p X Y ( x i , y i )) Joint entropy = H ( x ) + H ( y ) Joint entropy if x and y independent = − x i ∈ A x ∑ p X ( x i ∣ y = y j ) log 2 ( p X ( x i ∣ y = y j )) Conditional entropy = − y j ∈ A y ∑ p Y ( y j ) H ( x ∣ y = y j ) Average conditional entropy, equivocation = − x i ∈ A x ∑ y i ∈ A y ∑ p X ( x i , y j ) log 2 ( p X ( x i ∣ y = y j )) = H ( x , y ) − H ( y ) = H ( x ) + H ( y ∣ x ) = H ( y ) + H ( x ∣ y )
Entropy is maximized when all have an equal probability.
Differential entropy for continuous random variables
TODO: Cut out if not required
h ( x ) = − ∫ R f X ( x ) log 2 ( f X ( x ) ) d x \begin{align*}
h(x) &= -\int_\mathbb{R}f_X(x)\log_2(f_X(x))dx
\end{align*}
h ( x ) = − ∫ R f X ( x ) log 2 ( f X ( x )) d x
Amount of entropy decrease of x x x after observation by y y y .
I ( x ; y ) = H ( x ) − H ( x ∣ y ) = H ( y ) − H ( y ∣ x ) \begin{align*}
I(x;y) &= H(x)-H(x|y)=H(y)-H(y|x)\\
\end{align*}
I ( x ; y ) = H ( x ) − H ( x ∣ y ) = H ( y ) − H ( y ∣ x )
Channel model
Vertical, x x x : input
Horizontal, y y y : output
P = [ p 11 p 12 … p 1 N p 21 p 22 … p 2 N ⋮ ⋮ ⋱ ⋮ p M 1 p M 2 … p M N ] \mathbf{P}=\left[\begin{matrix}
p_{11} & p_{12} &\dots & p_{1N}\\
p_{21} & p_{22} &\dots & p_{2N}\\
\vdots & \vdots &\ddots & \vdots\\
p_{M1} & p_{M2} &\dots & p_{MN}\\
\end{matrix}\right]
P = p 11 p 21 ⋮ p M 1 p 12 p 22 ⋮ p M 2 … … ⋱ … p 1 N p 2 N ⋮ p MN
P ( y j ∣ x i ) y 1 y 2 … y N x 1 p 11 p 12 … p 1 N x 2 p 21 p 22 … p 2 N ⋮ ⋮ ⋮ ⋱ ⋮ x M p M 1 p M 2 … p M N \begin{array}{c|cccc}
P(y_j|x_i)& y_1 & y_2 & \dots & y_N \\\hline
x_1 & p_{11} & p_{12} & \dots & p_{1N} \\
x_2 & p_{21} & p_{22} & \dots & p_{2N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_M & p_{M1} & p_{M2} & \dots & p_{MN} \\
\end{array}
P ( y j ∣ x i ) x 1 x 2 ⋮ x M y 1 p 11 p 21 ⋮ p M 1 y 2 p 12 p 22 ⋮ p M 2 … … … ⋱ … y N p 1 N p 2 N ⋮ p MN
Input has probability distribution p X ( a i ) = P ( X = a i ) p_X(a_i)=P(X=a_i) p X ( a i ) = P ( X = a i )
Channel maps alphabet ‘ { a 1 , … , a M } → { b 1 , … , b N } ‘ `\{a_1,\dots,a_M\} \to \{b_1,\dots,b_N\}` ‘ { a 1 , … , a M } → { b 1 , … , b N } ‘
Output has probabiltiy distribution p Y ( b j ) = P ( y = b j ) p_Y(b_j)=P(y=b_j) p Y ( b j ) = P ( y = b j )
p Y ( b j ) = ∑ i = 1 M P [ x = a i , y = b j ] 1 ≤ j ≤ N = ∑ i = 1 M P [ X = a i ] P [ Y = b j ∣ X = a i ] [ p Y ( b 0 ) p Y ( b 1 ) … p Y ( b j ) ] = [ p X ( a 0 ) p X ( a 1 ) … p X ( a i ) ] × P \begin{align*}
p_Y(b_j) &= \sum_{i=1}^{M}P[x=a_i,y=b_j]\quad 1\leq j\leq N \\
&= \sum_{i=1}^{M}P[X=a_i]P[Y=b_j|X=a_i]\\
[\begin{matrix}p_Y(b_0)&p_Y(b_1)&\dots&p_Y(b_j)\end{matrix}] &= [\begin{matrix}p_X(a_0)&p_X(a_1)&\dots&p_X(a_i)\end{matrix}]\times\mathbf{P}
\end{align*}
p Y ( b j ) [ p Y ( b 0 ) p Y ( b 1 ) … p Y ( b j ) ] = i = 1 ∑ M P [ x = a i , y = b j ] 1 ≤ j ≤ N = i = 1 ∑ M P [ X = a i ] P [ Y = b j ∣ X = a i ] = [ p X ( a 0 ) p X ( a 1 ) … p X ( a i ) ] × P
Fast procedure to calculate I ( y ; x ) I(y;x) I ( y ; x )
1. Find H ( x ) 2. Find [ p Y ( b 0 ) p Y ( b 1 ) … p Y ( b j ) ] = [ p X ( a 0 ) p X ( a 1 ) … p X ( a i ) ] × P 3. Multiply each row in P by p X ( a i ) since p X Y ( x i , y i ) = P ( y i ∣ x i ) P ( x i ) 4. Find H ( x , y ) using each element from (3.) 5. Find H ( x ∣ y ) = H ( x , y ) − H ( y ) 6. Find I ( y ; x ) = H ( x ) − H ( x ∣ y ) \begin{align*}
&\text{1. Find }H(x)\\
&\text{2. Find }[\begin{matrix}p_Y(b_0)&p_Y(b_1)&\dots&p_Y(b_j)\end{matrix}] = [\begin{matrix}p_X(a_0)&p_X(a_1)&\dots&p_X(a_i)\end{matrix}]\times\mathbf{P}\\
&\text{3. Multiply each row in $\textbf{P}$ by $p_X(a_i)$ since $p_{XY}(x_i,y_i)=P(y_i|x_i)P(x_i)$}\\
&\text{4. Find $H(x,y)$ using each element from (3.)}\\
&\text{5. Find }H(x|y)=H(x,y)-H(y)\\
&\text{6. Find }I(y;x)=H(x)-H(x|y)\\
\end{align*}
1. Find H ( x ) 2. Find [ p Y ( b 0 ) p Y ( b 1 ) … p Y ( b j ) ] = [ p X ( a 0 ) p X ( a 1 ) … p X ( a i ) ] × P 3. Multiply each row in P by p X ( a i ) since p X Y ( x i , y i ) = P ( y i ∣ x i ) P ( x i ) 4. Find H ( x , y ) using each element from (3.) 5. Find H ( x ∣ y ) = H ( x , y ) − H ( y ) 6. Find I ( y ; x ) = H ( x ) − H ( x ∣ y )
Channel types
Type
Definition
Symmetric channel
Every row is a permutation of every other row, Every column is a permutation of every other column. Symmetric ⟹ Weakly symmetric \text{Symmetric}\implies\text{Weakly symmetric} Symmetric ⟹ Weakly symmetric
Weakly symmetric
Every row is a permutation of every other row, Every column has the same sum
Channel capacity of weakly symmetric channel
C → Channel capacity (bits/channels used) N → Output alphabet size p → Probability vector, any row of the transition matrix C = log 2 ( N ) − H ( p ) Capacity for weakly symmetric and symmetric channels R < C for error-free transmission \begin{align*}
C &\to\text{Channel capacity (bits/channels used)}\\
N &\to\text{Output alphabet size}\\
\mathbf{p} &\to\text{Probability vector, any row of the transition matrix}\\
C &= \log_2(N)-H(\mathbf{p})\quad\text{Capacity for weakly symmetric and symmetric channels}\\
R &< C \text{ for error-free transmission}
\end{align*}
C N p C R → Channel capacity (bits/channels used) → Output alphabet size → Probability vector, any row of the transition matrix = log 2 ( N ) − H ( p ) Capacity for weakly symmetric and symmetric channels < C for error-free transmission
Channel capacity of an AWGN channel
y i = x i + n i n i ∼ N ( 0 , N 0 / 2 ) y_i=x_i+n_i\quad n_i\thicksim N(0,N_0/2)
y i = x i + n i n i ∼ N ( 0 , N 0 /2 )
C = 1 2 log 2 ( 1 + P av N 0 / 2 ) C=\frac{1}{2}\log_2\left(1+\frac{P_\text{av}}{N_0/2}\right)
C = 2 1 log 2 ( 1 + N 0 /2 P av )
Channel capacity of a bandwidth AWGN channel
Note: Define XOR (⊕ \oplus ⊕ ) as exclusive OR, or modulo-2 addition.
P s → Bandwidth limited average power y i = bandpass W ( x i ) + n i n i ∼ N ( 0 , N 0 / 2 ) C = W log 2 ( 1 + P s N 0 W ) C = W log 2 ( 1 + SNR ) SNR = P s / ( N 0 W ) \begin{align*}
P_s&\to\text{Bandwidth limited average power}\\
y_i&=\text{bandpass}_W(x_i)+n_i\quad n_i\thicksim N(0,N_0/2)\\
C&=W\log_2\left(1+\frac{P_s}{N_0 W}\right)\\
C&=W\log_2(1+\text{SNR})\quad\text{SNR}=P_s/(N_0 W)
\end{align*}
P s y i C C → Bandwidth limited average power = bandpass W ( x i ) + n i n i ∼ N ( 0 , N 0 /2 ) = W log 2 ( 1 + N 0 W P s ) = W log 2 ( 1 + SNR ) SNR = P s / ( N 0 W )
Channel code
Hamming weight
w H ( x ) w_H(x) w H ( x )
Number of '1'
in codeword x x x
Hamming distance
d H ( x 1 , x 2 ) = w H ( x 1 ⊕ x 2 ) d_H(x_1,x_2)=w_H(x_1\oplus x_2) d H ( x 1 , x 2 ) = w H ( x 1 ⊕ x 2 )
Number of different bits between codewords x 1 x_1 x 1 and x 2 x_2 x 2 which is the hamming weight of the XOR of the two codes.
Minimum distance
d min d_\text{min} d min
IMPORTANT : x ≠ 0 x\neq\textbf{0} x = 0 , excludes weight of all-zero codeword. For a linear block code, d min = w min d_\text{min}=w_\text{min} d min = w min
Linear block code
Code is ( n , k ) (n,k) ( n , k )
n n n is the width of a codeword
2 k 2^k 2 k codewords
A linear block code must be a subspace and satisfy both:
Zero vector must be present at least once
The XOR of any codeword pair in the code must result in a codeword that is already present in the code table.
For a linear block code, d min = w min d_\text{min}=w_\text{min} d min = w min
Code generation
Each generator vector is a binary string of size n n n . There are k k k generator vectors in G \mathbf{G} G .
g i = [ g i , 0 … g i , n − 2 g i , n − 1 ] g 0 = [ 1010 ] Example for n = 4 G = [ g 0 g 1 ⋮ g k − 1 ] = [ g 0 , 0 … g 0 , n − 2 g 0 , n − 1 g 1 , 0 … g 1 , n − 2 g 1 , n − 1 ⋮ ⋱ ⋮ ⋮ g k − 1 , 0 … g k − 1 , n − 2 g k − 1 , n − 1 ] \begin{align*}
\mathbf{g}_i&=[\begin{matrix}
g_{i,0}& \dots & g_{i,n-2} & g_{i,n-1}
\end{matrix}]\\
\color{darkgray}\mathbf{g}_0&\color{darkgray}=[1010]\quad\text{Example for $n=4$}\\
\mathbf{G}&=\left[\begin{matrix}
\mathbf{g}_0\\
\mathbf{g}_1\\
\vdots\\
\mathbf{g}_{k-1}\\
\end{matrix}\right]=\left[\begin{matrix}
g_{0,0}& \dots & g_{0,n-2} & g_{0,n-1}\\
g_{1,0}& \dots & g_{1,n-2} & g_{1,n-1}\\
\vdots & \ddots & \vdots & \vdots\\
g_{k-1,0}& \dots & g_{k-1,n-2} & g_{k-1,n-1}\\
\end{matrix}\right]
\end{align*}
g i g 0 G = [ g i , 0 … g i , n − 2 g i , n − 1 ] = [ 1010 ] Example for n = 4 = g 0 g 1 ⋮ g k − 1 = g 0 , 0 g 1 , 0 ⋮ g k − 1 , 0 … … ⋱ … g 0 , n − 2 g 1 , n − 2 ⋮ g k − 1 , n − 2 g 0 , n − 1 g 1 , n − 1 ⋮ g k − 1 , n − 1
A message block m \mathbf{m} m is coded as x \mathbf{x} x using the generation codewords in G \mathbf{G} G :
m = [ m 0 … m n − 2 m k − 1 ] m = [ 101001 ] Example for k = 6 x = m G = m 0 g 0 + m 1 g 1 + ⋯ + m k − 1 g k − 1 \begin{align*}
\mathbf{m}&=[\begin{matrix}
m_{0}& \dots & m_{n-2} & m_{k-1}
\end{matrix}]\\
\color{darkgray}\mathbf{m}&\color{darkgray}=[101001]\quad\text{Example for $k=6$}\\
\mathbf{x} &= \mathbf{m}\mathbf{G}=m_0\mathbf{g}_0+m_1\mathbf{g}_1+\dots+m_{k-1}\mathbf{g}_{k-1}
\end{align*}
m m x = [ m 0 … m n − 2 m k − 1 ] = [ 101001 ] Example for k = 6 = mG = m 0 g 0 + m 1 g 1 + ⋯ + m k − 1 g k − 1
Systemic linear block code
Contains k k k message bits (Copy m \mathbf{m} m as-is) and ( n − k ) (n-k) ( n − k ) parity bits after the message bits.
G = [ I k P ] = [ 1 0 … 0 0 1 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … 1 p 0 , 0 … p 0 , n − 2 p 0 , n − 1 p 1 , 0 … p 1 , n − 2 p 1 , n − 1 ⋮ ⋱ ⋮ ⋮ p k − 1 , 0 … p k − 1 , n − 2 p k − 1 , n − 1 ] m = [ m 0 … m n − 2 m k − 1 ] x = m G = m [ I k P ] = [ m I k m P ] = [ m b ] b = m P Parity bits of x \begin{align*}
\mathbf{G}&=\begin{array}{c|c}[\mathbf{I}_k & \mathbf{P}]\end{array}=\left[
\begin{array}{c|c}
\begin{matrix}
1 & 0 & \dots & 0\\
0 & 1 & \dots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0& 0 & \dots & 1\\
\end{matrix}
&
\begin{matrix}
p_{0,0}& \dots & p_{0,n-2} & p_{0,n-1}\\
p_{1,0}& \dots & p_{1,n-2} & p_{1,n-1}\\
\vdots & \ddots & \vdots & \vdots\\
p_{k-1,0}& \dots & p_{k-1,n-2} & p_{k-1,n-1}\\
\end{matrix}\end{array}\right]\\
\mathbf{m}&=[\begin{matrix}
m_{0}& \dots & m_{n-2} & m_{k-1}
\end{matrix}]\\
\mathbf{x} &= \mathbf{m}\mathbf{G}= \mathbf{m} \begin{array}{c|c}[\mathbf{I}_k & \mathbf{P}]\end{array}=\begin{array}{c|c}[\mathbf{mI}_k & \mathbf{mP}]\end{array}=\begin{array}{c|c}[\mathbf{m} & \mathbf{b}]\end{array}\\
\mathbf{b} &= \mathbf{m}\mathbf{P}\quad\text{Parity bits of $\mathbf{x}$}
\end{align*}
G m x b = [ I k P ] = 1 0 ⋮ 0 0 1 ⋮ 0 … … ⋱ … 0 0 ⋮ 1 p 0 , 0 p 1 , 0 ⋮ p k − 1 , 0 … … ⋱ … p 0 , n − 2 p 1 , n − 2 ⋮ p k − 1 , n − 2 p 0 , n − 1 p 1 , n − 1 ⋮ p k − 1 , n − 1 = [ m 0 … m n − 2 m k − 1 ] = mG = m [ I k P ] = [ mI k mP ] = [ m b ] = mP Parity bits of x
Parity check matrix H \mathbf{H} H
Transpose P \mathbf{P} P for the parity check matrix
H = [ P T I n − k ] = [ p 0 T p 1 T … p k − 1 T I n − k ] = [ p 0 , 0 … p 0 , k − 2 p 0 , k − 1 p 1 , 0 … p 1 , k − 2 p 1 , k − 1 ⋮ ⋱ ⋮ ⋮ p n − 1 , 0 … p n − 1 , k − 2 p n − 1 , k − 1 1 0 … 0 0 1 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … 1 ] x H T = 0 ⟹ Codeword is valid \begin{align*}
\mathbf{H}&=\begin{array}{c|c}[\mathbf{P}^\text{T} & \mathbf{I}_{n-k}]\end{array}\\
&=\left[
\begin{array}{c|c}
\begin{matrix}
{\textbf{p}_0}^\text{T} & {\textbf{p}_1}^\text{T} & \dots & {\textbf{p}_{k-1}}^\text{T}
\end{matrix}
&
\mathbf{I}_{n-k}\end{array}\right]\\
&=\left[
\begin{array}{c|c}
\begin{matrix}
p_{0,0}& \dots & p_{0,k-2} & p_{0,k-1}\\
p_{1,0}& \dots & p_{1,k-2} & p_{1,k-1}\\
\vdots & \ddots & \vdots & \vdots\\
p_{n-1,0}& \dots & p_{n-1,k-2} & p_{n-1,k-1}\\
\end{matrix}
&
\begin{matrix}
1 & 0 & \dots & 0\\
0 & 1 & \dots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0& 0 & \dots & 1\\
\end{matrix}\end{array}\right]\\
\mathbf{xH}^\text{T}&=\mathbf{0}\implies\text{Codeword is valid}
\end{align*}
H xH T = [ P T I n − k ] = [ p 0 T p 1 T … p k − 1 T I n − k ] = p 0 , 0 p 1 , 0 ⋮ p n − 1 , 0 … … ⋱ … p 0 , k − 2 p 1 , k − 2 ⋮ p n − 1 , k − 2 p 0 , k − 1 p 1 , k − 1 ⋮ p n − 1 , k − 1 1 0 ⋮ 0 0 1 ⋮ 0 … … ⋱ … 0 0 ⋮ 1 = 0 ⟹ Codeword is valid
Procedure to find parity check matrix from list of codewords
From the number of codewords, find k = log 2 ( N ) k=\log_2(N) k = log 2 ( N )
Partition codewords into k k k information bits and remaining bits into n − k n-k n − k parity bits. The information bits should be a simple counter (?).
Express parity bits as a linear combination of information bits
Put coefficients into P \textbf{P} P matrix and find H \textbf{H} H
Example:
x 1 x 2 x 3 x 4 x 5 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 \begin{array}{cccc}
x_1 & x_2 & x_3 & x_4 & x_5 \\\hline
\color{magenta}1&\color{magenta}0&1&1&0\\
\color{magenta}0&\color{magenta}1&1&1&1\\
\color{magenta}0&\color{magenta}0&0&0&0\\
\color{magenta}1&\color{magenta}1&0&0&1\\
\end{array}
x 1 1 0 0 1 x 2 0 1 0 1 x 3 1 1 0 0 x 4 1 1 0 0 x 5 0 1 0 1
Set x 1 , x 2 x_1,x_2 x 1 , x 2 as information bits. Express x 3 , x 4 , x 5 x_3,x_4,x_5 x 3 , x 4 , x 5 in terms of x 1 , x 2 x_1,x_2 x 1 , x 2 .
x 3 = x 1 ⊕ x 2 x 4 = x 1 ⊕ x 2 x 5 = x 2 ⟹ P = x 1 x 2 x 3 1 1 x 4 1 1 x 5 0 1 H = [ 1 1 1 1 0 1 1 0 0 0 1 0 0 0 1 ] \begin{align*}
\begin{aligned}
x_3 &= x_1\oplus x_2\\
x_4 &= x_1\oplus x_2\\
x_5 &= x_2\\
\end{aligned}
\implies\textbf{P}&=
\begin{array}{c|cc}
& x_1 & x_2 \\\hline
x_3&1&1&\\
x_4&1&1&\\
x_5&0&1&\\
\end{array}\\
\textbf{H}&=\left[
\begin{array}{c|c}
\begin{matrix}
1&1\\
1&1\\
0&1\\
\end{matrix}
&
\begin{matrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1\\
\end{matrix}\end{array}\right]
\end{align*}
x 3 x 4 x 5 = x 1 ⊕ x 2 = x 1 ⊕ x 2 = x 2 ⟹ P H = x 3 x 4 x 5 x 1 1 1 0 x 2 1 1 1 = 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1
Error detection and correction
Detection of s s s errors: d min ≥ s + 1 d_\text{min}\geq s+1 d min ≥ s + 1
Correction of u u u errors: d min ≥ 2 u + 1 d_\text{min}\geq 2u+1 d min ≥ 2 u + 1
CHECKLIST
Transfer function in complex envelope form h ~ ( t ) \tilde{h}(t) h ~ ( t ) should be divided by two.
Convolutions: do not forget width when using graphical method
todo: add more items to check