mirror of
https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems.git
synced 2024-11-30 13:40:16 +08:00
2267 lines
1.7 MiB
2267 lines
1.7 MiB
<!DOCTYPE html>
|
||
<html>
|
||
<head>
|
||
<meta charset="UTF-8">
|
||
<title>Idiot's guide to ELEC4402 communication systems</title>
|
||
<style>
|
||
/* From extension vscode.github */
|
||
/*---------------------------------------------------------------------------------------------
|
||
* Copyright (c) Microsoft Corporation. All rights reserved.
|
||
* Licensed under the MIT License. See License.txt in the project root for license information.
|
||
*--------------------------------------------------------------------------------------------*/
|
||
|
||
.vscode-dark img[src$=\#gh-light-mode-only],
|
||
.vscode-light img[src$=\#gh-dark-mode-only],
|
||
.vscode-high-contrast:not(.vscode-high-contrast-light) img[src$=\#gh-light-mode-only],
|
||
.vscode-high-contrast-light img[src$=\#gh-dark-mode-only] {
|
||
display: none;
|
||
}
|
||
|
||
</style>
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex/dist/katex.min.css">
|
||
<link href="https://cdn.jsdelivr.net/npm/katex-copytex@latest/dist/katex-copytex.min.css" rel="stylesheet" type="text/css">
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/Microsoft/vscode/extensions/markdown-language-features/media/markdown.css">
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/Microsoft/vscode/extensions/markdown-language-features/media/highlight.css">
|
||
<style>
|
||
body {
|
||
font-family: -apple-system, BlinkMacSystemFont, 'Segoe WPC', 'Segoe UI', system-ui, 'Ubuntu', 'Droid Sans', sans-serif;
|
||
font-size: 14px;
|
||
line-height: 1.6;
|
||
}
|
||
</style>
|
||
<style>
|
||
.task-list-item {
|
||
list-style-type: none;
|
||
}
|
||
|
||
.task-list-item-checkbox {
|
||
margin-left: -20px;
|
||
vertical-align: middle;
|
||
pointer-events: none;
|
||
}
|
||
</style>
|
||
<style>
|
||
:root {
|
||
--color-note: #0969da;
|
||
--color-tip: #1a7f37;
|
||
--color-warning: #9a6700;
|
||
--color-severe: #bc4c00;
|
||
--color-caution: #d1242f;
|
||
--color-important: #8250df;
|
||
}
|
||
|
||
</style>
|
||
<style>
|
||
@media (prefers-color-scheme: dark) {
|
||
:root {
|
||
--color-note: #2f81f7;
|
||
--color-tip: #3fb950;
|
||
--color-warning: #d29922;
|
||
--color-severe: #db6d28;
|
||
--color-caution: #f85149;
|
||
--color-important: #a371f7;
|
||
}
|
||
}
|
||
|
||
</style>
|
||
<style>
|
||
.markdown-alert {
|
||
padding: 0.5rem 1rem;
|
||
margin-bottom: 16px;
|
||
color: inherit;
|
||
border-left: .25em solid #888;
|
||
}
|
||
|
||
.markdown-alert>:first-child {
|
||
margin-top: 0
|
||
}
|
||
|
||
.markdown-alert>:last-child {
|
||
margin-bottom: 0
|
||
}
|
||
|
||
.markdown-alert .markdown-alert-title {
|
||
display: flex;
|
||
font-weight: 500;
|
||
align-items: center;
|
||
line-height: 1
|
||
}
|
||
|
||
.markdown-alert .markdown-alert-title .octicon {
|
||
margin-right: 0.5rem;
|
||
display: inline-block;
|
||
overflow: visible !important;
|
||
vertical-align: text-bottom;
|
||
fill: currentColor;
|
||
}
|
||
|
||
.markdown-alert.markdown-alert-note {
|
||
border-left-color: var(--color-note);
|
||
}
|
||
|
||
.markdown-alert.markdown-alert-note .markdown-alert-title {
|
||
color: var(--color-note);
|
||
}
|
||
|
||
.markdown-alert.markdown-alert-important {
|
||
border-left-color: var(--color-important);
|
||
}
|
||
|
||
.markdown-alert.markdown-alert-important .markdown-alert-title {
|
||
color: var(--color-important);
|
||
}
|
||
|
||
.markdown-alert.markdown-alert-warning {
|
||
border-left-color: var(--color-warning);
|
||
}
|
||
|
||
.markdown-alert.markdown-alert-warning .markdown-alert-title {
|
||
color: var(--color-warning);
|
||
}
|
||
|
||
.markdown-alert.markdown-alert-tip {
|
||
border-left-color: var(--color-tip);
|
||
}
|
||
|
||
.markdown-alert.markdown-alert-tip .markdown-alert-title {
|
||
color: var(--color-tip);
|
||
}
|
||
|
||
.markdown-alert.markdown-alert-caution {
|
||
border-left-color: var(--color-caution);
|
||
}
|
||
|
||
.markdown-alert.markdown-alert-caution .markdown-alert-title {
|
||
color: var(--color-caution);
|
||
}
|
||
|
||
</style>
|
||
|
||
</head>
|
||
<body class="vscode-body vscode-light">
|
||
<h1 id="idiots-guide-to-elec4402-communication-systems">Idiot's guide to ELEC4402 communication systems</h1>
|
||
<h2 id="license-and-information">License and information</h2>
|
||
<p>Notes are open-source and licensed under the GNU GPL-3.0. <strong>You must include the <a href="/COPYING.txt">full-text of the license</a> and follow its terms when using these notes or any diagrams in derivative works</strong> (but not when printing as notes)</p>
|
||
<p>Copyright (C) 2024 Peter Tanner</p>
|
||
<details>
|
||
<summary>GPL copyright information</summary>
|
||
Copyright (C) 2024 Peter Tanner
|
||
<p>This program is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.</p>
|
||
<p>This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.</p>
|
||
<p>You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.</p>
|
||
</details>
|
||
<p><a href="/README.pdf">Access a PDF render of the notes (<strong>It is recommended to refer to this instead of the GitHub rendered page!</strong>)</a></p>
|
||
<p>I accept pull requests or suggestions but the content must not be copyrighted under a non-GPL compatible license.</p>
|
||
<h2 id="fourier-transform-identities">Fourier transform identities</h2>
|
||
<table>
|
||
<thead>
|
||
<tr>
|
||
<th><strong>Time Function</strong></th>
|
||
<th><strong>Fourier Transform</strong></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>rect</mtext><mrow><mo fence="true">(</mo><mfrac><mi>t</mi><mi>T</mi></mfrac><mo fence="true">)</mo></mrow><mspace width="1em"/><mi mathvariant="normal">Π</mi><mrow><mo fence="true">(</mo><mfrac><mi>t</mi><mi>T</mi></mfrac><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2em;vertical-align:-0.35em;"></span><span class="mord text"><span class="mord">rect</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8246em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">Π</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8246em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi><mtext>sinc</mtext><mo stretchy="false">(</mo><mi>f</mi><mi>T</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">T \text{sinc}(fT)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mord text"><span class="mord">sinc</span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mclose">)</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>sinc</mtext><mo stretchy="false">(</mo><mn>2</mn><mi>W</mi><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{sinc}(2Wt)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">sinc</span></span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mrow><mn>2</mn><mi>W</mi></mrow></mfrac><mtext>rect</mtext><mrow><mo fence="true">(</mo><mfrac><mi>f</mi><mrow><mn>2</mn><mi>W</mi></mrow></mfrac><mo fence="true">)</mo></mrow><mspace width="1em"/><mfrac><mn>1</mn><mrow><mn>2</mn><mi>W</mi></mrow></mfrac><mi mathvariant="normal">Π</mi><mrow><mo fence="true">(</mo><mfrac><mi>f</mi><mrow><mn>2</mn><mi>W</mi></mrow></mfrac><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">W</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord text"><span class="mord">rect</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">W</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">W</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord">Π</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">W</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>a</mi><mi>t</mi><mo stretchy="false">)</mo><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo separator="true">,</mo><mspace width="1em"/><mi>a</mi><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\exp(-at)u(t),\quad a>0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal">a</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mrow><mi>a</mi><mo>+</mo><mi>j</mi><mn>2</mn><mi>π</mi><mi>f</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{1}{a + j2\pi f}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3262em;vertical-align:-0.4811em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4811em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>a</mi><mo stretchy="false">∣</mo><mi>t</mi><mo stretchy="false">∣</mo><mo stretchy="false">)</mo><mo separator="true">,</mo><mspace width="1em"/><mi>a</mi><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\exp(-a\lvert t \rvert),\quad a>0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal">a</span><span class="mopen">∣</span><span class="mord mathnormal">t</span><span class="mclose">∣)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mn>2</mn><mi>a</mi></mrow><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>f</mi><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{2a}{a^2 + (2\pi f)^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3651em;vertical-align:-0.52em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mbin mtight">+</span><span class="mopen mtight">(</span><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span><span class="mclose mtight"><span class="mclose mtight">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">a</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>π</mi><msup><mi>t</mi><mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\exp(-\pi t^2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>π</mi><msup><mi>f</mi><mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\exp(-\pi f^2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>−</mo><mfrac><mrow><mo stretchy="false">∣</mo><mi>t</mi><mo stretchy="false">∣</mo></mrow><mi>T</mi></mfrac><mo separator="true">,</mo><mspace width="1em"/><mo stretchy="false">∣</mo><mi>t</mi><mo stretchy="false">∣</mo><mo><</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">1 - \frac{\lvert t \rvert}{T},\quad\lvert t \rvert < T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.355em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">∣</span><span class="mord mathnormal mtight">t</span><span class="mclose mtight">∣</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mopen">∣</span><span class="mord mathnormal">t</span><span class="mclose">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi><msup><mtext>sinc</mtext><mn>2</mn></msup><mo stretchy="false">(</mo><mi>f</mi><mi>T</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">T \text{sinc}^2(fT)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1219em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mord"><span class="mord text"><span class="mord">sinc</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8719em;"><span style="top:-3.1208em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mclose">)</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>δ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\delta(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\delta(f)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>δ</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\delta(t - t_0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>j</mi><mn>2</mn><mi>π</mi><mi>f</mi><msub><mi>t</mi><mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\exp(-j2\pi f t_0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">g(t-a)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">a</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>j</mi><mn>2</mn><mi>π</mi><mi>f</mi><mi>a</mi><mo stretchy="false">)</mo><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mspace width="1em"/><mtext>shift property</mtext></mrow><annotation encoding="application/x-tex">\exp(-j2\pi fa)G(f)\quad\text{shift property}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mord mathnormal">G</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">shift property</span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mo stretchy="false">(</mo><mi>b</mi><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">g(bt)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">b</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mi mathvariant="normal">/</mi><mi>b</mi><mo stretchy="false">)</mo></mrow><mrow><mi mathvariant="normal">∣</mi><mi>b</mi><mi mathvariant="normal">∣</mi></mrow></mfrac><mspace width="1em"/><mtext>scaling property</mtext></mrow><annotation encoding="application/x-tex">\frac{G(f/b)}{|b|}\quad\text{scaling property}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.53em;vertical-align:-0.52em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∣</span><span class="mord mathnormal mtight">b</span><span class="mord mtight">∣</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">G</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span><span class="mord mtight">/</span><span class="mord mathnormal mtight">b</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">scaling property</span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mo stretchy="false">(</mo><mi>b</mi><mi>t</mi><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">g(bt-a)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">b</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">a</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mrow><mi mathvariant="normal">∣</mi><mi>b</mi><mi mathvariant="normal">∣</mi></mrow></mfrac><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>j</mi><mn>2</mn><mi>π</mi><mi>a</mi><mo stretchy="false">(</mo><mi>f</mi><mi mathvariant="normal">/</mi><mi>b</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>⋅</mo><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mi mathvariant="normal">/</mi><mi>b</mi><mo stretchy="false">)</mo><mspace width="1em"/><mtext>shift and scale</mtext></mrow><annotation encoding="application/x-tex">\frac{1}{|b|}\exp(-j2\pi a(f/b))\cdot G(f/b)\quad\text{shift and scale}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3651em;vertical-align:-0.52em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∣</span><span class="mord mathnormal mtight">b</span><span class="mord mtight">∣</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord">2</span><span class="mord mathnormal">πa</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord">/</span><span class="mord mathnormal">b</span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">G</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord">/</span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">shift and scale</span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mi>d</mi><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mi>g</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\frac{d}{dt}g(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2251em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8801em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mathnormal mtight">t</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>j</mi><mn>2</mn><mi>π</mi><mi>f</mi><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mspace width="1em"/><mtext>differentiation property</mtext></mrow><annotation encoding="application/x-tex">j2\pi fG(f)\quad\text{differentiation property}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord mathnormal">G</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">differentiation property</span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">G</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mo stretchy="false">(</mo><mo>−</mo><mi>f</mi><mo stretchy="false">)</mo><mspace width="1em"/><mtext>duality property</mtext></mrow><annotation encoding="application/x-tex">g(-f)\quad\text{duality property}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">duality property</span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">g(t)h(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>∗</mo><mi>H</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G(f)*H(f)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">G</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>∗</mo><mi>h</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">g(t)*h(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mi>H</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G(f)H(f)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">G</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mi>j</mi><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\exp(j2\pi f_c t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo>−</mo><msub><mi>f</mi><mi>c</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\delta(f - f_c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\cos(2\pi f_c t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">[</mo><mi>δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo>−</mo><msub><mi>f</mi><mi>c</mi></msub><mo stretchy="false">)</mo><mo>+</mo><mi>δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo>+</mo><msub><mi>f</mi><mi>c</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">\frac{1}{2}[\delta(f - f_c) + \delta(f + f_c)]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1901em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)]</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\sin(2\pi f_c t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mrow><mn>2</mn><mi>j</mi></mrow></mfrac><mo stretchy="false">[</mo><mi>δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo>−</mo><msub><mi>f</mi><mi>c</mi></msub><mo stretchy="false">)</mo><mo>−</mo><mi>δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo>+</mo><msub><mi>f</mi><mi>c</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">\frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3262em;vertical-align:-0.4811em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4811em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)]</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>sgn</mtext><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{sgn}(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">sgn</span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mrow><mi>j</mi><mi>π</mi><mi>f</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{1}{j\pi f}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3262em;vertical-align:-0.4811em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">jπ</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4811em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mrow><mi>π</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{1}{\pi t}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1901em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span><span class="mord mathnormal mtight">t</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>j</mi><mtext>sgn</mtext><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">-j \text{sgn}(f)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord text"><span class="mord">sgn</span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">u(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>+</mo><mfrac><mn>1</mn><mrow><mi>j</mi><mn>2</mn><mi>π</mi><mi>f</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1901em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.3262em;vertical-align:-0.4811em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4811em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></msubsup><mi>δ</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><mi>n</mi><msub><mi>T</mi><mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\sum_{n=-\infty}^{\infty} \delta(t - nT_0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1623em;vertical-align:-0.358em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:0em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8043em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.358em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><msub><mi>T</mi><mn>0</mn></msub></mfrac><msubsup><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></msubsup><mi>δ</mi><mrow><mo fence="true">(</mo><mi>f</mi><mo>−</mo><mfrac><mi>n</mi><msub><mi>T</mi><mn>0</mn></msub></mfrac><mo fence="true">)</mo></mrow><mo>=</mo><msub><mi>f</mi><mn>0</mn></msub><msubsup><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></msubsup><mi>δ</mi><mrow><mo fence="true">(</mo><mi>f</mi><mo>−</mo><mi>n</mi><msub><mi>f</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)=f_0 \sum_{n=-\infty}^{\infty} \delta\left(f - n f_0\right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:-0.1389em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4451em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:0em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8043em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.358em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6954em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:-0.1389em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4451em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1623em;vertical-align:-0.358em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:0em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8043em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.358em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left right" columnspacing="0em 1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mrow><mo fence="true">{</mo><mtable rowspacing="0.36em" columnalign="left left" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn><mo separator="true">,</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>t</mi><mo>></mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo separator="true">,</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>t</mi><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn><mo separator="true">,</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>t</mi><mo><</mo><mn>0</mn></mrow></mstyle></mtd></mtr></mtable></mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>Unit Step Function</mtext></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mtext>sgn</mtext><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mrow><mo fence="true">{</mo><mtable rowspacing="0.36em" columnalign="left left" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>+</mo><mn>1</mn><mo separator="true">,</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>t</mi><mo>></mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn><mo separator="true">,</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>t</mi><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mn>1</mn><mo separator="true">,</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>t</mi><mo><</mo><mn>0</mn></mrow></mstyle></mtd></mtr></mtable></mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>Signum Function</mtext></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mtext>sinc</mtext><mo stretchy="false">(</mo><mn>2</mn><mi>W</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>W</mi><mi>t</mi><mo stretchy="false">)</mo></mrow><mrow><mn>2</mn><mi>π</mi><mi>W</mi><mi>t</mi></mrow></mfrac></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>sinc Function</mtext></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mtext>rect</mtext><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi mathvariant="normal">Π</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mrow><mo fence="true">{</mo><mtable rowspacing="0.36em" columnalign="left left" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn><mo separator="true">,</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mn>0.5</mn><mo><</mo><mi>t</mi><mo><</mo><mn>0.5</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn><mo separator="true">,</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo stretchy="false">∣</mo><mi>t</mi><mo stretchy="false">∣</mo><mo>></mo><mn>0.5</mn></mrow></mstyle></mtd></mtr></mtable></mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>Rectangular/Gate Function</mtext></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>g</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>∗</mo><mi>h</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>g</mi><mo>∗</mo><mi>h</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msubsup><mo>∫</mo><mi mathvariant="normal">∞</mi><mi mathvariant="normal">∞</mi></msubsup><mi>g</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo stretchy="false">)</mo><mi>d</mi><mi>τ</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>Convolution</mtext></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
u(t) &= \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}&\text{Unit Step Function}\\
|
||
\text{sgn}(t) &= \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}&\text{Signum Function}\\
|
||
\text{sinc}(2Wt) &= \frac{\sin(2\pi W t)}{2\pi W t}&\text{sinc Function}\\
|
||
\text{rect}(t) = \Pi(t) &= \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & \lvert t \rvert > 0.5 \end{cases}&\text{Rectangular/Gate Function}\\
|
||
g(t)*h(t)=(g*h)(t)&=\int_\infty^\infty g(\tau)h(t-\tau)d\tau&\text{Convolution}\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:17.5793em;vertical-align:-8.5396em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:9.0396em;"><span style="top:-11.0396em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-6.4196em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord text"><span class="mord">sgn</span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-2.7826em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord text"><span class="mord">sinc</span></span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-0.0466em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord text"><span class="mord">rect</span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">Π</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:2.9177em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">h</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:8.5396em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:9.0396em;"><span style="top:-11.0396em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.35em;"><span style="top:-2.2em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎩</span></span></span><span style="top:-2.192em;"><span class="pstrut" style="height:3.15em;"></span><span style="height:0.316em;width:0.8889em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.8889em" height="0.316em" style="width:0.8889em" viewBox="0 0 888.89 316" preserveAspectRatio="xMinYMin"><path d="M384 0 H504 V316 H384z M384 0 H504 V316 H384z"/></svg></span></span><span style="top:-3.15em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎨</span></span></span><span style="top:-4.292em;"><span class="pstrut" style="height:3.15em;"></span><span style="height:0.316em;width:0.8889em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.8889em" height="0.316em" style="width:0.8889em" viewBox="0 0 888.89 316" preserveAspectRatio="xMinYMin"><path d="M384 0 H504 V316 H384z M384 0 H504 V316 H384z"/></svg></span></span><span style="top:-4.6em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎧</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.85em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.41em;"><span style="top:-4.41em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord">1</span><span class="mpunct">,</span></span></span><span style="top:-2.97em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mpunct">,</span></span></span><span style="top:-1.53em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord">0</span><span class="mpunct">,</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.91em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:1em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.41em;"><span style="top:-4.41em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span></span></span><span style="top:-2.97em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span></span></span><span style="top:-1.53em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.91em;"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-6.4196em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.35em;"><span style="top:-2.2em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎩</span></span></span><span style="top:-2.192em;"><span class="pstrut" style="height:3.15em;"></span><span style="height:0.316em;width:0.8889em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.8889em" height="0.316em" style="width:0.8889em" viewBox="0 0 888.89 316" preserveAspectRatio="xMinYMin"><path d="M384 0 H504 V316 H384z M384 0 H504 V316 H384z"/></svg></span></span><span style="top:-3.15em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎨</span></span></span><span style="top:-4.292em;"><span class="pstrut" style="height:3.15em;"></span><span style="height:0.316em;width:0.8889em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.8889em" height="0.316em" style="width:0.8889em" viewBox="0 0 888.89 316" preserveAspectRatio="xMinYMin"><path d="M384 0 H504 V316 H384z M384 0 H504 V316 H384z"/></svg></span></span><span style="top:-4.6em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎧</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.85em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.41em;"><span style="top:-4.41em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord">+</span><span class="mord">1</span><span class="mpunct">,</span></span></span><span style="top:-2.97em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord">0</span><span class="mpunct">,</span></span></span><span style="top:-1.53em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord">−</span><span class="mord">1</span><span class="mpunct">,</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.91em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:1em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.41em;"><span style="top:-4.41em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span></span></span><span style="top:-2.97em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span></span></span><span style="top:-1.53em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.91em;"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-2.7826em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">πW</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">sin</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">πW</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-0.0466em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">{</span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.69em;"><span style="top:-3.69em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord">1</span><span class="mpunct">,</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord">0</span><span class="mpunct">,</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.19em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:1em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.69em;"><span style="top:-3.69em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord">−</span><span class="mord">0.5</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0.5</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mopen">∣</span><span class="mord mathnormal">t</span><span class="mclose">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0.5</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.19em;"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:2.9177em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4143em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span><span style="top:-3.8129em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9119em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:8.5396em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:1em;"></span><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:9.0396em;"><span style="top:-11.0396em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord text"><span class="mord">Unit Step Function</span></span></span></span><span style="top:-6.4196em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord text"><span class="mord">Signum Function</span></span></span></span><span style="top:-2.7826em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord text"><span class="mord">sinc Function</span></span></span></span><span style="top:-0.0466em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord text"><span class="mord">Rectangular/Gate Function</span></span></span></span><span style="top:2.9177em;"><span class="pstrut" style="height:4.41em;"></span><span class="mord"><span class="mord text"><span class="mord">Convolution</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:8.5396em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="fourier-transform-of-continuous-time-periodic-signal">Fourier transform of continuous time periodic signal</h3>
|
||
<p>Required for some questions on <strong>sampling</strong>:</p>
|
||
<!-- Transform a continuous time-periodic signal $x(t)=\sum_{n=-\infty}^\infty x_p(t-nT_s)$ with period $T_s$: -->
|
||
<p>Transform a continuous time-periodic signal <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>p</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></msubsup><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><mi>n</mi><msub><mi>T</mi><mi>s</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">p</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1623em;vertical-align:-0.358em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:0em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8043em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.358em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span> with period <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>T</mi><mi>s</mi></msub></mrow><annotation encoding="application/x-tex">T_s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>:</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>X</mi><mi>p</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>C</mi><mi>n</mi></msub><mi>δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo>−</mo><mi>n</mi><msub><mi>f</mi><mi>s</mi></msub><mo stretchy="false">)</mo><mspace width="1em"/><msub><mi>f</mi><mi>s</mi></msub><mo>=</mo><mfrac><mn>1</mn><msub><mi>T</mi><mi>s</mi></msub></mfrac></mrow><annotation encoding="application/x-tex">X_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">p</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.9597em;vertical-align:-1.3083em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.9em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3083em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1574em;vertical-align:-0.836em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
|
||
<p>Calculate <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>C</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">C_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> coefficient as follows from <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>p</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_p(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">p</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span>:</p>
|
||
<!-- Remember $X_p(f)\leftrightarrow x_p(t)$ and **NOT** $\color{red}X_p(f)\leftrightarrow x_p(t-nT_s)$ -->
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>C</mi><mi>n</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><msub><mi>T</mi><mi>s</mi></msub></mfrac><msub><mo>∫</mo><msub><mi>T</mi><mi>s</mi></msub></msub><msub><mi>x</mi><mi>p</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>j</mi><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>s</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><msub><mi>T</mi><mi>s</mi></msub></mfrac><mi>X</mi><mo stretchy="false">(</mo><mi>n</mi><msub><mi>f</mi><mi>s</mi></msub><mo stretchy="false">)</mo><mspace width="1em"/><mstyle mathcolor="red"><mtext>(TODO: Check)</mtext><mspace width="1em"/><mstyle mathcolor="white"><mrow><mstyle scriptlevel="0" displaystyle="false"><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><mi>n</mi><msub><mi>T</mi><mi>s</mi></msub><mo stretchy="false">)</mo></mstyle><mtext> is contained in the interval </mtext><mstyle scriptlevel="0" displaystyle="false"><msub><mi>T</mi><mi>s</mi></msub></mstyle></mrow></mstyle></mstyle></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
% C_n&=X_p(nf_s)\\
|
||
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
|
||
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:5.1295em;vertical-align:-2.3147em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.8147em;"><span style="top:-4.8147em;"><span class="pstrut" style="height:3.36em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.1813em;"><span class="pstrut" style="height:3.36em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.3147em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.8147em;"><span style="top:-4.8147em;"><span class="pstrut" style="height:3.36em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:-0.4336em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:-0.1389em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.012em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">p</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-2.1813em;"><span class="pstrut" style="height:3.36em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text" style="color:red;"><span class="mord" style="color:red;">(TODO: Check)</span></span><span class="mspace" style="color:red;margin-right:1em;"></span><span class="mord text" style="color:white;"><span class="mord mathnormal" style="color:white;">x</span><span class="mopen" style="color:white;">(</span><span class="mord mathnormal" style="color:white;">t</span><span class="mspace" style="color:white;margin-right:0.2222em;"></span><span class="mbin" style="color:white;">−</span><span class="mspace" style="color:white;margin-right:0.2222em;"></span><span class="mord mathnormal" style="color:white;">n</span><span class="mord" style="color:white;"><span class="mord mathnormal" style="margin-right:0.13889em;color:white;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:white;"><span class="mord mathnormal mtight" style="color:white;">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose" style="color:white;">)</span><span class="mord" style="color:white;"> is contained in the interval </span><span class="mord" style="color:white;"><span class="mord mathnormal" style="margin-right:0.13889em;color:white;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:white;"><span class="mord mathnormal mtight" style="color:white;">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.3147em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="textrect-function"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>rect</mtext></mrow><annotation encoding="application/x-tex">\text{rect}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord text"><span class="mord">rect</span></span></span></span></span> function</h3>
|
||
<p><img src="images/rect.drawio.svg" alt="rect"></p>
|
||
<h3 id="bessel-function">Bessel function</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><munder><mo>∑</mo><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">Z</mi></mrow></munder><msup><msub><mi>J</mi><mi>n</mi></msub><mn>2</mn></msup><mo stretchy="false">(</mo><mi>β</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>1</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>J</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>β</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><msup><mo stretchy="false">)</mo><mi>n</mi></msup><msub><mi>J</mi><mrow><mo>−</mo><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>β</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\sum_{n\in\mathbb{Z}}{J_n}^2(\beta)&=1\\
|
||
J_n(\beta)&=(-1)^nJ_{-n}(\beta)
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.1756em;vertical-align:-1.8378em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.3378em;"><span style="top:-4.3378em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.05em;"><span style="top:-1.8518em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">∈</span><span class="mord mathbb mtight">Z</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3256em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8873em;"><span style="top:-3.1362em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mclose">)</span></span></span><span style="top:-1.8722em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.8378em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.3378em;"><span style="top:-4.3378em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">1</span></span></span><span style="top:-1.8722em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2583em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.8378em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="white-noise">White noise</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>R</mi><mi>W</mi></msub><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msub><mi>N</mi><mn>0</mn></msub><mn>2</mn></mfrac><mi>δ</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mi>k</mi><mi>T</mi></mrow><mn>2</mn></mfrac><mi>δ</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>σ</mi><mn>2</mn></msup><mi>δ</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mi>w</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msub><mi>N</mi><mn>0</mn></msub><mn>2</mn></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>N</mi><mn>0</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>k</mi><mi>T</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mi>y</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi mathvariant="normal">∣</mi><mi>H</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><msup><mi mathvariant="normal">∣</mi><mn>2</mn></msup><msub><mi>G</mi><mi>w</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mi>y</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><msub><mi>G</mi><mi>w</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
R_W(\tau)&=\frac{N_0}{2}\delta(\tau)=\frac{kT}{2}\delta(\tau)=\sigma^2\delta(\tau)\\
|
||
G_w(f)&=\frac{N_0}{2}\\
|
||
N_0&=kT\\
|
||
G_y(f)&=|H(f)|^2G_w(f)\\
|
||
G_y(f)&=G(f)G_w(f)\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:9.2279em;vertical-align:-4.3639em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.8639em;"><span style="top:-6.8639em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">W</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span></span></span><span style="top:-4.5176em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02691em;">w</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:-2.6916em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-1.1675em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:0.3325em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.3639em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.8639em;"><span style="top:-6.8639em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span></span></span><span style="top:-4.5176em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-2.6916em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-1.1675em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02691em;">w</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:0.3325em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">G</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02691em;">w</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.3639em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="wss">WSS</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>μ</mi><mi>X</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>μ</mi><mi>X</mi></msub><mtext> Constant</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>R</mi><mrow><mi>X</mi><mi>X</mi></mrow></msub><mo stretchy="false">(</mo><msub><mi>t</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>t</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>R</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>t</mi><mn>1</mn></msub><mo>−</mo><msub><mi>t</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mi>R</mi><mi>X</mi></msub><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>E</mi><mo stretchy="false">[</mo><mi>X</mi><mo stretchy="false">(</mo><msub><mi>t</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mi>X</mi><mo stretchy="false">(</mo><msub><mi>t</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>E</mi><mo stretchy="false">[</mo><mi>X</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>X</mi><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mi>τ</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\mu_X(t) &= \mu_X\text{ Constant}\\
|
||
R_{XX}(t_1,t_2)&=R_X(t_1-t_2)=R_X(\tau)\\
|
||
E[X(t_1)X(t_2)]&=E[X(t)X(t+\tau)]
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.5em;vertical-align:-2em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.5em;"><span style="top:-4.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">XX</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-1.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.5em;"><span style="top:-4.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord text"><span class="mord"> Constant</span></span></span></span><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span></span></span><span style="top:-1.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="ergodicity">Ergodicity</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mpadded><mo stretchy="false">⟨</mo><mrow><mi>X</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">⟩</mo></mpadded><mi>T</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>T</mi></mrow></mfrac><msubsup><mo>∫</mo><mrow><mo>−</mo><mi>T</mi></mrow><mi>T</mi></msubsup><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mpadded><mo stretchy="false">⟨</mo><mrow><mi>X</mi><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mi>τ</mi><mo stretchy="false">)</mo><mi>X</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">⟩</mo></mpadded><mi>T</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>T</mi></mrow></mfrac><msubsup><mo>∫</mo><mrow><mo>−</mo><mi>T</mi></mrow><mi>T</mi></msubsup><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mi>τ</mi><mo stretchy="false">)</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>E</mi><mo stretchy="false">[</mo><msub><mpadded><mo stretchy="false">⟨</mo><mrow><mi>X</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">⟩</mo></mpadded><mi>T</mi></msub><mo stretchy="false">]</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>T</mi></mrow></mfrac><msubsup><mo>∫</mo><mrow><mo>−</mo><mi>T</mi></mrow><mi>T</mi></msubsup><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>T</mi></mrow></mfrac><msubsup><mo>∫</mo><mrow><mo>−</mo><mi>T</mi></mrow><mi>T</mi></msubsup><msub><mi>m</mi><mi>X</mi></msub><mi>d</mi><mi>t</mi><mo>=</mo><msub><mi>m</mi><mi>X</mi></msub></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\braket{X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t)dt\\
|
||
\braket{X(t+\tau)X(t)}_T&=\frac{1}{2T}\int_{-T}^{T}x(t+\tau)x(t)dt\\
|
||
E[\braket{X(t)}_T]&=\frac{1}{2T}\int_{-T}^{T}x(t)dt=\frac{1}{2T}\int_{-T}^{T}m_Xdt=m_X\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:8.5845em;vertical-align:-4.0423em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.5423em;"><span style="top:-6.5423em;"><span class="pstrut" style="height:3.5912em;"></span><span class="mord"><span class="minner"><span class="minner"><span class="mopen">⟨</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span><span class="mclose">⟩</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1786em;"><span style="top:-2.4003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2997em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.6808em;"><span class="pstrut" style="height:3.5912em;"></span><span class="mord"><span class="minner"><span class="minner"><span class="mopen">⟨</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span><span class="mclose">⟩</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1786em;"><span style="top:-2.4003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2997em;"><span></span></span></span></span></span></span></span></span><span style="top:-0.8192em;"><span class="pstrut" style="height:3.5912em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">[</span><span class="minner"><span class="minner"><span class="mopen">⟨</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span><span class="mclose">⟩</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1786em;"><span style="top:-2.4003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2997em;"><span></span></span></span></span></span></span><span class="mclose">]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.0423em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.5423em;"><span style="top:-6.5423em;"><span class="pstrut" style="height:3.5912em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5912em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span style="top:-3.8129em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9703em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.6808em;"><span class="pstrut" style="height:3.5912em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5912em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span style="top:-3.8129em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9703em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-0.8192em;"><span class="pstrut" style="height:3.5912em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5912em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span style="top:-3.8129em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9703em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5912em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span style="top:-3.8129em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9703em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.0423em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<table>
|
||
<thead>
|
||
<tr>
|
||
<th>Type</th>
|
||
<th>Normal</th>
|
||
<th>Mean square sense</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td>ergodic in mean</td>
|
||
<td><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>T</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><msub><mpadded><mo stretchy="false">⟨</mo><mrow><mi>X</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">⟩</mo></mpadded><mi>T</mi></msub><mo>=</mo><msub><mi>m</mi><mi>X</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>m</mi><mi>X</mi></msub></mrow><annotation encoding="application/x-tex">\lim_{T\to\infty}\braket{X(t)}_T=m_X(t)=m_X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.4943em;vertical-align:-0.7443em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.3557em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7443em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen">⟨</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span><span class="mclose">⟩</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1786em;"><span style="top:-2.4003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2997em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p>
|
||
</td>
|
||
<td><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>T</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><mtext>VAR</mtext><mo stretchy="false">[</mo><msub><mpadded><mo stretchy="false">⟨</mo><mrow><mi>X</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">⟩</mo></mpadded><mi>T</mi></msub><mo stretchy="false">]</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\lim_{T\to\infty}\text{VAR}[\braket{X(t)}_T]=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.4943em;vertical-align:-0.7443em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.3557em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7443em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord text"><span class="mord">VAR</span></span><span class="mopen">[</span><span class="minner"><span class="minner"><span class="mopen">⟨</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span><span class="mclose">⟩</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1786em;"><span style="top:-2.4003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2997em;"><span></span></span></span></span></span></span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>ergodic in autocorrelation function</td>
|
||
<td><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>T</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><msub><mpadded><mo stretchy="false">⟨</mo><mrow><mi>X</mi><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mi>τ</mi><mo stretchy="false">)</mo><mi>X</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">⟩</mo></mpadded><mi>T</mi></msub><mo>=</mo><msub><mi>R</mi><mi>X</mi></msub><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\lim_{T\to\infty}\braket{X(t+\tau)X(t)}_T=R_X(\tau)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.4943em;vertical-align:-0.7443em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.3557em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7443em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen">⟨</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span><span class="mclose">⟩</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1786em;"><span style="top:-2.4003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2997em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span></span></span></span></span></p>
|
||
</td>
|
||
<td><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>T</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><mtext>VAR</mtext><mo stretchy="false">[</mo><msub><mpadded><mo stretchy="false">⟨</mo><mrow><mi>X</mi><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mi>τ</mi><mo stretchy="false">)</mo><mi>X</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">⟩</mo></mpadded><mi>T</mi></msub><mo stretchy="false">]</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\lim_{T\to\infty}\text{VAR}[\braket{X(t+\tau)X(t)}_T]=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.4943em;vertical-align:-0.7443em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.3557em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7443em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord text"><span class="mord">VAR</span></span><span class="mopen">[</span><span class="minner"><span class="minner"><span class="mopen">⟨</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span><span class="mclose">⟩</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1786em;"><span style="top:-2.4003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2997em;"><span></span></span></span></span></span></span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p>
|
||
</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<p><strong>A WSS random process needs to be both ergodic in mean and autocorrelation to be considered an ergodic process</strong></p>
|
||
<h3 id="other-identities">Other identities</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>f</mi><mo>∗</mo><mo stretchy="false">(</mo><mi>g</mi><mo>∗</mo><mi>h</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mi>f</mi><mo>∗</mo><mi>g</mi><mo stretchy="false">)</mo><mo>∗</mo><mi>h</mi><mspace width="1em"/><mtext>Convolution associative</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>a</mi><mo stretchy="false">(</mo><mi>f</mi><mo>∗</mo><mi>g</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>f</mi><mo stretchy="false">)</mo><mo>∗</mo><mi>g</mi><mspace width="1em"/><mtext>Convolution associative</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><munderover><mo>∑</mo><mrow><mi>x</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></munderover><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mi>a</mi><mo stretchy="false">)</mo><mi>δ</mi><mo stretchy="false">(</mo><mi>ω</mi><mo>−</mo><mi>x</mi><mi>b</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>f</mi><mrow><mo fence="true">(</mo><mfrac><mrow><mi>ω</mi><mi>a</mi></mrow><mi>b</mi></mfrac><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
f*(g*h) &=(f*g)*h\quad\text{Convolution associative}\\
|
||
a(f*g) &= (af)*g \quad\text{Convolution associative}\\
|
||
\sum_{x=-\infty}^\infty(f(x a)\delta(\omega-x b))&=f\left(\frac{\omega a}{b}\right)
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6.2597em;vertical-align:-2.8799em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.3799em;"><span style="top:-6.1913em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">h</span><span class="mclose">)</span></span></span><span style="top:-4.6913em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose">)</span></span></span><span style="top:-2.3799em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.9em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3083em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">x</span><span class="mord mathnormal">b</span><span class="mclose">))</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.8799em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.3799em;"><span style="top:-6.1913em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">h</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Convolution associative</span></span></span></span><span style="top:-4.6913em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Convolution associative</span></span></span></span><span style="top:-2.3799em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">b</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">ωa</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.8799em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="other-trig">Other trig</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>cos</mi><mo></mo><mn>2</mn><mi>θ</mi><mo>=</mo><mn>2</mn><msup><mrow><mi>cos</mi><mo></mo></mrow><mn>2</mn></msup><mi>θ</mi><mo>−</mo><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>⇔</mo><mfrac><mrow><mi>cos</mi><mo></mo><mn>2</mn><mi>θ</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mo>=</mo><msup><mrow><mi>cos</mi><mo></mo></mrow><mn>2</mn></msup><mi>θ</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msup><mi>e</mi><mrow><mo>−</mo><mi>j</mi><mi>α</mi></mrow></msup><mo>−</mo><msup><mi>e</mi><mrow><mi>j</mi><mi>α</mi></mrow></msup></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mn>2</mn><mi>j</mi><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>α</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msup><mi>e</mi><mrow><mo>−</mo><mi>j</mi><mi>α</mi></mrow></msup><mo>+</mo><msup><mi>e</mi><mrow><mi>j</mi><mi>α</mi></mrow></msup></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>α</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo>−</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo>−</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mo>∫</mo><mrow><mi>x</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></msub><mtext>sinc</mtext><mo stretchy="false">(</mo><mi>A</mi><mi>x</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mi mathvariant="normal">∣</mi><mi>A</mi><mi mathvariant="normal">∣</mi></mrow></mfrac></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\cos2\theta=2 \cos^2 \theta-1&\Leftrightarrow\frac{\cos2\theta+1}{2}=\cos^2\theta\\
|
||
e^{-j\alpha}-e^{j\alpha}&=-2j \sin(\alpha)\\
|
||
e^{-j\alpha}+e^{j\alpha}&=2 \cos(\alpha)\\
|
||
\cos(-A)&=\cos(A)\\
|
||
\sin(-A)&=-\sin(A)\\
|
||
\sin(A+\pi/2)&=\cos(A)\\
|
||
\sin(A-\pi/2)&=-\cos(A)\\
|
||
\cos(A-\pi/2)&=\sin(A)\\
|
||
\cos(A+\pi/2)&=-\sin(A)\\
|
||
\int_{x\in\mathbb{R}}\text{sinc}(A x) &= \frac{1}{|A|}\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:17.0261em;vertical-align:-8.263em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:8.763em;"><span style="top:-10.763em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">cos</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span></span></span><span style="top:-8.9024em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span></span></span></span></span></span></span></span><span style="top:-7.3677em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span></span></span></span></span></span></span></span><span style="top:-5.8677em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mop">cos</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span><span style="top:-4.3677em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mop">sin</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span><span style="top:-2.8677em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord">/2</span><span class="mclose">)</span></span></span><span style="top:-1.3677em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord">/2</span><span class="mclose">)</span></span></span><span style="top:0.1323em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord">/2</span><span class="mclose">)</span></span></span><span style="top:1.6323em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord">/2</span><span class="mclose">)</span></span></span><span style="top:3.6523em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:-0.4297em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="mrel mtight">∈</span><span class="mord mathbb mtight">R</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9393em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord text"><span class="mord">sinc</span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:8.263em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:8.763em;"><span style="top:-10.763em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⇔</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop"><span class="mop">cos</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span></span><span style="top:-8.9024em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mclose">)</span></span></span><span style="top:-7.3677em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mclose">)</span></span></span><span style="top:-5.8677em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span><span style="top:-4.3677em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span><span style="top:-2.8677em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span><span style="top:-1.3677em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span><span style="top:0.1323em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span><span style="top:1.6323em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span><span style="top:3.6523em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">∣</span><span class="mord mathnormal">A</span><span class="mord">∣</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:8.263em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mo>−</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mo>+</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">(</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo>−</mo><mi>B</mi><mo stretchy="false">)</mo><mo>+</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">(</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo stretchy="false">)</mo><mo>−</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo>−</mo><mi>B</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">(</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo>−</mo><mi>B</mi><mo stretchy="false">)</mo><mo>−</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\cos(A+B) &= \cos (A) \cos (B)-\sin (A) \sin (B) \\
|
||
\sin(A+B) &= \sin (A) \cos (B)+\cos (A) \sin (B) \\
|
||
\cos(A)\cos(B) &= \frac{1}{2} (\cos (A-B)+\cos (A+B)) \\
|
||
\cos(A)\sin(B) &= \frac{1}{2} (\sin (A+B)-\sin (A-B)) \\
|
||
\sin(A)\sin(B) &= \frac{1}{2} (\cos (A-B)-\cos (A+B)) \\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:9.9223em;vertical-align:-4.7112em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:5.2112em;"><span style="top:-7.6926em;"><span class="pstrut" style="height:3.3214em;"></span><span class="mord"><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span><span style="top:-6.1926em;"><span class="pstrut" style="height:3.3214em;"></span><span class="mord"><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span><span style="top:-4.2112em;"><span class="pstrut" style="height:3.3214em;"></span><span class="mord"><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span><span style="top:-1.9037em;"><span class="pstrut" style="height:3.3214em;"></span><span class="mord"><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span><span style="top:0.4037em;"><span class="pstrut" style="height:3.3214em;"></span><span class="mord"><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.7112em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:5.2112em;"><span style="top:-7.6926em;"><span class="pstrut" style="height:3.3214em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span><span style="top:-6.1926em;"><span class="pstrut" style="height:3.3214em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span><span style="top:-4.2112em;"><span class="pstrut" style="height:3.3214em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">))</span></span></span><span style="top:-1.9037em;"><span class="pstrut" style="height:3.3214em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">))</span></span></span><span style="top:0.4037em;"><span class="pstrut" style="height:3.3214em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">))</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.7112em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>+</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mi>cos</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mi>A</mi><mn>2</mn></mfrac><mo>−</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><mo fence="true">)</mo></mrow><mi>cos</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mi>A</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>−</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mn>2</mn><mi>sin</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mi>A</mi><mn>2</mn></mfrac><mo>−</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><mo fence="true">)</mo></mrow><mi>sin</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mi>A</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>+</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mi>sin</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mi>A</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><mo fence="true">)</mo></mrow><mi>cos</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mi>A</mi><mn>2</mn></mfrac><mo>−</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>−</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mi>sin</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mi>A</mi><mn>2</mn></mfrac><mo>−</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><mo fence="true">)</mo></mrow><mi>cos</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mi>A</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>+</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mn>2</mn><mi>sin</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mi>A</mi><mn>2</mn></mfrac><mo>−</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><mo>−</mo><mfrac><mi>π</mi><mn>4</mn></mfrac><mo fence="true">)</mo></mrow><mi>sin</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mi>A</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>π</mi><mn>4</mn></mfrac><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>−</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mn>2</mn><mi>sin</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mi>A</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><mo>−</mo><mfrac><mi>π</mi><mn>4</mn></mfrac><mo fence="true">)</mo></mrow><mi>sin</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mi>A</mi><mn>2</mn></mfrac><mo>−</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>π</mi><mn>4</mn></mfrac><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\cos(A)+\cos(B) &= 2 \cos \left(\frac{A}{2}-\frac{B}{2}\right) \cos \left(\frac{A}{2}+\frac{B}{2}\right) \\
|
||
\cos(A)-\cos(B) &= -2 \sin \left(\frac{A}{2}-\frac{B}{2}\right) \sin \left(\frac{A}{2}+\frac{B}{2}\right) \\
|
||
\sin(A)+\sin(B) &= 2 \sin \left(\frac{A}{2}+\frac{B}{2}\right) \cos \left(\frac{A}{2}-\frac{B}{2}\right) \\
|
||
\sin(A)-\sin(B) &= 2 \sin \left(\frac{A}{2}-\frac{B}{2}\right) \cos \left(\frac{A}{2}+\frac{B}{2}\right) \\
|
||
\cos(A)+\sin(B)&= -2 \sin \left(\frac{A}{2}-\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}+\frac{B}{2}+\frac{\pi }{4}\right) \\
|
||
\cos(A)-\sin(B)&= -2 \sin \left(\frac{A}{2}+\frac{B}{2}-\frac{\pi }{4}\right) \sin \left(\frac{A}{2}-\frac{B}{2}+\frac{\pi }{4}\right) \\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:16.2002em;vertical-align:-7.8501em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:8.3501em;"><span style="top:-10.3501em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span><span style="top:-7.6501em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span><span style="top:-4.95em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span><span style="top:0.45em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span><span style="top:3.1501em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:7.8501em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:8.3501em;"><span style="top:-10.3501em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span><span style="top:-7.6501em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span><span style="top:-4.95em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span><span style="top:0.45em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span><span style="top:3.1501em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:7.8501em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h2 id="iqcomplex-envelope">IQ/Complex envelope</h2>
|
||
<p>Def. <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>g</mi><mo>~</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>g</mi><mi>I</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mi>j</mi><msub><mi>g</mi><mi>Q</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\tilde{g}(t)=g_I(t)+jg_Q(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span></span><span style="top:-3.35em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2222em;"><span class="mord">~</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">Q</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span> as the complex envelope. Best to convert to <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>e</mi><mrow><mi>j</mi><mi>θ</mi></mrow></msup></mrow><annotation encoding="application/x-tex">e^{j\theta}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8491em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span><span class="mord mathnormal mtight" style="margin-right:0.02778em;">θ</span></span></span></span></span></span></span></span></span></span></span></span> form.</p>
|
||
<h3 id="convert-complex-envelope-representation-to-time-domain-representation-of-signal">Convert complex envelope representation to time-domain representation of signal</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>g</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>g</mi><mi>I</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>g</mi><mi>Q</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mtext>Re</mtext><mo stretchy="false">[</mo><mover accent="true"><mi>g</mi><mo>~</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>exp</mi><mo></mo><mrow><mo stretchy="false">(</mo><mi>j</mi><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo>+</mo><mi>ϕ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi mathvariant="normal">∣</mi><mi>g</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">∣</mi><mo>=</mo><msqrt><mrow><msubsup><mi>g</mi><mi>I</mi><mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><msubsup><mi>g</mi><mi>Q</mi><mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></msqrt><mspace width="1em"/><mtext>Amplitude</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>ϕ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mspace width="1em"/><mtext>Phase</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>g</mi><mi>I</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>ϕ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="1em"/><mtext>In-phase component</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>g</mi><mi>Q</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>ϕ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="1em"/><mtext>Quadrature-phase component</mtext></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
g(t)&=g_I(t)\cos(2\pi f_c t)-g_Q(t)\sin(2\pi f_c t)\\
|
||
&=\text{Re}[\tilde{g}(t)\exp{(j2\pi f_c t)}]\\
|
||
&=A(t)\cos(2\pi f_c t+\phi(t))\\
|
||
A(t)&=|g(t)|=\sqrt{g_I^2(t)+g_Q^2(t)}\quad\text{Amplitude}\\
|
||
\phi(t)&\quad\text{Phase}\\
|
||
g_I(t)&=A(t)\cos(\phi(t))\quad\text{In-phase component}\\
|
||
g_Q(t)&=A(t)\sin(\phi(t))\quad\text{Quadrature-phase component}\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:11.14em;vertical-align:-5.32em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:5.82em;"><span style="top:-8.197em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-6.697em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"></span></span><span style="top:-5.197em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"></span></span><span style="top:-3.32em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-1.557em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"><span class="mord mathnormal">ϕ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-0.057em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:1.443em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">Q</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:5.32em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:5.82em;"><span style="top:-8.197em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">Q</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-6.697em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Re</span></span><span class="mopen">[</span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span></span><span style="top:-3.35em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2222em;"><span class="mord">~</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span><span class="mclose">]</span></span></span><span style="top:-5.197em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">ϕ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">))</span></span></span><span style="top:-3.32em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.217em;"><span class="svg-align" style="top:-3.8em;"><span class="pstrut" style="height:3.8em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7959em;"><span style="top:-2.4065em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span></span></span><span style="top:-3.0448em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2935em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7959em;"><span style="top:-2.4065em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">Q</span></span></span><span style="top:-3.0448em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4296em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-3.177em;"><span class="pstrut" style="height:3.8em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.88em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.88em" viewBox="0 0 400000 1944" preserveAspectRatio="xMinYMin slice"><path d="M983 90
|
||
l0 -0
|
||
c4,-6.7,10,-10,18,-10 H400000v40
|
||
H1013.1s-83.4,268,-264.1,840c-180.7,572,-277,876.3,-289,913c-4.7,4.7,-12.7,7,-24,7
|
||
s-12,0,-12,0c-1.3,-3.3,-3.7,-11.7,-7,-25c-35.3,-125.3,-106.7,-373.3,-214,-744
|
||
c-10,12,-21,25,-33,39s-32,39,-32,39c-6,-5.3,-15,-14,-27,-26s25,-30,25,-30
|
||
c26.7,-32.7,52,-63,76,-91s52,-60,52,-60s208,722,208,722
|
||
c56,-175.3,126.3,-397.3,211,-666c84.7,-268.7,153.8,-488.2,207.5,-658.5
|
||
c53.7,-170.3,84.5,-266.8,92.5,-289.5z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.623em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Amplitude</span></span></span></span><span style="top:-1.557em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Phase</span></span></span></span><span style="top:-0.057em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal">ϕ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">))</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">In-phase component</span></span></span></span><span style="top:1.443em;"><span class="pstrut" style="height:3.217em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">ϕ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">))</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Quadrature-phase component</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:5.32em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="for-transfer-function">For transfer function</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>h</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>h</mi><mi>I</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>h</mi><mi>Q</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mtext>Re</mtext><mo stretchy="false">[</mo><mover accent="true"><mi>h</mi><mo>~</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>exp</mi><mo></mo><mrow><mo stretchy="false">(</mo><mi>j</mi><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mo>⇒</mo><mover accent="true"><mi>h</mi><mo>~</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>h</mi><mi>I</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mn>2</mn><mo>+</mo><mi>j</mi><msub><mi>h</mi><mi>Q</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mn>2</mn><mo>=</mo><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mn>2</mn><mi>exp</mi><mo></mo><mrow><mo stretchy="false">(</mo><mi>j</mi><mi>ϕ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
|
||
&=2\text{Re}[\tilde{h}(t)\exp{(j2\pi f_c t)}]\\
|
||
\Rightarrow\tilde{h}(t)&=h_I(t)/2+jh_Q(t)/2=A(t)/2\exp{(j\phi(t))}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.6826em;vertical-align:-2.0913em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.5913em;"><span style="top:-4.7513em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span><span style="top:-1.5687em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mrel">⇒</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9313em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">h</span></span><span style="top:-3.6134em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">~</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.0913em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.5913em;"><span style="top:-4.7513em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">Q</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mord text"><span class="mord">Re</span></span><span class="mopen">[</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9313em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">h</span></span><span style="top:-3.6134em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">~</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span><span class="mclose">]</span></span></span><span style="top:-1.5687em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">/2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">Q</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">/2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">/2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">ϕ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">))</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.0913em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h2 id="am">AM</h2>
|
||
<h3 id="cam">CAM</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>m</mi><mi>a</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><munder><mrow><mi>min</mi><mo></mo></mrow><mi>t</mi></munder><mi mathvariant="normal">∣</mi><msub><mi>k</mi><mi>a</mi></msub><mi>m</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">∣</mi></mrow><msub><mi>A</mi><mi>c</mi></msub></mfrac><mspace width="1em"/><mrow><mstyle scriptlevel="0" displaystyle="false"><msub><mi>k</mi><mi>a</mi></msub></mstyle><mtext> is the amplitude sensitivity (</mtext><mstyle scriptlevel="0" displaystyle="false"><msup><mtext>volt</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mstyle><mtext>), </mtext><mstyle scriptlevel="0" displaystyle="false"><msub><mi>m</mi><mi>a</mi></msub></mstyle><mtext> is the modulation index.</mtext></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>m</mi><mi>a</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><msub><mi>A</mi><mtext>max</mtext></msub><mo>−</mo><msub><mi>A</mi><mtext>min</mtext></msub></mrow><mrow><msub><mi>A</mi><mtext>max</mtext></msub><mo>+</mo><msub><mi>A</mi><mtext>min</mtext></msub></mrow></mfrac><mspace width="1em"/><mrow><mtext> (Symmetrical </mtext><mstyle scriptlevel="0" displaystyle="false"><mi>m</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mstyle><mtext>)</mtext></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>m</mi><mi>a</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>k</mi><mi>a</mi></msub><msub><mi>A</mi><mi>m</mi></msub><mspace width="1em"/><mrow><mtext> (Symmetrical </mtext><mstyle scriptlevel="0" displaystyle="false"><mi>m</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mstyle><mtext>)</mtext></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mrow><mo fence="true">[</mo><mn>1</mn><mo>+</mo><msub><mi>k</mi><mi>a</mi></msub><mi>m</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo fence="true">]</mo></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mrow><mo fence="true">[</mo><mn>1</mn><mo>+</mo><msub><mi>m</mi><mi>a</mi></msub><mi>m</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><msub><mi>A</mi><mi>c</mi></msub><mo fence="true">]</mo></mrow><mo separator="true">,</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mrow><mtext>where </mtext><mstyle scriptlevel="0" displaystyle="false"><mi>m</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>A</mi><mi>m</mi></msub><mover accent="true"><mi>m</mi><mo>^</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mstyle><mtext> and </mtext><mstyle scriptlevel="0" displaystyle="false"><mover accent="true"><mi>m</mi><mo>^</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mstyle><mtext> is the normalized modulating signal</mtext></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>P</mi><mi>c</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msup><msub><mi>A</mi><mi>c</mi></msub><mn>2</mn></msup><mn>2</mn></mfrac><mspace width="1em"/><mtext>Carrier power</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>P</mi><mi>x</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><msub><mi>m</mi><mi>a</mi></msub><mn>2</mn></msup><msup><msub><mi>A</mi><mi>c</mi></msub><mn>2</mn></msup></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>η</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mtext>Signal Power</mtext><mtext>Total Power</mtext></mfrac><mo>=</mo><mfrac><msub><mi>P</mi><mi>x</mi></msub><mrow><msub><mi>P</mi><mi>x</mi></msub><mo>+</mo><msub><mi>P</mi><mi>c</mi></msub></mrow></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>B</mi><mi>T</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><msub><mi>f</mi><mi>m</mi></msub><mo>=</mo><mn>2</mn><mi>B</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
|
||
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
|
||
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
|
||
x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right], \\
|
||
&\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
|
||
P_c &=\frac{{A_c}^2}{2}\quad\text{Carrier power}\\
|
||
P_x &=\frac{1}{4}{m_a}^2{A_c}^2\\
|
||
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_x}{P_x+P_c}\\
|
||
B_T&=2f_m=2B
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:18.4245em;vertical-align:-8.9623em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:9.4623em;"><span style="top:-11.5996em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-9.1033em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-7.1273em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-5.6273em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-4.1273em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"></span></span><span style="top:-1.9029em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:0.4045em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:2.7619em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">η</span></span></span><span style="top:4.7379em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:8.9623em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:9.4623em;"><span style="top:-11.5996em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop"><span class="mop">min</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2806em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∣</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">∣</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"> is the amplitude sensitivity (</span><span class="mord"><span class="mord text"><span class="mord">volt</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8984em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord">), </span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"> is the modulation index.</span></span></span></span><span style="top:-9.1033em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">max</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3175em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">min</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">max</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3175em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">min</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord"> (Symmetrical </span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">)</span></span></span></span><span style="top:-7.1273em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord"> (Symmetrical </span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">)</span></span></span></span><span style="top:-5.6273em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">[</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">]</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">[</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">/</span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">]</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span></span></span><span style="top:-4.1273em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"></span><span class="mord text"><span class="mord">where </span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">m</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord"> and </span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">m</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord"> is the normalized modulating signal</span></span></span></span><span style="top:-1.9029em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5643em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8873em;"><span style="top:-3.1362em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Carrier power</span></span></span></span><span style="top:0.4045em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8873em;"><span style="top:-3.1362em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:2.7619em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord text"><span class="mord">Total Power</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord text"><span class="mord">Signal Power</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:4.7379em;"><span class="pstrut" style="height:3.5643em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:8.9623em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<p><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>B</mi><mi>T</mi></msub></mrow><annotation encoding="application/x-tex">B_T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>: Signal bandwidth
|
||
<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span>: Bandwidth of modulating wave</p>
|
||
<p>Overmodulation (resulting in phase reversals at crossing points): <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>m</mi><mi>a</mi></msub><mo>></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">m_a>1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6891em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></p>
|
||
<h3 id="dsb-sc">DSB-SC</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>x</mi><mtext>DSB</mtext></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><mi>cos</mi><mo></mo><mrow><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo></mrow><mi>m</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>B</mi><mi>T</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><msub><mi>f</mi><mi>m</mi></msub><mo>=</mo><mn>2</mn><mi>B</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
x_\text{DSB}(t) &= A_c \cos{(2\pi f_c t)} m(t)\\
|
||
B_T&=2f_m=2B
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3em;vertical-align:-1.25em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em;"><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">DSB</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em;"><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h2 id="fmpm">FM/PM</h2>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><mi>cos</mi><mo></mo><mrow><mo fence="true">[</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo>+</mo><msub><mi>k</mi><mi>p</mi></msub><mi>m</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo fence="true">]</mo></mrow><mspace width="1em"/><mtext>Phase modulated (PM)</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><mi>cos</mi><mo></mo><mrow><mo fence="true">[</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo>+</mo><mn>2</mn><mi>π</mi><msub><mi>k</mi><mi>f</mi></msub><msubsup><mo>∫</mo><mn>0</mn><mi>t</mi></msubsup><mi>m</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo><mi>d</mi><mi>τ</mi><mo fence="true">]</mo></mrow><mspace width="1em"/><mtext>Frequency modulated (FM)</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><mi>cos</mi><mo></mo><mrow><mo fence="true">[</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo>+</mo><mi>β</mi><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>m</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mo fence="true">]</mo></mrow><mspace width="1em"/><mtext>FM single tone</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>β</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi mathvariant="normal">Δ</mi><mi>f</mi></mrow><msub><mi>f</mi><mi>m</mi></msub></mfrac><mo>=</mo><msub><mi>k</mi><mi>f</mi></msub><msub><mi>A</mi><mi>m</mi></msub><mspace width="1em"/><mtext>Modulation index</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi mathvariant="normal">Δ</mi><mi>f</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>β</mi><msub><mi>f</mi><mi>m</mi></msub><mo>=</mo><msub><mi>k</mi><mi>f</mi></msub><msub><mi>A</mi><mi>m</mi></msub><msub><mi>f</mi><mi>m</mi></msub><mo>=</mo><munder><mrow><mi>max</mi><mo></mo></mrow><mi>t</mi></munder><mo stretchy="false">(</mo><msub><mi>k</mi><mi>f</mi></msub><mi>m</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>−</mo><munder><mrow><mi>min</mi><mo></mo></mrow><mi>t</mi></munder><mo stretchy="false">(</mo><msub><mi>k</mi><mi>f</mi></msub><mi>m</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="1em"/><mtext>Maximum frequency deviation</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>D</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi mathvariant="normal">Δ</mi><mi>f</mi></mrow><msub><mi>W</mi><mi>m</mi></msub></mfrac><mspace width="1em"/><mrow><mtext>Deviation ratio, where </mtext><mstyle scriptlevel="0" displaystyle="false"><msub><mi>W</mi><mi>m</mi></msub></mstyle><mtext> is bandwidth of </mtext><mstyle scriptlevel="0" displaystyle="false"><mi>m</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mstyle><mtext> (Use FT)</mtext></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
|
||
s(t) &= A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_0^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
|
||
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
|
||
\beta&=\frac{\Delta f}{f_m}=k_f A_m\quad\text{Modulation index}\\
|
||
\Delta f&=\beta f_m=k_f A_m f_m = \max_t(k_f m(t))- \min_t(k_f m(t))\quad\text{Maximum frequency deviation}\\
|
||
D&=\frac{\Delta f}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:12.6928em;vertical-align:-6.0964em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:6.5964em;"><span style="top:-9.2999em;"><span class="pstrut" style="height:3.5435em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-7.0964em;"><span class="pstrut" style="height:3.5435em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-5.0064em;"><span class="pstrut" style="height:3.5435em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-2.9749em;"><span class="pstrut" style="height:3.5435em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05278em;">β</span></span></span><span style="top:-0.9545em;"><span class="pstrut" style="height:3.5435em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span><span style="top:1.4169em;"><span class="pstrut" style="height:3.5435em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:6.0964em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:6.5964em;"><span style="top:-9.2999em;"><span class="pstrut" style="height:3.5435em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">[</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">p</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">]</span></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord text"><span class="mord">Phase modulated (PM)</span></span></span></span><span style="top:-7.0964em;"><span class="pstrut" style="height:3.5435em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5435em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span><span style="top:-3.8129em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9119em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord text"><span class="mord">Frequency modulated (FM)</span></span></span></span><span style="top:-5.0064em;"><span class="pstrut" style="height:3.5435em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">[</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">]</span></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord text"><span class="mord">FM single tone</span></span></span></span><span style="top:-2.9749em;"><span class="pstrut" style="height:3.5435em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Modulation index</span></span></span></span><span style="top:-0.9545em;"><span class="pstrut" style="height:3.5435em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.4306em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">t</span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">max</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">t</span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">min</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">))</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Maximum frequency deviation</span></span></span></span><span style="top:1.4169em;"><span class="pstrut" style="height:3.5435em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Deviation ratio, where </span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"> is bandwidth of </span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord"> (Use FT)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:6.0964em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="bessel-form-and-magnitude-spectrum-single-tone">Bessel form and magnitude spectrum (single tone)</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><mi>cos</mi><mo></mo><mrow><mo fence="true">[</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo>+</mo><mi>β</mi><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>m</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mo fence="true">]</mo></mrow><mo>⇔</mo><mi>s</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>J</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>β</mi><mo stretchy="false">)</mo><mi>cos</mi><mo></mo><mo stretchy="false">[</mo><mn>2</mn><mi>π</mi><mo stretchy="false">(</mo><msub><mi>f</mi><mi>c</mi></msub><mo>+</mo><mi>n</mi><msub><mi>f</mi><mi>m</mi></msub><mo stretchy="false">)</mo><mi>t</mi><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right] \Leftrightarrow s(t)= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\cos[2\pi(f_c+nf_m)t]
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.2597em;vertical-align:-1.3799em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8799em;"><span style="top:-3.8799em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3799em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8799em;"><span style="top:-3.8799em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">[</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">]</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⇔</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">s</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.9em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3083em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">[</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathnormal">t</span><span class="mclose">]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3799em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="fm-signal-power">FM signal power</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>P</mi><mtext>av</mtext></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msup><msub><mi>A</mi><mi>c</mi></msub><mn>2</mn></msup><mn>2</mn></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>P</mi><mtext>band_index</mtext></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><msup><msub><mi>A</mi><mi>c</mi></msub><mn>2</mn></msup><msup><msub><mi>J</mi><mtext>band_index</mtext></msub><mn>2</mn></msup><mo stretchy="false">(</mo><mi>β</mi><mo stretchy="false">)</mo></mrow><mn>2</mn></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>band_index</mtext></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>0</mn><mtext> </mtext><mo>⟹</mo><mtext> </mtext><msub><mi>f</mi><mi>c</mi></msub><mo>+</mo><mn>0</mn><msub><mi>f</mi><mi>m</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>band_index</mtext></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>1</mn><mtext> </mtext><mo>⟹</mo><mtext> </mtext><msub><mi>f</mi><mi>c</mi></msub><mo>+</mo><mn>1</mn><msub><mi>f</mi><mi>m</mi></msub><mo separator="true">,</mo><mo>…</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
P_\text{av}&=\frac{{A_c}^2}{2}\\
|
||
P_\text{band\_index}&=\frac{{A_c}^2{J_\text{band\_index}}^2(\beta)}{2}\\
|
||
\text{band\_index}&=0\implies f_c+0f_m\\
|
||
\text{band\_index}&=1\implies f_c+1f_m,\dots\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:8.1807em;vertical-align:-3.8403em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.3403em;"><span style="top:-6.4203em;"><span class="pstrut" style="height:3.6443em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">av</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.79em;"><span class="pstrut" style="height:3.6443em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">band_index</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.367em;"><span></span></span></span></span></span></span></span></span><span style="top:-1.964em;"><span class="pstrut" style="height:3.6443em;"></span><span class="mord"><span class="mord text"><span class="mord">band_index</span></span></span></span><span style="top:-0.464em;"><span class="pstrut" style="height:3.6443em;"></span><span class="mord"><span class="mord text"><span class="mord">band_index</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.8403em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.3403em;"><span style="top:-6.4203em;"><span class="pstrut" style="height:3.6443em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5643em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8873em;"><span style="top:-3.1362em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.79em;"><span class="pstrut" style="height:3.6443em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6443em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.757em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8873em;"><span style="top:-3.1362em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">band_index</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.367em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8873em;"><span style="top:-3.1362em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-1.964em;"><span class="pstrut" style="height:3.6443em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">0</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-0.464em;"><span class="pstrut" style="height:3.6443em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.8403em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="carsons-rule-to-find-b-98-power-bandwidth-rule">Carson's rule to find <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> (98% power bandwidth rule)</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>B</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mi>M</mi><msub><mi>f</mi><mi>m</mi></msub><mo>=</mo><mn>2</mn><mo stretchy="false">(</mo><mi>β</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><msub><mi>f</mi><mi>m</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mo stretchy="false">(</mo><mi mathvariant="normal">Δ</mi><mi>f</mi><mo>+</mo><msub><mi>f</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mo stretchy="false">(</mo><msub><mi>k</mi><mi>f</mi></msub><msub><mi>A</mi><mi>m</mi></msub><mo>+</mo><msub><mi>f</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mo stretchy="false">(</mo><mi>D</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><msub><mi>W</mi><mi>m</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>B</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mrow><mo fence="true">{</mo><mtable rowspacing="0.36em" columnalign="left left" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>2</mn><mo stretchy="false">(</mo><mi mathvariant="normal">Δ</mi><mi>f</mi><mo>+</mo><msub><mi>f</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mtext>FM, sinusoidal message</mtext></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>2</mn><mo stretchy="false">(</mo><mi mathvariant="normal">Δ</mi><mi>ϕ</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><msub><mi>f</mi><mi>m</mi></msub></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mtext>PM, sinusoidal message</mtext></mstyle></mtd></mtr></mtable></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
B &= 2Mf_m = 2(\beta + 1)f_m\\
|
||
&= 2(\Delta f+f_m)\\
|
||
&= 2(k_f A_m+f_m)\\
|
||
&= 2(D+1)W_m\\
|
||
B &= \begin{cases}
|
||
2(\Delta f+f_m) & \text{FM, sinusoidal message}\\
|
||
2(\Delta\phi + 1)f_m & \text{PM, sinusoidal message}
|
||
\end{cases}\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:9.3em;vertical-align:-4.4em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.9em;"><span style="top:-7.81em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span><span style="top:-6.31em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"></span></span><span style="top:-4.81em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"></span></span><span style="top:-3.31em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"></span></span><span style="top:-0.9em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.4em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.9em;"><span style="top:-7.81em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-6.31em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-4.81em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.31em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-0.9em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">{</span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.69em;"><span style="top:-3.69em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord">2</span><span class="mopen">(</span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord">2</span><span class="mopen">(</span><span class="mord">Δ</span><span class="mord mathnormal">ϕ</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.19em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:1em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.69em;"><span style="top:-3.69em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord text"><span class="mord">FM, sinusoidal message</span></span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord text"><span class="mord">PM, sinusoidal message</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.19em;"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.4em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h4 id="delta-f-of-arbitrary-modulating-signal"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>f</mi></mrow><annotation encoding="application/x-tex">\Delta f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span> of arbitrary modulating signal</h4>
|
||
<p>Find instantaneous frequency <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>f</mi><mtext>FM</mtext></msub></mrow><annotation encoding="application/x-tex">f_\text{FM}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">FM</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>.</p>
|
||
<p><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span>: Number of <strong>pairs</strong> of significant sidebands</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><msub><mi>θ</mi><mtext>FM</mtext></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>f</mi><mtext>FM</mtext></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>π</mi></mrow></mfrac><mfrac><mrow><mi>d</mi><msub><mi>θ</mi><mtext>FM</mtext></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>A</mi><mi>m</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><munder><mrow><mi>max</mi><mo></mo></mrow><mi>t</mi></munder><mi mathvariant="normal">∣</mi><mi>m</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">∣</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi mathvariant="normal">Δ</mi><mi>f</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><munder><mrow><mi>max</mi><mo></mo></mrow><mi>t</mi></munder><mo stretchy="false">(</mo><msub><mi>f</mi><mtext>FM</mtext></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>−</mo><msub><mi>f</mi><mi>c</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>W</mi><mi>m</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mtext>max</mtext><mo stretchy="false">(</mo><mrow><mtext>frequencies in </mtext><mstyle scriptlevel="0" displaystyle="false"><msub><mi>θ</mi><mtext>FM</mtext></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mstyle><mtext>...</mtext></mrow><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>Example: </mtext></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mtext>sinc</mtext><mo stretchy="false">(</mo><mi>A</mi><mi>t</mi><mo>+</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mn>2</mn><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mi>A</mi><mi>t</mi><mo>+</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mn>2</mn><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><mrow><mi>π</mi><mo stretchy="false">(</mo><mi>A</mi><mi>t</mi><mo>+</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mfrac><mo>+</mo><mn>2</mn><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>t</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>W</mi><mi>m</mi></msub><mo>=</mo><mi>max</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mrow><mi>A</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mo separator="true">,</mo><mn>1</mn><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>D</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi mathvariant="normal">Δ</mi><mi>f</mi></mrow><msub><mi>W</mi><mi>m</mi></msub></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>B</mi><mi>T</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mo stretchy="false">(</mo><mi>D</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><msub><mi>W</mi><mi>m</mi></msub></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
s(t)&=A_c\cos(\theta_\text{FM}(t))\\
|
||
f_\text{FM}(t) &= \frac{1}{2\pi}\frac{d\theta_\text{FM}(t)}{dt}\\
|
||
A_m &= \max_t|m(t)|\\
|
||
\Delta f &= \max_t(f_\text{FM}(t)) - f_c\\
|
||
W_m &= \text{max}(\text{frequencies in $\theta_\text{FM}(t)$...}) \\
|
||
\text{Example: }&\text{sinc}(At+t)+2\cos(2\pi t)=\frac{\sin(2\pi((At+t)/2))}{\pi(At+t)}+2\cos(2\pi t)\to W_m=\max\left(\frac{A+1}{2},1\right)\\
|
||
D &= \frac{\Delta f}{W_m}\\
|
||
B_T &= 2(D+1)W_m
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:15.8005em;vertical-align:-7.6502em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:8.1502em;"><span style="top:-10.7602em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-8.6732em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">FM</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-6.8472em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-5.0072em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span><span style="top:-3.1672em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-1.0572em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord text"><span class="mord">Example: </span></span></span></span><span style="top:1.5642em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span><span style="top:3.5402em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:7.6502em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:8.1502em;"><span style="top:-10.7602em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">FM</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">))</span></span></span><span style="top:-8.6732em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">FM</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-6.8472em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.4306em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">t</span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">max</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∣</span><span class="mord mathnormal">m</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">∣</span></span></span><span style="top:-5.0072em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.4306em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">t</span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">max</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">FM</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.1672em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">max</span></span><span class="mopen">(</span><span class="mord text"><span class="mord">frequencies in </span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">FM</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">...</span></span><span class="mclose">)</span></span></span><span style="top:-1.0572em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mord text"><span class="mord">sinc</span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">sin</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mopen">((</span><span class="mord mathnormal">A</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">/2</span><span class="mclose">))</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop">max</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span><span style="top:1.5642em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:3.5402em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:7.6502em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="complex-envelope">Complex envelope</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo>+</mo><mi>β</mi><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>m</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>⇔</mo><mover accent="true"><mi>s</mi><mo>~</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mi>j</mi><mi>β</mi><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>m</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mtext>Re</mtext><mo stretchy="false">[</mo><mover accent="true"><mi>s</mi><mo>~</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>exp</mi><mo></mo><mrow><mo stretchy="false">(</mo><mi>j</mi><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mover accent="true"><mi>s</mi><mo>~</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>J</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>β</mi><mo stretchy="false">)</mo><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mi>j</mi><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>m</mi></msub><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
s(t)&=A_c\cos(2\pi f_c t+\beta\sin(2\pi f_m t)) \Leftrightarrow \tilde{s}(t) = A_c\exp(j\beta\sin(2\pi f_m t))\\
|
||
s(t)&=\text{Re}[\tilde{s}(t)\exp{(j2\pi f_c t)}]\\
|
||
\tilde{s}(t) &= A_c\sum_{n=-\infty}^{\infty}J_n(\beta)\exp(j2\pi f_m t)
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6.2597em;vertical-align:-2.8799em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.3799em;"><span style="top:-6.1913em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-4.6913em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-2.3799em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">s</span></span><span style="top:-3.35em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1944em;"><span class="mord">~</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.8799em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.3799em;"><span style="top:-6.1913em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⇔</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">s</span></span><span style="top:-3.35em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1944em;"><span class="mord">~</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">))</span></span></span><span style="top:-4.6913em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Re</span></span><span class="mopen">[</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">s</span></span><span style="top:-3.35em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1944em;"><span class="mord">~</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span><span class="mclose">]</span></span></span><span style="top:-2.3799em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.9em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3083em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.8799em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="band">Band</h3>
|
||
<table>
|
||
<thead>
|
||
<tr>
|
||
<th>Narrowband</th>
|
||
<th>Wideband</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo><</mo><mn>1</mn><mo separator="true">,</mo><mi>β</mi><mo><</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">D<1,\beta<1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>></mo><mn>1</mn><mo separator="true">,</mo><mi>β</mi><mo>></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">D>1,\beta>1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<h2 id="power-energy-and-autocorrelation">Power, energy and autocorrelation</h2>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mtext>WGN</mtext></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msub><mi>N</mi><mn>0</mn></msub><mn>2</mn></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mi>x</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi mathvariant="normal">∣</mi><mi>H</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><msup><mi mathvariant="normal">∣</mi><mn>2</mn></msup><msub><mi>G</mi><mi>w</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mtext> (PSD)</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mi>x</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><msub><mi>G</mi><mi>w</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mtext> (PSD)</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mi>x</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>T</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><mfrac><mrow><mi mathvariant="normal">∣</mi><msub><mi>X</mi><mi>T</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><msup><mi mathvariant="normal">∣</mi><mn>2</mn></msup></mrow><mi>T</mi></mfrac><mtext> (PSD)</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mi>x</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi mathvariant="fraktur">F</mi><mo stretchy="false">[</mo><msub><mi>R</mi><mi>x</mi></msub><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mtext> (WSS)</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>P</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msup><mi>σ</mi><mn>2</mn></msup><mo>=</mo><msub><mo>∫</mo><mi mathvariant="double-struck">R</mi></msub><msub><mi>G</mi><mi>x</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mi>d</mi><mi>f</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>P</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msup><mi>σ</mi><mn>2</mn></msup><mo>=</mo><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>t</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><mfrac><mn>1</mn><mi>T</mi></mfrac><msubsup><mo>∫</mo><mrow><mo>−</mo><mi>T</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><mrow><mi>T</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msubsup><mi mathvariant="normal">∣</mi><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><msup><mi mathvariant="normal">∣</mi><mn>2</mn></msup><mi>d</mi><mi>t</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>P</mi><mo stretchy="false">[</mo><mi>A</mi><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>f</mi><mi>t</mi><mo>+</mo><mi>ϕ</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msup><mi>A</mi><mn>2</mn></msup><mn>2</mn></mfrac><mspace width="1em"/><mtext>Power of sinusoid </mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>E</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msubsup><mo>∫</mo><mrow><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></msubsup><mi mathvariant="normal">∣</mi><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><msup><mi mathvariant="normal">∣</mi><mn>2</mn></msup><mi>d</mi><mi>t</mi><mo>=</mo><mi mathvariant="normal">∣</mi><mi>X</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><msup><mi mathvariant="normal">∣</mi><mn>2</mn></msup></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>R</mi><mi>x</mi></msub><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi mathvariant="fraktur">F</mi><mo stretchy="false">(</mo><msub><mi>G</mi><mi>x</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="1em"/><mtext>PSD to Autocorrelation</mtext></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
G_\text{WGN}(f)&=\frac{N_0}{2}\\
|
||
G_x(f)&=|H(f)|^2G_w(f)\text{ (PSD)}\\
|
||
G_x(f)&=G(f)G_w(f)\text{ (PSD)}\\
|
||
G_x(f)&=\lim_{T\to\infty}\frac{|X_T(f)|^2}{T}\text{ (PSD)}\\
|
||
G_x(f)&=\mathfrak{F}[R_x(\tau)]\text{ (WSS)}\\
|
||
P&=\sigma^2=\int_\mathbb{R}G_x(f)df\\
|
||
P&=\sigma^2=\lim_{t\to\infty}\frac{1}{T}\int_{-T/2}^{T/2}|x(t)|^2dt\\
|
||
P[A\cos(2\pi f t+\phi)]&=\frac{A^2}{2}\quad\text{Power of sinusoid }\\
|
||
E&=\int_{-\infty}^{\infty}|x(t)|^2dt=|X(f)|^2\\
|
||
R_x(\tau) &= \mathfrak{F}(G_x(f))\quad\text{PSD to Autocorrelation}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:21.6644em;vertical-align:-10.5822em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:11.0822em;"><span style="top:-13.3597em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">WGN</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:-11.5096em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:-10.0096em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:-7.8585em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:-5.9742em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:-3.9542em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span><span style="top:-1.1044em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span><span style="top:1.7737em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">[</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">ϕ</span><span class="mclose">)]</span></span></span><span style="top:4.174em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span><span style="top:6.2843em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:10.5822em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:11.0822em;"><span style="top:-13.3597em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-11.5096em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02691em;">w</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mord text"><span class="mord"> (PSD)</span></span></span></span><span style="top:-10.0096em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">G</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02691em;">w</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mord text"><span class="mord"> (PSD)</span></span></span></span><span style="top:-7.8585em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.3557em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7443em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">∣</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord text"><span class="mord"> (PSD)</span></span></span></span><span style="top:-5.9742em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathfrak">F</span><span class="mopen">[</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)]</span><span class="mord text"><span class="mord"> (WSS)</span></span></span></span><span style="top:-3.9542em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:-0.4297em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbb mtight">R</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9119em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.10764em;">df</span></span></span><span style="top:-1.1044em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6379em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span><span class="mord mtight">/2</span></span></span></span><span style="top:-3.8129em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span><span class="mord mtight">/2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.0869em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∣</span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:1.7737em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Power of sinusoid </span></span></span></span><span style="top:4.174em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4143em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.8129em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9703em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∣</span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:6.2843em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathfrak">F</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">))</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">PSD to Autocorrelation</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:10.5822em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h2 id=""></h2>
|
||
<h2 id="noise-performance">Noise performance</h2>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mtext>CNR</mtext><mtext>in</mtext></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msub><mi>P</mi><mtext>in</mtext></msub><msub><mi>P</mi><mtext>noise</mtext></msub></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mtext>CNR</mtext><mtext>in,FM</mtext></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msup><mi>A</mi><mn>2</mn></msup><mrow><mn>2</mn><mi>W</mi><msub><mi>N</mi><mn>0</mn></msub></mrow></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mtext>SNR</mtext><mtext>FM</mtext></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mn>3</mn><msup><mi>A</mi><mn>2</mn></msup><msubsup><mi>k</mi><mi>f</mi><mn>2</mn></msubsup><mi>P</mi></mrow><mrow><mn>2</mn><msub><mi>N</mi><mn>0</mn></msub><msup><mi>W</mi><mn>3</mn></msup></mrow></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>SNR(dB)</mtext></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>10</mn><msub><mrow><mi>log</mi><mo></mo></mrow><mn>10</mn></msub><mo stretchy="false">(</mo><mtext>SNR</mtext><mo stretchy="false">)</mo><mspace width="1em"/><mtext>Decibels from ratio</mtext></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\text{CNR}_\text{in} &= \frac{P_\text{in}}{P_\text{noise}}\\
|
||
\text{CNR}_\text{in,FM} &= \frac{A^2}{2WN_0}\\
|
||
\text{SNR}_\text{FM} &= \frac{3A^2k_f^2P}{2N_0W^3}\\
|
||
\text{SNR(dB)} &= 10\log_{10}(\text{SNR}) \quad\text{Decibels from ratio}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:9.3828em;vertical-align:-4.4414em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.9414em;"><span style="top:-7.2044em;"><span class="pstrut" style="height:3.6233em;"></span><span class="mord"><span class="mord"><span class="mord text"><span class="mord">CNR</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3175em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">in</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.5773em;"><span class="pstrut" style="height:3.6233em;"></span><span class="mord"><span class="mord"><span class="mord text"><span class="mord">CNR</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">in,FM</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-1.8179em;"><span class="pstrut" style="height:3.6233em;"></span><span class="mord"><span class="mord"><span class="mord text"><span class="mord">SNR</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">FM</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:0.1581em;"><span class="pstrut" style="height:3.6233em;"></span><span class="mord"><span class="mord text"><span class="mord">SNR(dB)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.4414em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.9414em;"><span style="top:-7.2044em;"><span class="pstrut" style="height:3.6233em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3175em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">noise</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3175em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">in</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-4.5773em;"><span class="pstrut" style="height:3.6233em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-1.8179em;"><span class="pstrut" style="height:3.6233em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6233em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.8092em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-2.4169em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4192em;"><span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:0.1581em;"><span class="pstrut" style="height:3.6233em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">10</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">10</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord text"><span class="mord">SNR</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Decibels from ratio</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.4414em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h2 id="sampling">Sampling</h2>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>t</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>n</mi><msub><mi>T</mi><mi>s</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>T</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><msub><mi>f</mi><mi>s</mi></msub></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>x</mi><mi>s</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><msub><mi>δ</mi><mi>s</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><munder><mo>∑</mo><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">Z</mi></mrow></munder><mi>δ</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><mi>n</mi><msub><mi>T</mi><mi>s</mi></msub><mo stretchy="false">)</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">Z</mi></mrow></munder><mi>x</mi><mo stretchy="false">(</mo><mi>n</mi><msub><mi>T</mi><mi>s</mi></msub><mo stretchy="false">)</mo><mi>δ</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><mi>n</mi><msub><mi>T</mi><mi>s</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>X</mi><mi>s</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>X</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>∗</mo><munder><mo>∑</mo><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">Z</mi></mrow></munder><mi>δ</mi><mrow><mo fence="true">(</mo><mi>f</mi><mo>−</mo><mfrac><mi>n</mi><msub><mi>T</mi><mi>s</mi></msub></mfrac><mo fence="true">)</mo></mrow><mo>=</mo><mi>X</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>∗</mo><munder><mo>∑</mo><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">Z</mi></mrow></munder><mi>δ</mi><mrow><mo fence="true">(</mo><mi>f</mi><mo>−</mo><mi>n</mi><msub><mi>f</mi><mi>s</mi></msub><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>B</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>></mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>f</mi><mi>s</mi></msub><mo separator="true">,</mo><mn>2</mn><mi>B</mi><mo>></mo><msub><mi>f</mi><mi>s</mi></msub><mo>→</mo><mtext>Aliasing</mtext></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
t&=nT_s\\
|
||
T_s&=\frac{1}{f_s}\\
|
||
x_s(t)&=x(t)\delta_s(t)=x(t)\sum_{n\in\mathbb{Z}}\delta(t-nT_s)=\sum_{n\in\mathbb{Z}}x(nT_s)\delta(t-nT_s)\\
|
||
X_s(f)&=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
|
||
B&>\frac{1}{2}f_s, 2B>f_s\rightarrow\text{Aliasing}\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:12.0605em;vertical-align:-5.7803em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:6.2803em;"><span style="top:-8.8903em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord mathnormal">t</span></span></span><span style="top:-6.9088em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6784em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-1.6028em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:1.3443em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:5.7803em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:6.2803em;"><span style="top:-8.8903em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-6.9088em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-4.6784em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0379em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.05em;"><span style="top:-1.8518em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">∈</span><span class="mord mathbb mtight">Z</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3256em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.05em;"><span style="top:-1.8518em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">∈</span><span class="mord mathbb mtight">Z</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3256em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-1.6028em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.05em;"><span style="top:-1.8518em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">∈</span><span class="mord mathbb mtight">Z</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3256em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.05em;"><span style="top:-1.8518em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">∈</span><span class="mord mathbb mtight">Z</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3256em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span><span style="top:1.3443em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Aliasing</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:5.7803em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="procedure-to-reconstruct-sampled-signal">Procedure to reconstruct sampled signal</h3>
|
||
<p>Analog signal <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x'(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span> which can be reconstructed from a sampled signal <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>s</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_s(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span>: Put <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>s</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_s(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span> through LPF with maximum frequency of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>f</mi><mi>s</mi></msub><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">f_s/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/2</span></span></span></span> and minimum frequency of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><msub><mi>f</mi><mi>s</mi></msub><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">-f_s/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">−</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/2</span></span></span></span>. Anything outside of the BPF will be attenuated, therefore <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> which results in frequencies outside the BPF will evaluate to <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> and can be ignored.</p>
|
||
<p>Example: <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>f</mi><mi>s</mi></msub><mo>=</mo><mn>5000</mn><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mtext>LPF</mtext><mo>∈</mo><mo stretchy="false">[</mo><mo>−</mo><mn>2500</mn><mo separator="true">,</mo><mn>2500</mn><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">f_s=5000\implies \text{LPF}\in[-2500,2500]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6684em;vertical-align:-0.024em;"></span><span class="mord">5000</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord text"><span class="mord">LPF</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">−</span><span class="mord">2500</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2500</span><span class="mclose">]</span></span></span></span></p>
|
||
<p>Then iterate for <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>=</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mo>−</mo><mn>2</mn><mo separator="true">,</mo><mo>…</mo></mrow><annotation encoding="application/x-tex">n=0,1,-1,2,-2,\dots</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">−</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">−</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span></span></span></span> until the first iteration where the result is 0 since all terms are eliminated by the LPF.</p>
|
||
<p>TODO: Add example</p>
|
||
<p>Then add all terms and transform <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>X</mi><mo>ˉ</mo></mover><mi>s</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\bar X_s(f)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0701em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8201em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span><span style="top:-3.2523em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord">ˉ</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span></span> back to time domain to get <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>s</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_s(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></p>
|
||
<h3 id="fourier-transform-of-continuous-time-periodic-signal-1">Fourier transform of continuous time periodic signal (1)</h3>
|
||
<p>Required for some questions on <strong>sampling</strong>:</p>
|
||
<!-- Transform a continuous time-periodic signal $x(t)=\sum_{n=-\infty}^\infty x_p(t-nT_s)$ with period $T_s$: -->
|
||
<p>Transform a continuous time-periodic signal <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>p</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></msubsup><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><mi>n</mi><msub><mi>T</mi><mi>s</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_p(t)=\sum_{n=-\infty}^\infty x(t-nT_s)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">p</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1623em;vertical-align:-0.358em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:0em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8043em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.358em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span> with period <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>T</mi><mi>s</mi></msub></mrow><annotation encoding="application/x-tex">T_s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>:</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>X</mi><mi>p</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>C</mi><mi>n</mi></msub><mi>δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo>−</mo><mi>n</mi><msub><mi>f</mi><mi>s</mi></msub><mo stretchy="false">)</mo><mspace width="1em"/><msub><mi>f</mi><mi>s</mi></msub><mo>=</mo><mfrac><mn>1</mn><msub><mi>T</mi><mi>s</mi></msub></mfrac></mrow><annotation encoding="application/x-tex">X_p(f)=\sum_{n=-\infty}^\infty C_n\delta(f-nf_s)\quad f_s=\frac{1}{T_s}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">p</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.9597em;vertical-align:-1.3083em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.9em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3083em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1574em;vertical-align:-0.836em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
|
||
<p>Calculate <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>C</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">C_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> coefficient as follows from <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>p</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_p(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">p</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span>:</p>
|
||
<!-- Remember $X_p(f)\leftrightarrow x_p(t)$ and **NOT** $\color{red}X_p(f)\leftrightarrow x_p(t-nT_s)$ -->
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>C</mi><mi>n</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><msub><mi>T</mi><mi>s</mi></msub></mfrac><msub><mo>∫</mo><msub><mi>T</mi><mi>s</mi></msub></msub><msub><mi>x</mi><mi>p</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>j</mi><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>s</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><msub><mi>T</mi><mi>s</mi></msub></mfrac><mi>X</mi><mo stretchy="false">(</mo><mi>n</mi><msub><mi>f</mi><mi>s</mi></msub><mo stretchy="false">)</mo><mspace width="1em"/><mstyle mathcolor="red"><mtext>(TODO: Check)</mtext><mspace width="1em"/><mstyle mathcolor="white"><mrow><mstyle scriptlevel="0" displaystyle="false"><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><mi>n</mi><msub><mi>T</mi><mi>s</mi></msub><mo stretchy="false">)</mo></mstyle><mtext> is contained in the interval </mtext><mstyle scriptlevel="0" displaystyle="false"><msub><mi>T</mi><mi>s</mi></msub></mstyle></mrow></mstyle></mstyle></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
% C_n&=X_p(nf_s)\\
|
||
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
|
||
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:5.1295em;vertical-align:-2.3147em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.8147em;"><span style="top:-4.8147em;"><span class="pstrut" style="height:3.36em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.1813em;"><span class="pstrut" style="height:3.36em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.3147em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.8147em;"><span style="top:-4.8147em;"><span class="pstrut" style="height:3.36em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:-0.4336em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:-0.1389em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.012em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">p</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-2.1813em;"><span class="pstrut" style="height:3.36em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text" style="color:red;"><span class="mord" style="color:red;">(TODO: Check)</span></span><span class="mspace" style="color:red;margin-right:1em;"></span><span class="mord text" style="color:white;"><span class="mord mathnormal" style="color:white;">x</span><span class="mopen" style="color:white;">(</span><span class="mord mathnormal" style="color:white;">t</span><span class="mspace" style="color:white;margin-right:0.2222em;"></span><span class="mbin" style="color:white;">−</span><span class="mspace" style="color:white;margin-right:0.2222em;"></span><span class="mord mathnormal" style="color:white;">n</span><span class="mord" style="color:white;"><span class="mord mathnormal" style="margin-right:0.13889em;color:white;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:white;"><span class="mord mathnormal mtight" style="color:white;">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose" style="color:white;">)</span><span class="mord" style="color:white;"> is contained in the interval </span><span class="mord" style="color:white;"><span class="mord mathnormal" style="margin-right:0.13889em;color:white;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:white;"><span class="mord mathnormal mtight" style="color:white;">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.3147em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<!-- Reconstruct from $\bar{X_s}(f)$ within the range $[-f_s/2,f_s/2]$ -->
|
||
<h3 id="nyquist-criterion-for-zero-isi">Nyquist criterion for zero-ISI</h3>
|
||
<p>Do not transmit more than <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mi>B</mi></mrow><annotation encoding="application/x-tex">2B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> samples per second over a channel of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> bandwidth.</p>
|
||
<p><img src="images/Nyquist_frequency_&_rate.svg" alt="By Bob K - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=94674142"></p>
|
||
<h3 id="insert-here-figure-83-from-m-f-mesiya---contemporary-communication-systems-add-image-to-imagessamplingpng">Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to <code>images/sampling.png</code>)</h3>
|
||
<p><img src="copyrighted_images/sampling.png" alt="sampling">
|
||
<img src="images/sampling.png" alt="sampling"></p>
|
||
<h2 id="quantizer">Quantizer</h2>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi mathvariant="normal">Δ</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><msub><mi>x</mi><mtext>Max</mtext></msub><mo>−</mo><msub><mi>x</mi><mtext>Min</mtext></msub></mrow><msup><mn>2</mn><mi>k</mi></msup></mfrac><mspace width="1em"/><mrow><mtext>for </mtext><mstyle scriptlevel="0" displaystyle="false"><mi>k</mi></mstyle><mtext>-bit quantizer (V/lsb)</mtext></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\Delta &= \frac{x_\text{Max}-x_\text{Min}}{2^k} \quad\text{for $k$-bit quantizer (V/lsb)}\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.2463em;vertical-align:-0.8732em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3732em;"><span style="top:-3.3732em;"><span class="pstrut" style="height:3.2603em;"></span><span class="mord"><span class="mord">Δ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8732em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3732em;"><span style="top:-3.3732em;"><span class="pstrut" style="height:3.2603em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.2603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7751em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">Max</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">Min</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">for </span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord">-bit quantizer (V/lsb)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8732em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="quantization-noise">Quantization noise</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>e</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>:</mo><mo>=</mo><mi>y</mi><mo>−</mo><mi>x</mi><mspace width="1em"/><mtext>Quantization error</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>μ</mi><mi>E</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>E</mi><mo stretchy="false">[</mo><mi>E</mi><mo stretchy="false">]</mo><mo>=</mo><mn>0</mn><mspace width="1em"/><mtext>Zero mean</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msup><msub><mi>σ</mi><mi>E</mi></msub><mn>2</mn></msup></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>E</mi><mo stretchy="false">[</mo><msup><mi>E</mi><mn>2</mn></msup><mo stretchy="false">]</mo><mo>−</mo><msup><mn>0</mn><mn>2</mn></msup><mo>=</mo><msubsup><mo>∫</mo><mrow><mo>−</mo><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><mrow><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msubsup><msup><mi>e</mi><mn>2</mn></msup><mo>×</mo><mrow><mo fence="true">(</mo><mfrac><mn>1</mn><mi mathvariant="normal">Δ</mi></mfrac><mo fence="true">)</mo></mrow><mi>d</mi><mi>e</mi><mspace width="1em"/><mrow><mtext>Where </mtext><mstyle scriptlevel="0" displaystyle="false"><mi>E</mi><mo>∼</mo><mn>1</mn><mi mathvariant="normal">/</mi><mi mathvariant="normal">Δ</mi></mstyle><mtext> uniform over </mtext><mstyle scriptlevel="0" displaystyle="false"><mo stretchy="false">(</mo><mo>−</mo><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo separator="true">,</mo><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo stretchy="false">)</mo></mstyle></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>SQNR</mtext></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mtext>Signal power</mtext><mtext>Quantization noise</mtext></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>SQNR(dB)</mtext></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>10</mn><msub><mrow><mi>log</mi><mo></mo></mrow><mn>10</mn></msub><mo stretchy="false">(</mo><mtext>SQNR</mtext><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
e &:= y-x\quad\text{Quantization error}\\
|
||
\mu_E &= E[E] = 0\quad\text{Zero mean}\\
|
||
{\sigma_E}^2&=E[E^2]-0^2=\int_{-\Delta/2}^{\Delta/2}e^2\times\left(\frac{1}{\Delta}\right) de\quad\text{Where $E\thicksim 1/\Delta$ uniform over $(-\Delta/2,\Delta/2)$}\\
|
||
\text{SQNR}&=\frac{\text{Signal power}}{\text{Quantization noise}}\\
|
||
\text{SQNR(dB)}&=10\log_{10}(\text{SQNR})
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:10.0767em;vertical-align:-4.7884em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:5.2884em;"><span style="top:-8.0863em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord mathnormal">e</span></span></span><span style="top:-6.5863em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05764em;">E</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.2884em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05764em;">E</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-1.53em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord text"><span class="mord">SQNR</span></span></span></span><span style="top:0.4905em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord text"><span class="mord">SQNR(dB)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.7884em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:5.2884em;"><span style="top:-8.0863em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Quantization error</span></span></span></span><span style="top:-6.5863em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Zero mean</span></span></span></span><span style="top:-4.2884em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">[</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6379em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">Δ/2</span></span></span></span><span style="top:-3.8129em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">Δ/2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.0869em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">e</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Where </span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∼</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">1/Δ uniform over </span><span class="mopen">(</span><span class="mord">−</span><span class="mord">Δ/2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">Δ/2</span><span class="mclose">)</span></span></span></span><span style="top:-1.53em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord text"><span class="mord">Quantization noise</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord text"><span class="mord">Signal power</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:0.4905em;"><span class="pstrut" style="height:3.6379em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">10</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">10</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord text"><span class="mord">SQNR</span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.7884em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="insert-here-figure-817-from-m-f-mesiya---contemporary-communication-systems-add-image-to-imagesquantizerpng">Insert here figure 8.17 from M F Mesiya - Contemporary Communication Systems (Add image to <code>images/quantizer.png</code>)</h3>
|
||
<p><img src="copyrighted_images/quantizer.png" alt="quantizer">
|
||
<img src="images/quantizer.png" alt="quantizer"></p>
|
||
<h2 id="line-codes">Line codes</h2>
|
||
<p><img src="images/Line_Codes.drawio.svg" alt="binary_codes"></p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>R</mi><mi>b</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>→</mo><mtext>Bit rate</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>D</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>→</mo><mtext>Symbol rate | </mtext><msub><mi>R</mi><mi>d</mi></msub><mtext> | </mtext><mn>1</mn><mi mathvariant="normal">/</mi><msub><mi>T</mi><mi>b</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>A</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>→</mo><msub><mi>m</mi><mi>a</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>V</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>→</mo><mtext>Pulse shape</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>V</mi><mtext>rectangle</mtext></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>T</mi><mtext>sinc</mtext><mo stretchy="false">(</mo><mi>f</mi><mi>T</mi><mo>×</mo><mtext>DutyCycle</mtext><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mtext>MunipolarNRZ</mtext></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mo stretchy="false">(</mo><msup><mi>M</mi><mn>2</mn></msup><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><msup><mi>A</mi><mn>2</mn></msup><mi>D</mi></mrow><mn>12</mn></mfrac><mi mathvariant="normal">∣</mi><mi>V</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><msup><mi mathvariant="normal">∣</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>−</mo><mn>1</mn><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow><mn>4</mn></mfrac><mo stretchy="false">(</mo><mi>D</mi><mi>A</mi><msup><mo stretchy="false">)</mo><mn>2</mn></msup><munderover><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></munderover><mi mathvariant="normal">∣</mi><mi>V</mi><mo stretchy="false">(</mo><mi>l</mi><mi>D</mi><mo stretchy="false">)</mo><msup><mi mathvariant="normal">∣</mi><mn>2</mn></msup><mi>δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo>−</mo><mi>l</mi><mi>D</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mtext>MpolarNRZ</mtext></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mo stretchy="false">(</mo><msup><mi>M</mi><mn>2</mn></msup><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><msup><mi>A</mi><mn>2</mn></msup><mi>D</mi></mrow><mn>3</mn></mfrac><mi mathvariant="normal">∣</mi><mi>V</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><msup><mi mathvariant="normal">∣</mi><mn>2</mn></msup></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mtext>unipolarNRZ</mtext></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msup><mi>A</mi><mn>2</mn></msup><mrow><mn>4</mn><msub><mi>R</mi><mi>b</mi></msub></mrow></mfrac><mrow><mo fence="true">(</mo><msup><mtext>sinc</mtext><mn>2</mn></msup><mrow><mo fence="true">(</mo><mfrac><mi>f</mi><msub><mi>R</mi><mi>b</mi></msub></mfrac><mo fence="true">)</mo></mrow><mo>+</mo><msub><mi>R</mi><mi>b</mi></msub><mi>δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo fence="true">)</mo></mrow><mo separator="true">,</mo><msub><mtext>NB</mtext><mn>0</mn></msub><mo>=</mo><msub><mi>R</mi><mi>b</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mtext>polarNRZ</mtext></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msup><mi>A</mi><mn>2</mn></msup><msub><mi>R</mi><mi>b</mi></msub></mfrac><msup><mtext>sinc</mtext><mn>2</mn></msup><mrow><mo fence="true">(</mo><mfrac><mi>f</mi><msub><mi>R</mi><mi>b</mi></msub></mfrac><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mtext>unipolarNRZ</mtext></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msup><mi>A</mi><mn>2</mn></msup><mrow><mn>4</mn><msub><mi>R</mi><mi>b</mi></msub></mrow></mfrac><mrow><mo fence="true">(</mo><msup><mtext>sinc</mtext><mn>2</mn></msup><mrow><mo fence="true">(</mo><mfrac><mi>f</mi><msub><mi>R</mi><mi>b</mi></msub></mfrac><mo fence="true">)</mo></mrow><mo>+</mo><msub><mi>R</mi><mi>b</mi></msub><mi>δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>G</mi><mtext>unipolarRZ</mtext></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msup><mi>A</mi><mn>2</mn></msup><mn>16</mn></mfrac><mrow><mo fence="true">(</mo><munderover><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></munderover><mi>δ</mi><mrow><mo fence="true">(</mo><mi>f</mi><mo>−</mo><mfrac><mi>l</mi><msub><mi>T</mi><mi>b</mi></msub></mfrac><mo fence="true">)</mo></mrow><mrow><mo fence="true">∣</mo><mtext>sinc</mtext><mo stretchy="false">(</mo><mtext>duty</mtext><mo>×</mo><mi>l</mi><mo stretchy="false">)</mo><mo fence="true">∣</mo></mrow><msup><mrow></mrow><mn>2</mn></msup><mo>+</mo><msub><mi>T</mi><mi>b</mi></msub><mrow><mo fence="true">∣</mo><mtext>sinc</mtext><mrow><mo fence="true">(</mo><mtext>duty</mtext><mo>×</mo><mi>f</mi><msub><mi>T</mi><mi>b</mi></msub><mo fence="true">)</mo></mrow><mo fence="true">∣</mo></mrow><msup><mrow></mrow><mn>2</mn></msup><mo fence="true">)</mo></mrow><mo separator="true">,</mo><msub><mtext>NB</mtext><mn>0</mn></msub><mo>=</mo><mn>2</mn><msub><mi>R</mi><mi>b</mi></msub></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
R_b&\rightarrow\text{Bit rate}\\
|
||
D&\rightarrow\text{Symbol rate | }R_d\text{ | }1/T_b\\
|
||
A&\rightarrow m_a\\
|
||
V(f)&\rightarrow\text{Pulse shape}\\
|
||
V_\text{rectangle}(f)&=T\text{sinc}(fT\times\text{DutyCycle})\\
|
||
G_\text{MunipolarNRZ}(f)&=\frac{(M^2-1)A^2D}{12}|V(f)|^2+\frac{(M-1)^2}{4}(DA)^2\sum_{l=-\infty}^{\infty}|V(lD)|^2\delta(f-lD)\\
|
||
G_\text{MpolarNRZ}(f)&=\frac{(M^2-1)A^2D}{3}|V(f)|^2\\
|
||
G_\text{unipolarNRZ}(f)&=\frac{A^2}{4R_b}\left(\text{sinc}^2\left(\frac{f}{R_b}\right)+R_b\delta(f)\right), \text{NB}_0=R_b\\
|
||
G_\text{polarNRZ}(f)&=\frac{A^2}{R_b}\text{sinc}^2\left(\frac{f}{R_b}\right)\\
|
||
G_\text{unipolarNRZ}(f)&=\frac{A^2}{4R_b}\left(\text{sinc}^2\left(\frac{f}{R_b}\right)+R_b\delta(f)\right)\\
|
||
G_\text{unipolarRZ}(f)&=\frac{A^2}{16} \left(\sum _{l=-\infty }^{\infty } \delta \left(f-\frac{l}{T_b}\right) \left| \text{sinc}(\text{duty} \times l) \right| {}^2+T_b \left| \text{sinc}\left(\text{duty} \times f T_b\right) \right| {}^2\right), \text{NB}_0=2R_b
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:24.9228em;vertical-align:-12.2114em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:12.7114em;"><span style="top:-15.6214em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-14.1214em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span><span style="top:-12.6214em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span><span style="top:-11.1214em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.22222em;">V</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:-9.6214em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.22222em;">V</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.2222em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">rectangle</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:-7.31em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">MunipolarNRZ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:-4.1585em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">MpolarNRZ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:-1.6813em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">unipolarNRZ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:1.0598em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">polarNRZ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:3.8009em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">unipolarNRZ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span><span style="top:6.801em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">unipolarRZ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:12.2114em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:12.7114em;"><span style="top:-15.6214em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Bit rate</span></span></span></span><span style="top:-14.1214em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Symbol rate | </span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">d</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord text"><span class="mord"> | </span></span><span class="mord">1/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-12.6214em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-11.1214em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Pulse shape</span></span></span></span><span style="top:-9.6214em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mord text"><span class="mord">sinc</span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord text"><span class="mord">DutyCycle</span></span><span class="mclose">)</span></span></span><span style="top:-7.31em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">12</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.22222em;">V</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mord mathnormal">A</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8479em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3604em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.22222em;">V</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mclose">)</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mclose">)</span></span></span><span style="top:-4.1585em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.22222em;">V</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-1.6813em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mord text"><span class="mord">sinc</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8719em;"><span style="top:-3.1208em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord text"><span class="mord">NB</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:1.0598em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord text"><span class="mord">sinc</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8719em;"><span style="top:-3.1208em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span><span style="top:3.8009em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mord text"><span class="mord">sinc</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8719em;"><span style="top:-3.1208em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span><span style="top:6.801em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">16</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8479em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mrel mtight">=</span><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3604em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.01968em;">l</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">∣</span><span class="mord text"><span class="mord">sinc</span></span><span class="mopen">(</span><span class="mord text"><span class="mord">duty</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">∣</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord"></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">∣</span><span class="mord text"><span class="mord">sinc</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord text"><span class="mord">duty</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">∣</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord"></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord text"><span class="mord">NB</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:12.2114em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h2 id="modulation-and-basis-functions">Modulation and basis functions</h2>
|
||
<p><img src="./images/Constellation.drawio.svg" alt="Constellation diagrams"></p>
|
||
<h3 id="bask">BASK</h3>
|
||
<h4 id="basis-functions">Basis functions</h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msqrt><mfrac><mn>2</mn><msub><mi>T</mi><mi>b</mi></msub></mfrac></msqrt><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mspace width="1em"/><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><msub><mi>T</mi><mi>b</mi></msub></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\varphi_1(t) &= \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t)\quad0\leq t\leq T_b\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.74em;vertical-align:-1.12em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.62em;"><span style="top:-3.62em;"><span class="pstrut" style="height:3.5766em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.12em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.62em;"><span style="top:-3.62em;"><span class="pstrut" style="height:3.5766em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5766em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.5366em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||
v40H1014.6
|
||
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||
c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||
h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8634em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.12em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h4 id="symbol-mapping">Symbol mapping</h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>b</mi><mi>n</mi></msub><mo>:</mo><mo stretchy="false">{</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">}</mo><mo>→</mo><msub><mi>a</mi><mi>n</mi></msub><mo>:</mo><mo stretchy="false">{</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">b_n:\{1,0\}\to a_n:\{1,0\}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mclose">}</span></span></span></span></span></p>
|
||
<h4 id="2-possible-waveforms">2 possible waveforms</h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>s</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><msqrt><mfrac><msub><mi>T</mi><mi>b</mi></msub><mn>2</mn></mfrac></msqrt><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msqrt><mrow><mn>2</mn><msub><mi>E</mi><mi>b</mi></msub></mrow></msqrt><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>s</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mrow><mtext>Since </mtext><mstyle scriptlevel="0" displaystyle="false"><msub><mi>E</mi><mi>b</mi></msub><mo>=</mo><msub><mi>E</mi><mtext>average</mtext></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">(</mo><mfrac><msup><msub><mi>A</mi><mi>c</mi></msub><mn>2</mn></msup><mn>2</mn></mfrac><mo>×</mo><msub><mi>T</mi><mi>b</mi></msub><mo>+</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mfrac><msup><msub><mi>A</mi><mi>c</mi></msub><mn>2</mn></msup><mn>4</mn></mfrac><msub><mi>T</mi><mi>b</mi></msub></mstyle></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
s_1(t)&=A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=\sqrt{2E_b}\varphi_1(t)\\
|
||
s_1(t)&=0\\
|
||
&\text{Since $E_b=E_\text{average}=\frac{1}{2}(\frac{{A_c}^2}{2}\times T_b + 0)=\frac{{A_c}^2}{4}T_b$}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:5.934em;vertical-align:-2.717em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.217em;"><span style="top:-5.217em;"><span class="pstrut" style="height:3.671em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-3.3081em;"><span class="pstrut" style="height:3.671em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-1.614em;"><span class="pstrut" style="height:3.671em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.717em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.217em;"><span style="top:-5.217em;"><span class="pstrut" style="height:3.671em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.671em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.631em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||
v40H1014.6
|
||
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||
c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||
h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.769em;"><span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0005em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.9605em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2395em;"><span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-3.3081em;"><span class="pstrut" style="height:3.671em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span></span></span><span style="top:-1.614em;"><span class="pstrut" style="height:3.671em;"></span><span class="mord"><span class="mord"></span><span class="mord text"><span class="mord">Since </span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">average</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.034em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4101em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.034em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4101em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.717em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<p>Distance is <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><msqrt><mrow><mn>2</mn><msub><mi>E</mi><mi>b</mi></msub></mrow></msqrt></mrow><annotation encoding="application/x-tex">d=\sqrt{2E_b}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.1883em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8517em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.8117em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1883em;"><span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="bpsk">BPSK</h3>
|
||
<h4 id="basis-functions-1">Basis functions</h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msqrt><mfrac><mn>2</mn><msub><mi>T</mi><mi>b</mi></msub></mfrac></msqrt><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mspace width="1em"/><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><msub><mi>T</mi><mi>b</mi></msub></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\varphi_1(t) &= \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t)\quad0\leq t\leq T_b\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.74em;vertical-align:-1.12em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.62em;"><span style="top:-3.62em;"><span class="pstrut" style="height:3.5766em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.12em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.62em;"><span style="top:-3.62em;"><span class="pstrut" style="height:3.5766em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5766em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.5366em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||
v40H1014.6
|
||
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||
c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||
h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8634em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.12em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h4 id="symbol-mapping-1">Symbol mapping</h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>b</mi><mi>n</mi></msub><mo>:</mo><mo stretchy="false">{</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">}</mo><mo>→</mo><msub><mi>a</mi><mi>n</mi></msub><mo>:</mo><mo stretchy="false">{</mo><mn>1</mn><mo separator="true">,</mo><mstyle mathcolor="lime"><mo>−</mo><mn>1</mn><mstyle mathcolor="white"><mo stretchy="false">}</mo></mstyle></mstyle></mrow><annotation encoding="application/x-tex">b_n:\{1,0\}\to a_n:\{1,\color{lime}-1\color{white}\}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord" style="color:lime;">−</span><span class="mord" style="color:lime;">1</span><span class="mclose" style="color:white;">}</span></span></span></span></span></p>
|
||
<h4 id="2-possible-waveforms-1">2 possible waveforms</h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>s</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><msqrt><mfrac><msub><mi>T</mi><mi>b</mi></msub><mn>2</mn></mfrac></msqrt><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msqrt><msub><mi>E</mi><mi>b</mi></msub></msqrt><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>s</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><msub><mi>A</mi><mi>c</mi></msub><msqrt><mfrac><msub><mi>T</mi><mi>b</mi></msub><mn>2</mn></mfrac></msqrt><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><msqrt><msub><mi>E</mi><mi>b</mi></msub></msqrt><msub><mi>φ</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mrow><mtext>Since </mtext><mstyle scriptlevel="0" displaystyle="false"><msub><mi>E</mi><mi>b</mi></msub><mo>=</mo><msub><mi>E</mi><mtext>average</mtext></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">(</mo><mfrac><msup><msub><mi>A</mi><mi>c</mi></msub><mn>2</mn></msup><mn>2</mn></mfrac><mo>×</mo><msub><mi>T</mi><mi>b</mi></msub><mo>+</mo><mfrac><msup><msub><mi>A</mi><mi>c</mi></msub><mn>2</mn></msup><mn>2</mn></mfrac><mo>×</mo><msub><mi>T</mi><mi>b</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mfrac><msup><msub><mi>A</mi><mi>c</mi></msub><mn>2</mn></msup><mn>2</mn></mfrac><msub><mi>T</mi><mi>b</mi></msub></mstyle></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
s_1(t)&=A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=\sqrt{E_b}\varphi_1(t)\\
|
||
s_1(t)&=-A_c\sqrt{\frac{T_b}{2}}\varphi_1(t)=-\sqrt{E_b}\varphi_2(t)\\
|
||
&\text{Since $E_b=E_\text{average}=\frac{1}{2}(\frac{{A_c}^2}{2}\times T_b + \frac{{A_c}^2}{2}\times T_b)=\frac{{A_c}^2}{2}T_b$}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:7.174em;vertical-align:-3.337em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.837em;"><span style="top:-5.837em;"><span class="pstrut" style="height:3.671em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-3.097em;"><span class="pstrut" style="height:3.671em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-0.994em;"><span class="pstrut" style="height:3.671em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.337em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.837em;"><span style="top:-5.837em;"><span class="pstrut" style="height:3.671em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.671em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.631em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||
v40H1014.6
|
||
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||
c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||
h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.769em;"><span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0005em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.9605em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2395em;"><span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-3.097em;"><span class="pstrut" style="height:3.671em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.671em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.631em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||
v40H1014.6
|
||
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||
c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||
h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.769em;"><span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0005em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.9605em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2395em;"><span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-0.994em;"><span class="pstrut" style="height:3.671em;"></span><span class="mord"><span class="mord"></span><span class="mord text"><span class="mord">Since </span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">average</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.034em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4101em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.034em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4101em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.034em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4101em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.337em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<p>Distance is <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mn>2</mn><msqrt><msub><mi>E</mi><mi>b</mi></msub></msqrt></mrow><annotation encoding="application/x-tex">d=2\sqrt{E_b}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.1883em;"></span><span class="mord">2</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8517em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.8117em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1883em;"><span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="qpsk-m4-psk">QPSK (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mo>=</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">M=4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4</span></span></span></span> PSK)</h3>
|
||
<h4 id="basis-functions-2">Basis functions</h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>T</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><msub><mi>T</mi><mi>b</mi></msub><mspace width="1em"/><mrow><mtext>Time per symbol for two bits </mtext><mstyle scriptlevel="0" displaystyle="false"><msub><mi>T</mi><mi>b</mi></msub></mstyle></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msqrt><mfrac><mn>2</mn><mi>T</mi></mfrac></msqrt><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mspace width="1em"/><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>T</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>φ</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msqrt><mfrac><mn>2</mn><mi>T</mi></mfrac></msqrt><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mspace width="1em"/><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>T</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
T &= 2 T_b\quad\text{Time per symbol for two bits $T_b$}\\
|
||
\varphi_1(t) &= \sqrt{\frac{2}{T}}\cos(2\pi f_c t)\quad0\leq t\leq T\\
|
||
\varphi_2(t) &= \sqrt{\frac{2}{T}}\sin(2\pi f_c t)\quad0\leq t\leq T\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6.98em;vertical-align:-3.24em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.74em;"><span style="top:-6.5516em;"><span class="pstrut" style="height:3.6516em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-4.24em;"><span class="pstrut" style="height:3.6516em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-1.5em;"><span class="pstrut" style="height:3.6516em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.24em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.74em;"><span style="top:-6.5516em;"><span class="pstrut" style="height:3.6516em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Time per symbol for two bits </span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-4.24em;"><span class="pstrut" style="height:3.6516em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6516em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.6116em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||
v40H1014.6
|
||
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||
c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||
h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7884em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-1.5em;"><span class="pstrut" style="height:3.6516em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6516em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.6116em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||
v40H1014.6
|
||
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||
c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||
h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7884em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.24em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="4-possible-waveforms">4 possible waveforms</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>s</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msqrt><mrow><msub><mi>E</mi><mi>s</mi></msub><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msqrt><mrow><mo fence="true">[</mo><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>φ</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo fence="true">]</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>s</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msqrt><mrow><msub><mi>E</mi><mi>s</mi></msub><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msqrt><mrow><mo fence="true">[</mo><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>φ</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo fence="true">]</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>s</mi><mn>3</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msqrt><mrow><msub><mi>E</mi><mi>s</mi></msub><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msqrt><mrow><mo fence="true">[</mo><mo>−</mo><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>φ</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo fence="true">]</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>s</mi><mn>4</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msqrt><mrow><msub><mi>E</mi><mi>s</mi></msub><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msqrt><mrow><mo fence="true">[</mo><mo>−</mo><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>φ</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo fence="true">]</mo></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
s_1(t)&=\sqrt{E_s/2}\left[\varphi_1(t)+\varphi_2(t)\right]\\
|
||
s_2(t)&=\sqrt{E_s/2}\left[\varphi_1(t)-\varphi_2(t)\right]\\
|
||
s_3(t)&=\sqrt{E_s/2}\left[-\varphi_1(t)+\varphi_2(t)\right]\\
|
||
s_4(t)&=\sqrt{E_s/2}\left[-\varphi_1(t)-\varphi_2(t)\right]\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6.5755em;vertical-align:-3.0378em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.5378em;"><span style="top:-5.5539em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-2.2661em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-0.6222em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.0378em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.5378em;"><span style="top:-5.5539em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9839em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/2</span></span></span><span style="top:-2.9439em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2561em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">[</span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">]</span></span></span></span><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9839em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/2</span></span></span><span style="top:-2.9439em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2561em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">[</span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">]</span></span></span></span><span style="top:-2.2661em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9839em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/2</span></span></span><span style="top:-2.9439em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2561em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">[</span><span class="mord">−</span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">]</span></span></span></span><span style="top:-0.6222em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9839em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/2</span></span></span><span style="top:-2.9439em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2561em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">[</span><span class="mord">−</span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">]</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.0378em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<p>Note on energy per symbol: Since <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><msub><mi>s</mi><mi>i</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">∣</mi><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub></mrow><annotation encoding="application/x-tex">|s_i(t)|=A_c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>, have to normalize distance as follows:</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>s</mi><mi>i</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><msqrt><mrow><mi>T</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msqrt><mi mathvariant="normal">/</mi><msqrt><mn>2</mn></msqrt><mo>×</mo><mrow><mo fence="true">[</mo><msub><mi>α</mi><mrow><mn>1</mn><mi>i</mi></mrow></msub><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>α</mi><mrow><mn>2</mn><mi>i</mi></mrow></msub><msub><mi>φ</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo fence="true">]</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msqrt><mrow><mi>T</mi><msup><msub><mi>A</mi><mi>c</mi></msub><mn>2</mn></msup><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msqrt><mrow><mo fence="true">[</mo><msub><mi>α</mi><mrow><mn>1</mn><mi>i</mi></mrow></msub><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>α</mi><mrow><mn>2</mn><mi>i</mi></mrow></msub><msub><mi>φ</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo fence="true">]</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msqrt><mrow><msub><mi>E</mi><mi>s</mi></msub><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msqrt><mrow><mo fence="true">[</mo><msub><mi>α</mi><mrow><mn>1</mn><mi>i</mi></mrow></msub><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>α</mi><mrow><mn>2</mn><mi>i</mi></mrow></msub><msub><mi>φ</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo fence="true">]</mo></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
s_i(t)&=A_c\sqrt{T/2}/\sqrt{2}\times\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
|
||
&=\sqrt{T{A_c}^2/4}\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
|
||
&=\sqrt{E_s/2}\left[\alpha_{1i}\varphi_1(t)+\alpha_{2i}\varphi_2(t)\right]\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:5.4278em;vertical-align:-2.4639em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.9639em;"><span style="top:-5.3325em;"><span class="pstrut" style="height:3.3525em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-3.32em;"><span class="pstrut" style="height:3.3525em;"></span><span class="mord"></span></span><span style="top:-1.5487em;"><span class="pstrut" style="height:3.3525em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.4639em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.9639em;"><span style="top:-5.3325em;"><span class="pstrut" style="height:3.3525em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9839em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mord">/2</span></span></span><span style="top:-2.9439em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2561em;"><span></span></span></span></span></span><span class="mord">/</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9561em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.9161em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0839em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">[</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">]</span></span></span></span><span style="top:-3.32em;"><span class="pstrut" style="height:3.3525em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3525em;"><span class="svg-align" style="top:-3.8em;"><span class="pstrut" style="height:3.8em;"></span><span class="mord" style="padding-left:1em;"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8873em;"><span style="top:-3.1362em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">/4</span></span></span><span style="top:-3.3125em;"><span class="pstrut" style="height:3.8em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.88em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.88em" viewBox="0 0 400000 1944" preserveAspectRatio="xMinYMin slice"><path d="M983 90
|
||
l0 -0
|
||
c4,-6.7,10,-10,18,-10 H400000v40
|
||
H1013.1s-83.4,268,-264.1,840c-180.7,572,-277,876.3,-289,913c-4.7,4.7,-12.7,7,-24,7
|
||
s-12,0,-12,0c-1.3,-3.3,-3.7,-11.7,-7,-25c-35.3,-125.3,-106.7,-373.3,-214,-744
|
||
c-10,12,-21,25,-33,39s-32,39,-32,39c-6,-5.3,-15,-14,-27,-26s25,-30,25,-30
|
||
c26.7,-32.7,52,-63,76,-91s52,-60,52,-60s208,722,208,722
|
||
c56,-175.3,126.3,-397.3,211,-666c84.7,-268.7,153.8,-488.2,207.5,-658.5
|
||
c53.7,-170.3,84.5,-266.8,92.5,-289.5z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4875em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">[</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">]</span></span></span></span><span style="top:-1.5487em;"><span class="pstrut" style="height:3.3525em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9839em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/2</span></span></span><span style="top:-2.9439em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2561em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">[</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">]</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.4639em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h4 id="signal">Signal</h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>Symbol mapping: </mtext></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mrow><mo fence="true">{</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo fence="true">}</mo></mrow><mo>→</mo><mrow><mo fence="true">{</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>1</mn><mo fence="true">}</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>I</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>b</mi><mrow><mn>2</mn><mi>n</mi></mrow></msub><msub><mi>φ</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mspace width="1em"/><mtext>Even bits</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>Q</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>b</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><msub><mi>φ</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mspace width="1em"/><mtext>Odd bits</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>A</mi><mi>c</mi></msub><mo stretchy="false">[</mo><mi>I</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mo>−</mo><mi>Q</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><msub><mi>f</mi><mi>c</mi></msub><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\text{Symbol mapping: }& \left\{1,0\right\}\to\left\{1,-1\right\}\\
|
||
I(t) &= b_{2n}\varphi_1(t)\quad\text{Even bits}\\
|
||
Q(t) &= b_{2n+1}\varphi_2(t)\quad\text{Odd bits}\\
|
||
x(t) &= A_c[I(t)\cos(2\pi f_c t)-Q(t)\sin(2\pi f_c t)]
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6em;vertical-align:-2.75em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.25em;"><span style="top:-5.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord text"><span class="mord">Symbol mapping: </span></span></span></span><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">Q</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-0.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.75em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.25em;"><span style="top:-5.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">{</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mclose delimcenter" style="top:0em;">}</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">{</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">−</span><span class="mord">1</span><span class="mclose delimcenter" style="top:0em;">}</span></span></span></span><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Even bits</span></span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Odd bits</span></span></span></span><span style="top:-0.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">Q</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mclose">)]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.75em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="example-of-waveform">Example of waveform</h3>
|
||
<details>
|
||
<summary>Code</summary>
|
||
<pre><code>
|
||
tBitstream[bitstream_, Tb_, title_] :=
|
||
Module[{timeSteps, gridLines, plot},
|
||
timeSteps =
|
||
Flatten[Table[{(n - 1) Tb, bitstream[[n]]}, {n, 1,
|
||
Length[bitstream]}] /. {t_, v_} :> {{t, v}, {t + Tb, v}}, 1];
|
||
gridLines = {Join[
|
||
Table[{n Tb, Dashed}, {n, 1, 2 Length[bitstream], 2}],
|
||
Table[{n Tb, Thin}, {n, 0, 2 Length[bitstream], 2}]], None};
|
||
plot =
|
||
Labeled[ListLinePlot[timeSteps, InterpolationOrder -> 0,
|
||
PlotRange -> Full, GridLines -> gridLines, PlotStyle -> Thick,
|
||
Ticks -> {Table[{n Tb,
|
||
Row[{n, "\!\(\*SubscriptBox[\(T\), \(b\)]\)"}]}, {n, 0,
|
||
Length[bitstream]}], {-1, 0, 1}},
|
||
LabelStyle -> Directive[Bold, 12],
|
||
PlotRangePadding -> {Scaled[.05]}, AspectRatio -> 0.1,
|
||
ImageSize -> Large], {Style[title, "Text", 16]}, {Right}]];
|
||
<p>tBitstream[{0, 1, 0, 0, 1, 0, 1, 1, 1, 0}, 1, "Bitstream Step Plot"]
|
||
tBitstream[{-1, -1, -1, -1, 1, 1, 1, 1, 1, 1}, 1, "I(t)"]
|
||
tBitstream[{1, 1, -1, -1, -1, -1, 1, 1, -1, -1}, 1, "Q(t)"]
|
||
</code></pre></p>
|
||
</details>
|
||
<p>Remember that <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi><mo>=</mo><mn>2</mn><msub><mi>T</mi><mi>b</mi></msub></mrow><annotation encoding="application/x-tex">T=2T_b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></p>
|
||
<table>
|
||
<thead>
|
||
<tr>
|
||
<th></th>
|
||
<th></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">b_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><img src="/images/qpsk-bits.svg" alt="QPSK bits"></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">I(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span> (Odd, 1st bits)</td>
|
||
<td><img src="/images/qpsk-it.svg" alt="QPSK bits"></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Q(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">Q</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span> (Even, 2nd bits)</td>
|
||
<td><img src="/images/qpsk-qt.svg" alt="QPSK bits"></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<h2 id="matched-filter">Matched filter</h2>
|
||
<h3 id="1-filter-function">1. Filter function</h3>
|
||
<p>Find transfer function <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span> of matched filter and apply to an input:</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>h</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>s</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>s</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>h</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msup><mi>s</mi><mo>∗</mo></msup><mo stretchy="false">(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo stretchy="false">)</mo><mspace width="2em"/><mtext>((.)* is the conjugate)</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>s</mi><mrow><mi>o</mi><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>h</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>∗</mo><msub><mi>s</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>∫</mo><mi mathvariant="normal">∞</mi><mi mathvariant="normal">∞</mi></msubsup><mi>h</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo><msub><mi>s</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo stretchy="false">)</mo><mi>d</mi><mi>τ</mi><mspace width="1em"/><mtext>Filter output</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>n</mi><mi>o</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>h</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>∗</mo><mi>n</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mspace width="1em"/><mtext>Noise at filter output</mtext></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
h(t)&=s_1(T-t)-s_2(T-t)\\
|
||
h(t)&=s^*(T-t) \qquad\text{((.)* is the conjugate)}\\
|
||
s_{on}(t)&=h(t)*s_n(t)=\int_\infty^\infty h(\tau)s_n(t-\tau)d\tau\quad\text{Filter output}\\
|
||
n_o(t)&=h(t)*n(t)\quad\text{Noise at filter output}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:7.1262em;vertical-align:-3.3131em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.8131em;"><span style="top:-6.3874em;"><span class="pstrut" style="height:3.4143em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-4.8874em;"><span class="pstrut" style="height:3.4143em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-2.8131em;"><span class="pstrut" style="height:3.4143em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">o</span><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-0.7612em;"><span class="pstrut" style="height:3.4143em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.3131em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.8131em;"><span style="top:-6.3874em;"><span class="pstrut" style="height:3.4143em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-4.8874em;"><span class="pstrut" style="height:3.4143em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7387em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">∗</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:2em;"></span><span class="mord text"><span class="mord">((.)* is the conjugate)</span></span></span></span><span style="top:-2.8131em;"><span class="pstrut" style="height:3.4143em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4143em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span><span style="top:-3.8129em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9119em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">)</span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Filter output</span></span></span></span><span style="top:-0.7612em;"><span class="pstrut" style="height:3.4143em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">n</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Noise at filter output</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.3131em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="2-bit-error-rate">2. Bit error rate</h3>
|
||
<p>Bit error rate (BER) from matched filter outputs and filter output noise</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>Q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>−</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mtext>erf</mtext><mrow><mo fence="true">(</mo><mfrac><mi>x</mi><msqrt><mn>2</mn></msqrt></mfrac><mo fence="true">)</mo></mrow><mo>⇔</mo><mtext>erf</mtext><mrow><mo fence="true">(</mo><mfrac><mi>x</mi><msqrt><mn>2</mn></msqrt></mfrac><mo fence="true">)</mo></mrow><mo>=</mo><mn>1</mn><mo>−</mo><mn>2</mn><mi>Q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>E</mi><mi>b</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msup><mi>d</mi><mn>2</mn></msup><mo>=</mo><msubsup><mo>∫</mo><mrow><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></msubsup><mi mathvariant="normal">∣</mi><msub><mi>s</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>s</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><msup><mi mathvariant="normal">∣</mi><mn>2</mn></msup><mi>d</mi><mi>t</mi><mspace width="1em"/><mtext>Energy per bit/Distance</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>T</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>1</mn><mi mathvariant="normal">/</mi><msub><mi>R</mi><mi>b</mi></msub><mspace width="1em"/><mrow><mstyle scriptlevel="0" displaystyle="false"><msub><mi>R</mi><mi>b</mi></msub></mstyle><mtext>: Bitrate</mtext></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>E</mi><mi>b</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>P</mi><mi>T</mi><mo>=</mo><msub><mi>P</mi><mtext>av</mtext></msub><mi mathvariant="normal">/</mi><msub><mi>R</mi><mi>b</mi></msub><mspace width="1em"/><mtext>Energy per bit</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>P</mi><mo stretchy="false">(</mo><mtext>W</mtext><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>1</mn><msup><mn>0</mn><mfrac><mrow><mi>P</mi><mo stretchy="false">(</mo><mtext>dB</mtext><mo stretchy="false">)</mo></mrow><mn>10</mn></mfrac></msup></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>P</mi><mtext>RX</mtext></msub><mo stretchy="false">(</mo><mi>W</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>P</mi><mtext>TX</mtext></msub><mo stretchy="false">(</mo><mi>W</mi><mo stretchy="false">)</mo><mo>⋅</mo><mn>1</mn><msup><mn>0</mn><mfrac><mrow><msub><mi>P</mi><mtext>loss</mtext></msub><mo stretchy="false">(</mo><mtext>dB</mtext><mo stretchy="false">)</mo></mrow><mn>10</mn></mfrac></msup><mspace width="1em"/><mrow><mstyle scriptlevel="0" displaystyle="false"><msub><mi>P</mi><mtext>loss</mtext></msub></mstyle><mtext> is expressed with negative sign e.g. "-130 dB"</mtext></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mtext>BER</mtext><mtext>MatchedFilter</mtext></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mfrac><msup><mi>d</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>N</mi><mn>0</mn></msub></mrow></mfrac></msqrt><mo fence="true">)</mo></mrow><mo>=</mo><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mfrac><msub><mi>E</mi><mi>b</mi></msub><mrow><mn>2</mn><msub><mi>N</mi><mn>0</mn></msub></mrow></mfrac></msqrt><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mtext>BER</mtext><mtext>unipolarNRZ|BASK</mtext></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mfrac><msup><mi>d</mi><mn>2</mn></msup><msub><mi>N</mi><mn>0</mn></msub></mfrac></msqrt><mo fence="true">)</mo></mrow><mo>=</mo><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mfrac><msub><mi>E</mi><mi>b</mi></msub><msub><mi>N</mi><mn>0</mn></msub></mfrac></msqrt><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mtext>BER</mtext><mtext>polarNRZ|BPSK</mtext></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mfrac><mrow><mn>2</mn><msup><mi>d</mi><mn>2</mn></msup></mrow><msub><mi>N</mi><mn>0</mn></msub></mfrac></msqrt><mo fence="true">)</mo></mrow><mo>=</mo><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mfrac><mrow><mn>2</mn><msub><mi>E</mi><mi>b</mi></msub></mrow><msub><mi>N</mi><mn>0</mn></msub></mfrac></msqrt><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
% H_\text{opt}(f)&=\max_{H(f)}\left(\frac{s_{o1}-s_{o2}}{2\sigma_o}\right)
|
||
|
||
% \text{BER}_\text{bin}&=p Q\left(\frac{s_{o1}-V_T}{\sigma_o}\right)+(1-p)Q\left(\frac{V_T-s_{o2}}{\sigma_o}\right)\text{, $p\rightarrow$Probability $s_1(t)$ sent, $V_T\rightarrow$Threshold voltage}
|
||
Q(x)&=\frac{1}{2}-\frac{1}{2}\text{erf}\left(\frac{x}{\sqrt{2}}\right)\Leftrightarrow\text{erf}\left(\frac{x}{\sqrt{2}}\right)=1-2Q(x)\\
|
||
E_b&=d^2=\int_{-\infty}^\infty|s_1(t)-s_2(t)|^2dt\quad\text{Energy per bit/Distance}\\
|
||
T&=1/R_b\quad\text{$R_b$: Bitrate}\\
|
||
E_b&=PT=P_\text{av}/R_b\quad\text{Energy per bit}\\
|
||
P(\text{W})&=10^{\frac{P(\text{dB})}{10}}\\
|
||
P_\text{RX}(W)&=P_\text{TX}(W)\cdot10^{\frac{P_\text{loss}(\text{dB})}{10}}\quad \text{$P_\text{loss}$ is expressed with negative sign e.g. "-130 dB"}\\
|
||
\text{BER}_\text{MatchedFilter}&=Q\left(\sqrt{\frac{d^2}{2N_0}}\right)=Q\left(\sqrt{\frac{E_b}{2N_0}}\right)\\
|
||
\text{BER}_\text{unipolarNRZ|BASK}&=Q\left(\sqrt{\frac{d^2}{N_0}}\right)=Q\left(\sqrt{\frac{E_b}{N_0}}\right)\\
|
||
\text{BER}_\text{polarNRZ|BPSK}&=Q\left(\sqrt{\frac{2d^2}{N_0}}\right)=Q\left(\sqrt{\frac{2E_b}{N_0}}\right)\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:23.7333em;vertical-align:-11.6167em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:12.1167em;"><span style="top:-14.7166em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord mathnormal">Q</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span><span style="top:-12.0523em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-9.942em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-8.442em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-6.6426em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord text"><span class="mord">W</span></span><span class="mclose">)</span></span></span><span style="top:-4.7933em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">RX</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span></span></span><span style="top:-2.0833em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"><span class="mord text"><span class="mord">BER</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">MatchedFilter</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:1.8167em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"><span class="mord text"><span class="mord">BER</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">unipolarNRZ|BASK</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span></span></span><span style="top:5.7167em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"><span class="mord text"><span class="mord">BER</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">polarNRZ|BPSK</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:11.6167em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:12.1167em;"><span style="top:-14.7166em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord text"><span class="mord">erf</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.2028em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.93em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⇔</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">erf</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.2028em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.93em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">2</span><span class="mord mathnormal">Q</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span><span style="top:-12.0523em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4143em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.8129em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9703em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∣</span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Energy per bit/Distance</span></span></span></span><span style="top:-9.942em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">1/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">: Bitrate</span></span></span></span><span style="top:-8.442em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">PT</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">av</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Energy per bit</span></span></span></span><span style="top:-6.6426em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.1395em;"><span style="top:-3.413em;margin-right:0.05em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0378em;"><span style="top:-2.656em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">10</span></span></span></span><span style="top:-3.2255em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.5021em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">P</span><span class="mopen mtight">(</span><span class="mord text mtight"><span class="mord mtight">dB</span></span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.344em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-4.7933em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">TX</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.1893em;"><span style="top:-3.413em;margin-right:0.05em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.109em;"><span style="top:-2.656em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">10</span></span></span></span><span style="top:-3.2255em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.5732em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3448em;margin-left:-0.1389em;margin-right:0.1em;"><span class="pstrut" style="height:2.6944em;"></span><span class="mord text mtight"><span class="mord mtight">loss</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3496em;"><span></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord text mtight"><span class="mord mtight">dB</span></span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.344em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">loss</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"> is expressed with negative sign e.g. "-130 dB"</span></span></span></span><span style="top:-2.0833em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.05em;"><span class="pstrut" style="height:5.6em;"></span><span style="width:0.875em;height:3.600em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.875em" height="3.600em" viewBox="0 0 875 3600"><path d="M863,9c0,-2,-2,-5,-6,-9c0,0,-17,0,-17,0c-12.7,0,-19.3,0.3,-20,1
|
||
c-5.3,5.3,-10.3,11,-15,17c-242.7,294.7,-395.3,682,-458,1162c-21.3,163.3,-33.3,349,
|
||
-36,557 l0,84c0.2,6,0,26,0,60c2,159.3,10,310.7,24,454c53.3,528,210,
|
||
949.7,470,1265c4.7,6,9.7,11.7,15,17c0.7,0.7,7,1,19,1c0,0,18,0,18,0c4,-4,6,-7,6,-9
|
||
c0,-2.7,-3.3,-8.7,-10,-18c-135.3,-192.7,-235.5,-414.3,-300.5,-665c-65,-250.7,-102.5,
|
||
-544.7,-112.5,-882c-2,-104,-3,-167,-3,-189
|
||
l0,-92c0,-162.7,5.7,-314,17,-454c20.7,-272,63.7,-513,129,-723c65.3,
|
||
-210,155.3,-396.3,270,-559c6.7,-9.3,10,-15.3,10,-18z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.9244em;"><span class="svg-align" style="top:-5em;"><span class="pstrut" style="height:5em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4171em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.8844em;"><span class="pstrut" style="height:5em;"></span><span class="hide-tail" style="min-width:1.02em;height:3.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="3.08em" viewBox="0 0 400000 3240" preserveAspectRatio="xMinYMin slice"><path d="M473,2793
|
||
c339.3,-1799.3,509.3,-2700,510,-2702 l0 -0
|
||
c3.3,-7.3,9.3,-11,18,-11 H400000v40H1017.7
|
||
s-90.5,478,-276.2,1466c-185.7,988,-279.5,1483,-281.5,1485c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2c0,-1.3,-5.3,-32,-16,-92c-50.7,-293.3,-119.7,-693.3,-207,-1200
|
||
c0,-1.3,-5.3,8.7,-16,30c-10.7,21.3,-21.3,42.7,-32,64s-16,33,-16,33s-26,-26,-26,-26
|
||
s76,-153,76,-153s77,-151,77,-151c0.7,0.7,35.7,202,105,604c67.3,400.7,102,602.7,104,
|
||
606zM1001 80h400000v40H1017.7z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.1156em;"><span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.05em;"><span class="pstrut" style="height:5.6em;"></span><span style="width:0.875em;height:3.600em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.875em" height="3.600em" viewBox="0 0 875 3600"><path d="M76,0c-16.7,0,-25,3,-25,9c0,2,2,6.3,6,13c21.3,28.7,42.3,60.3,
|
||
63,95c96.7,156.7,172.8,332.5,228.5,527.5c55.7,195,92.8,416.5,111.5,664.5
|
||
c11.3,139.3,17,290.7,17,454c0,28,1.7,43,3.3,45l0,9
|
||
c-3,4,-3.3,16.7,-3.3,38c0,162,-5.7,313.7,-17,455c-18.7,248,-55.8,469.3,-111.5,664
|
||
c-55.7,194.7,-131.8,370.3,-228.5,527c-20.7,34.7,-41.7,66.3,-63,95c-2,3.3,-4,7,-6,11
|
||
c0,7.3,5.7,11,17,11c0,0,11,0,11,0c9.3,0,14.3,-0.3,15,-1c5.3,-5.3,10.3,-11,15,-17
|
||
c242.7,-294.7,395.3,-681.7,458,-1161c21.3,-164.7,33.3,-350.7,36,-558
|
||
l0,-144c-2,-159.3,-10,-310.7,-24,-454c-53.3,-528,-210,-949.7,
|
||
-470,-1265c-4.7,-6,-9.7,-11.7,-15,-17c-0.7,-0.7,-6.7,-1,-18,-1z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.596em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.556em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||
v40H1014.6
|
||
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||
c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||
h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.844em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span></span></span><span style="top:1.8167em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.05em;"><span class="pstrut" style="height:5.6em;"></span><span style="width:0.875em;height:3.600em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.875em" height="3.600em" viewBox="0 0 875 3600"><path d="M863,9c0,-2,-2,-5,-6,-9c0,0,-17,0,-17,0c-12.7,0,-19.3,0.3,-20,1
|
||
c-5.3,5.3,-10.3,11,-15,17c-242.7,294.7,-395.3,682,-458,1162c-21.3,163.3,-33.3,349,
|
||
-36,557 l0,84c0.2,6,0,26,0,60c2,159.3,10,310.7,24,454c53.3,528,210,
|
||
949.7,470,1265c4.7,6,9.7,11.7,15,17c0.7,0.7,7,1,19,1c0,0,18,0,18,0c4,-4,6,-7,6,-9
|
||
c0,-2.7,-3.3,-8.7,-10,-18c-135.3,-192.7,-235.5,-414.3,-300.5,-665c-65,-250.7,-102.5,
|
||
-544.7,-112.5,-882c-2,-104,-3,-167,-3,-189
|
||
l0,-92c0,-162.7,5.7,-314,17,-454c20.7,-272,63.7,-513,129,-723c65.3,
|
||
-210,155.3,-396.3,270,-559c6.7,-9.3,10,-15.3,10,-18z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.9244em;"><span class="svg-align" style="top:-5em;"><span class="pstrut" style="height:5em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4171em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.8844em;"><span class="pstrut" style="height:5em;"></span><span class="hide-tail" style="min-width:1.02em;height:3.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="3.08em" viewBox="0 0 400000 3240" preserveAspectRatio="xMinYMin slice"><path d="M473,2793
|
||
c339.3,-1799.3,509.3,-2700,510,-2702 l0 -0
|
||
c3.3,-7.3,9.3,-11,18,-11 H400000v40H1017.7
|
||
s-90.5,478,-276.2,1466c-185.7,988,-279.5,1483,-281.5,1485c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2c0,-1.3,-5.3,-32,-16,-92c-50.7,-293.3,-119.7,-693.3,-207,-1200
|
||
c0,-1.3,-5.3,8.7,-16,30c-10.7,21.3,-21.3,42.7,-32,64s-16,33,-16,33s-26,-26,-26,-26
|
||
s76,-153,76,-153s77,-151,77,-151c0.7,0.7,35.7,202,105,604c67.3,400.7,102,602.7,104,
|
||
606zM1001 80h400000v40H1017.7z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.1156em;"><span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.05em;"><span class="pstrut" style="height:5.6em;"></span><span style="width:0.875em;height:3.600em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.875em" height="3.600em" viewBox="0 0 875 3600"><path d="M76,0c-16.7,0,-25,3,-25,9c0,2,2,6.3,6,13c21.3,28.7,42.3,60.3,
|
||
63,95c96.7,156.7,172.8,332.5,228.5,527.5c55.7,195,92.8,416.5,111.5,664.5
|
||
c11.3,139.3,17,290.7,17,454c0,28,1.7,43,3.3,45l0,9
|
||
c-3,4,-3.3,16.7,-3.3,38c0,162,-5.7,313.7,-17,455c-18.7,248,-55.8,469.3,-111.5,664
|
||
c-55.7,194.7,-131.8,370.3,-228.5,527c-20.7,34.7,-41.7,66.3,-63,95c-2,3.3,-4,7,-6,11
|
||
c0,7.3,5.7,11,17,11c0,0,11,0,11,0c9.3,0,14.3,-0.3,15,-1c5.3,-5.3,10.3,-11,15,-17
|
||
c242.7,-294.7,395.3,-681.7,458,-1161c21.3,-164.7,33.3,-350.7,36,-558
|
||
l0,-144c-2,-159.3,-10,-310.7,-24,-454c-53.3,-528,-210,-949.7,
|
||
-470,-1265c-4.7,-6,-9.7,-11.7,-15,-17c-0.7,-0.7,-6.7,-1,-18,-1z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.596em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.556em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||
v40H1014.6
|
||
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||
c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||
h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.844em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span></span></span><span style="top:5.7167em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.05em;"><span class="pstrut" style="height:5.6em;"></span><span style="width:0.875em;height:3.600em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.875em" height="3.600em" viewBox="0 0 875 3600"><path d="M863,9c0,-2,-2,-5,-6,-9c0,0,-17,0,-17,0c-12.7,0,-19.3,0.3,-20,1
|
||
c-5.3,5.3,-10.3,11,-15,17c-242.7,294.7,-395.3,682,-458,1162c-21.3,163.3,-33.3,349,
|
||
-36,557 l0,84c0.2,6,0,26,0,60c2,159.3,10,310.7,24,454c53.3,528,210,
|
||
949.7,470,1265c4.7,6,9.7,11.7,15,17c0.7,0.7,7,1,19,1c0,0,18,0,18,0c4,-4,6,-7,6,-9
|
||
c0,-2.7,-3.3,-8.7,-10,-18c-135.3,-192.7,-235.5,-414.3,-300.5,-665c-65,-250.7,-102.5,
|
||
-544.7,-112.5,-882c-2,-104,-3,-167,-3,-189
|
||
l0,-92c0,-162.7,5.7,-314,17,-454c20.7,-272,63.7,-513,129,-723c65.3,
|
||
-210,155.3,-396.3,270,-559c6.7,-9.3,10,-15.3,10,-18z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.9244em;"><span class="svg-align" style="top:-5em;"><span class="pstrut" style="height:5em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4171em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.8844em;"><span class="pstrut" style="height:5em;"></span><span class="hide-tail" style="min-width:1.02em;height:3.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="3.08em" viewBox="0 0 400000 3240" preserveAspectRatio="xMinYMin slice"><path d="M473,2793
|
||
c339.3,-1799.3,509.3,-2700,510,-2702 l0 -0
|
||
c3.3,-7.3,9.3,-11,18,-11 H400000v40H1017.7
|
||
s-90.5,478,-276.2,1466c-185.7,988,-279.5,1483,-281.5,1485c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2c0,-1.3,-5.3,-32,-16,-92c-50.7,-293.3,-119.7,-693.3,-207,-1200
|
||
c0,-1.3,-5.3,8.7,-16,30c-10.7,21.3,-21.3,42.7,-32,64s-16,33,-16,33s-26,-26,-26,-26
|
||
s76,-153,76,-153s77,-151,77,-151c0.7,0.7,35.7,202,105,604c67.3,400.7,102,602.7,104,
|
||
606zM1001 80h400000v40H1017.7z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.1156em;"><span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.05em;"><span class="pstrut" style="height:5.6em;"></span><span style="width:0.875em;height:3.600em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.875em" height="3.600em" viewBox="0 0 875 3600"><path d="M76,0c-16.7,0,-25,3,-25,9c0,2,2,6.3,6,13c21.3,28.7,42.3,60.3,
|
||
63,95c96.7,156.7,172.8,332.5,228.5,527.5c55.7,195,92.8,416.5,111.5,664.5
|
||
c11.3,139.3,17,290.7,17,454c0,28,1.7,43,3.3,45l0,9
|
||
c-3,4,-3.3,16.7,-3.3,38c0,162,-5.7,313.7,-17,455c-18.7,248,-55.8,469.3,-111.5,664
|
||
c-55.7,194.7,-131.8,370.3,-228.5,527c-20.7,34.7,-41.7,66.3,-63,95c-2,3.3,-4,7,-6,11
|
||
c0,7.3,5.7,11,17,11c0,0,11,0,11,0c9.3,0,14.3,-0.3,15,-1c5.3,-5.3,10.3,-11,15,-17
|
||
c242.7,-294.7,395.3,-681.7,458,-1161c21.3,-164.7,33.3,-350.7,36,-558
|
||
l0,-144c-2,-159.3,-10,-310.7,-24,-454c-53.3,-528,-210,-949.7,
|
||
-470,-1265c-4.7,-6,-9.7,-11.7,-15,-17c-0.7,-0.7,-6.7,-1,-18,-1z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.596em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.556em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||
v40H1014.6
|
||
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||
c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||
h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.844em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:11.6167em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<div style="page-break-after: always;"></div>
|
||
<h2 id="value-tables-for-texterfx-and-qx">Value tables for <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>erf</mtext><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{erf}(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">erf</span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Q(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">Q</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></h2>
|
||
<h3 id="texterfx-function"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>erf</mtext><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{erf}(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">erf</span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> function</h3>
|
||
<table>
|
||
<thead>
|
||
<tr>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>erf</mtext><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{erf}(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">erf</span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>erf</mtext><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{erf}(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">erf</span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>erf</mtext><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{erf}(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">erf</span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00</mn></mrow><annotation encoding="application/x-tex">0.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00000</mn></mrow><annotation encoding="application/x-tex">0.00000</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00000</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.75</mn></mrow><annotation encoding="application/x-tex">0.75</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.75</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.71116</mn></mrow><annotation encoding="application/x-tex">0.71116</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.71116</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.50</mn></mrow><annotation encoding="application/x-tex">1.50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.50</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.96611</mn></mrow><annotation encoding="application/x-tex">0.96611</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.96611</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.05</mn></mrow><annotation encoding="application/x-tex">0.05</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.05</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.05637</mn></mrow><annotation encoding="application/x-tex">0.05637</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.05637</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.80</mn></mrow><annotation encoding="application/x-tex">0.80</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.80</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.74210</mn></mrow><annotation encoding="application/x-tex">0.74210</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.74210</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.55</mn></mrow><annotation encoding="application/x-tex">1.55</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.55</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.97162</mn></mrow><annotation encoding="application/x-tex">0.97162</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.97162</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.10</mn></mrow><annotation encoding="application/x-tex">0.10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.10</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.11246</mn></mrow><annotation encoding="application/x-tex">0.11246</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.11246</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.85</mn></mrow><annotation encoding="application/x-tex">0.85</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.85</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.77067</mn></mrow><annotation encoding="application/x-tex">0.77067</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.77067</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.60</mn></mrow><annotation encoding="application/x-tex">1.60</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.60</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.97635</mn></mrow><annotation encoding="application/x-tex">0.97635</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.97635</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.15</mn></mrow><annotation encoding="application/x-tex">0.15</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.15</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.16800</mn></mrow><annotation encoding="application/x-tex">0.16800</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.16800</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.90</mn></mrow><annotation encoding="application/x-tex">0.90</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.90</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.79691</mn></mrow><annotation encoding="application/x-tex">0.79691</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.79691</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.65</mn></mrow><annotation encoding="application/x-tex">1.65</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.65</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.98038</mn></mrow><annotation encoding="application/x-tex">0.98038</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.98038</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.20</mn></mrow><annotation encoding="application/x-tex">0.20</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.20</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.22270</mn></mrow><annotation encoding="application/x-tex">0.22270</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.22270</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.95</mn></mrow><annotation encoding="application/x-tex">0.95</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.95</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.82089</mn></mrow><annotation encoding="application/x-tex">0.82089</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.82089</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.70</mn></mrow><annotation encoding="application/x-tex">1.70</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.70</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.98379</mn></mrow><annotation encoding="application/x-tex">0.98379</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.98379</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.25</mn></mrow><annotation encoding="application/x-tex">0.25</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.25</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.27633</mn></mrow><annotation encoding="application/x-tex">0.27633</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.27633</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.00</mn></mrow><annotation encoding="application/x-tex">1.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.84270</mn></mrow><annotation encoding="application/x-tex">0.84270</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.84270</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.75</mn></mrow><annotation encoding="application/x-tex">1.75</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.75</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.98667</mn></mrow><annotation encoding="application/x-tex">0.98667</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.98667</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.30</mn></mrow><annotation encoding="application/x-tex">0.30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.30</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.32863</mn></mrow><annotation encoding="application/x-tex">0.32863</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.32863</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.05</mn></mrow><annotation encoding="application/x-tex">1.05</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.05</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.86244</mn></mrow><annotation encoding="application/x-tex">0.86244</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.86244</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.80</mn></mrow><annotation encoding="application/x-tex">1.80</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.80</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.98909</mn></mrow><annotation encoding="application/x-tex">0.98909</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.98909</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.35</mn></mrow><annotation encoding="application/x-tex">0.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.35</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.37938</mn></mrow><annotation encoding="application/x-tex">0.37938</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.37938</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.10</mn></mrow><annotation encoding="application/x-tex">1.10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.10</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.88021</mn></mrow><annotation encoding="application/x-tex">0.88021</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.88021</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.85</mn></mrow><annotation encoding="application/x-tex">1.85</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.85</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.99111</mn></mrow><annotation encoding="application/x-tex">0.99111</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.99111</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.40</mn></mrow><annotation encoding="application/x-tex">0.40</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.40</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.42839</mn></mrow><annotation encoding="application/x-tex">0.42839</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.42839</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.15</mn></mrow><annotation encoding="application/x-tex">1.15</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.15</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.89612</mn></mrow><annotation encoding="application/x-tex">0.89612</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.89612</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.90</mn></mrow><annotation encoding="application/x-tex">1.90</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.90</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.99279</mn></mrow><annotation encoding="application/x-tex">0.99279</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.99279</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.45</mn></mrow><annotation encoding="application/x-tex">0.45</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.45</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.47548</mn></mrow><annotation encoding="application/x-tex">0.47548</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.47548</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.20</mn></mrow><annotation encoding="application/x-tex">1.20</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.20</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.91031</mn></mrow><annotation encoding="application/x-tex">0.91031</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.91031</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.95</mn></mrow><annotation encoding="application/x-tex">1.95</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.95</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.99418</mn></mrow><annotation encoding="application/x-tex">0.99418</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.99418</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.50</mn></mrow><annotation encoding="application/x-tex">0.50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.50</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.52050</mn></mrow><annotation encoding="application/x-tex">0.52050</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.52050</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.25</mn></mrow><annotation encoding="application/x-tex">1.25</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.25</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.92290</mn></mrow><annotation encoding="application/x-tex">0.92290</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.92290</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.00</mn></mrow><annotation encoding="application/x-tex">2.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.99532</mn></mrow><annotation encoding="application/x-tex">0.99532</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.99532</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.55</mn></mrow><annotation encoding="application/x-tex">0.55</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.55</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.56332</mn></mrow><annotation encoding="application/x-tex">0.56332</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.56332</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.30</mn></mrow><annotation encoding="application/x-tex">1.30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.30</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.93401</mn></mrow><annotation encoding="application/x-tex">0.93401</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.93401</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.50</mn></mrow><annotation encoding="application/x-tex">2.50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.50</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.99959</mn></mrow><annotation encoding="application/x-tex">0.99959</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.99959</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.60</mn></mrow><annotation encoding="application/x-tex">0.60</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.60</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.60386</mn></mrow><annotation encoding="application/x-tex">0.60386</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.60386</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.35</mn></mrow><annotation encoding="application/x-tex">1.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.35</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.94376</mn></mrow><annotation encoding="application/x-tex">0.94376</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.94376</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.00</mn></mrow><annotation encoding="application/x-tex">3.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.99998</mn></mrow><annotation encoding="application/x-tex">0.99998</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.99998</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.65</mn></mrow><annotation encoding="application/x-tex">0.65</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.65</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.64203</mn></mrow><annotation encoding="application/x-tex">0.64203</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.64203</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.40</mn></mrow><annotation encoding="application/x-tex">1.40</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.40</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.95229</mn></mrow><annotation encoding="application/x-tex">0.95229</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.95229</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.30</mn></mrow><annotation encoding="application/x-tex">3.30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.30</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.999998</mn></mrow><annotation encoding="application/x-tex">0.999998</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.999998</span></span></span></span>**</td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.70</mn></mrow><annotation encoding="application/x-tex">0.70</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.70</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.67780</mn></mrow><annotation encoding="application/x-tex">0.67780</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.67780</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.45</mn></mrow><annotation encoding="application/x-tex">1.45</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.45</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.95970</mn></mrow><annotation encoding="application/x-tex">0.95970</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.95970</span></span></span></span></td>
|
||
<td></td>
|
||
<td></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<h3 id="qx-function"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Q(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">Q</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> function</h3>
|
||
<table>
|
||
<thead>
|
||
<tr>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Q(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">Q</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Q(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">Q</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Q(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">Q</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Q(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">Q</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00</mn></mrow><annotation encoding="application/x-tex">0.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.5</mn></mrow><annotation encoding="application/x-tex">0.5</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.5</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.30</mn></mrow><annotation encoding="application/x-tex">2.30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.30</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.010724</mn></mrow><annotation encoding="application/x-tex">0.010724</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.010724</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.55</mn></mrow><annotation encoding="application/x-tex">4.55</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.55</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.6823</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.6823 \times 10^{-6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.6823</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.80</mn></mrow><annotation encoding="application/x-tex">6.80</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.80</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.231</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup></mrow><annotation encoding="application/x-tex">5.231 \times 10^{-12}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">5.231</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">12</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.05</mn></mrow><annotation encoding="application/x-tex">0.05</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.05</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.48006</mn></mrow><annotation encoding="application/x-tex">0.48006</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.48006</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.35</mn></mrow><annotation encoding="application/x-tex">2.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.35</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0093867</mn></mrow><annotation encoding="application/x-tex">0.0093867</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0093867</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.60</mn></mrow><annotation encoding="application/x-tex">4.60</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.60</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.1125</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.1125 \times 10^{-6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.1125</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.85</mn></mrow><annotation encoding="application/x-tex">6.85</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.85</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.6925</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.6925 \times 10^{-12}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.6925</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">12</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.10</mn></mrow><annotation encoding="application/x-tex">0.10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.10</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.46017</mn></mrow><annotation encoding="application/x-tex">0.46017</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.46017</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.40</mn></mrow><annotation encoding="application/x-tex">2.40</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.40</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0081975</mn></mrow><annotation encoding="application/x-tex">0.0081975</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0081975</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.65</mn></mrow><annotation encoding="application/x-tex">4.65</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.65</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.6597</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.6597 \times 10^{-6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.6597</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.90</mn></mrow><annotation encoding="application/x-tex">6.90</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.90</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.6001</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.6001 \times 10^{-12}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.6001</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">12</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.15</mn></mrow><annotation encoding="application/x-tex">0.15</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.15</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.44038</mn></mrow><annotation encoding="application/x-tex">0.44038</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.44038</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.45</mn></mrow><annotation encoding="application/x-tex">2.45</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.45</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0071428</mn></mrow><annotation encoding="application/x-tex">0.0071428</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0071428</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.70</mn></mrow><annotation encoding="application/x-tex">4.70</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.70</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.3008</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.3008 \times 10^{-6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.3008</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.95</mn></mrow><annotation encoding="application/x-tex">6.95</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.95</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.8264</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.8264 \times 10^{-12}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.8264</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">12</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.20</mn></mrow><annotation encoding="application/x-tex">0.20</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.20</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.42074</mn></mrow><annotation encoding="application/x-tex">0.42074</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.42074</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.50</mn></mrow><annotation encoding="application/x-tex">2.50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.50</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0062097</mn></mrow><annotation encoding="application/x-tex">0.0062097</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0062097</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.75</mn></mrow><annotation encoding="application/x-tex">4.75</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.75</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.0171</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.0171 \times 10^{-6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.0171</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.00</mn></mrow><annotation encoding="application/x-tex">7.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.2798</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.2798 \times 10^{-12}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.2798</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">12</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.25</mn></mrow><annotation encoding="application/x-tex">0.25</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.25</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.40129</mn></mrow><annotation encoding="application/x-tex">0.40129</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.40129</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.55</mn></mrow><annotation encoding="application/x-tex">2.55</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.55</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0053861</mn></mrow><annotation encoding="application/x-tex">0.0053861</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0053861</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.80</mn></mrow><annotation encoding="application/x-tex">4.80</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.80</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.9333</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow><annotation encoding="application/x-tex">7.9333 \times 10^{-7}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">7.9333</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">7</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.05</mn></mrow><annotation encoding="application/x-tex">7.05</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.05</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.9459</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup></mrow><annotation encoding="application/x-tex">8.9459 \times 10^{-13}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">8.9459</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">13</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.30</mn></mrow><annotation encoding="application/x-tex">0.30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.30</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.38209</mn></mrow><annotation encoding="application/x-tex">0.38209</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.38209</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.60</mn></mrow><annotation encoding="application/x-tex">2.60</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.60</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0046612</mn></mrow><annotation encoding="application/x-tex">0.0046612</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0046612</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.85</mn></mrow><annotation encoding="application/x-tex">4.85</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.85</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.1731</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow><annotation encoding="application/x-tex">6.1731 \times 10^{-7}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">6.1731</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">7</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.10</mn></mrow><annotation encoding="application/x-tex">7.10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.10</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.2378</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup></mrow><annotation encoding="application/x-tex">6.2378 \times 10^{-13}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">6.2378</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">13</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.35</mn></mrow><annotation encoding="application/x-tex">0.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.35</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.36317</mn></mrow><annotation encoding="application/x-tex">0.36317</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.36317</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.65</mn></mrow><annotation encoding="application/x-tex">2.65</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.65</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0040246</mn></mrow><annotation encoding="application/x-tex">0.0040246</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0040246</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.90</mn></mrow><annotation encoding="application/x-tex">4.90</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.90</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.7918</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow><annotation encoding="application/x-tex">4.7918 \times 10^{-7}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4.7918</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">7</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.15</mn></mrow><annotation encoding="application/x-tex">7.15</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.15</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.3389</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup></mrow><annotation encoding="application/x-tex">4.3389 \times 10^{-13}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4.3389</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">13</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.40</mn></mrow><annotation encoding="application/x-tex">0.40</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.40</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.34458</mn></mrow><annotation encoding="application/x-tex">0.34458</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.34458</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.70</mn></mrow><annotation encoding="application/x-tex">2.70</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.70</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.003467</mn></mrow><annotation encoding="application/x-tex">0.003467</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.003467</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.95</mn></mrow><annotation encoding="application/x-tex">4.95</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.95</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.7107</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.7107 \times 10^{-7}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.7107</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">7</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.20</mn></mrow><annotation encoding="application/x-tex">7.20</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.20</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.0106</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.0106 \times 10^{-13}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.0106</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">13</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.45</mn></mrow><annotation encoding="application/x-tex">0.45</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.45</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.32636</mn></mrow><annotation encoding="application/x-tex">0.32636</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.32636</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.75</mn></mrow><annotation encoding="application/x-tex">2.75</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.75</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0029798</mn></mrow><annotation encoding="application/x-tex">0.0029798</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0029798</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.00</mn></mrow><annotation encoding="application/x-tex">5.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.8665</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.8665 \times 10^{-7}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.8665</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">7</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.25</mn></mrow><annotation encoding="application/x-tex">7.25</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.25</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.0839</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.0839 \times 10^{-13}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.0839</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">13</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.50</mn></mrow><annotation encoding="application/x-tex">0.50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.50</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.30854</mn></mrow><annotation encoding="application/x-tex">0.30854</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.30854</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.80</mn></mrow><annotation encoding="application/x-tex">2.80</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.80</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0025551</mn></mrow><annotation encoding="application/x-tex">0.0025551</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0025551</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.05</mn></mrow><annotation encoding="application/x-tex">5.05</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.05</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.2091</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.2091 \times 10^{-7}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.2091</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">7</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.30</mn></mrow><annotation encoding="application/x-tex">7.30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.30</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.4388</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.4388 \times 10^{-13}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.4388</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">13</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.55</mn></mrow><annotation encoding="application/x-tex">0.55</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.55</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.29116</mn></mrow><annotation encoding="application/x-tex">0.29116</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.29116</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.85</mn></mrow><annotation encoding="application/x-tex">2.85</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.85</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.002186</mn></mrow><annotation encoding="application/x-tex">0.002186</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.002186</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.10</mn></mrow><annotation encoding="application/x-tex">5.10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.10</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.6983</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.6983 \times 10^{-7}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.6983</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">7</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.35</mn></mrow><annotation encoding="application/x-tex">7.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.35</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>9.9103</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>14</mn></mrow></msup></mrow><annotation encoding="application/x-tex">9.9103 \times 10^{-14}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">9.9103</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">14</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.60</mn></mrow><annotation encoding="application/x-tex">0.60</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.60</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.27425</mn></mrow><annotation encoding="application/x-tex">0.27425</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.27425</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.90</mn></mrow><annotation encoding="application/x-tex">2.90</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.90</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0018658</mn></mrow><annotation encoding="application/x-tex">0.0018658</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0018658</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.15</mn></mrow><annotation encoding="application/x-tex">5.15</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.15</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.3024</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.3024 \times 10^{-7}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.3024</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">7</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.40</mn></mrow><annotation encoding="application/x-tex">7.40</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.40</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.8092</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>14</mn></mrow></msup></mrow><annotation encoding="application/x-tex">6.8092 \times 10^{-14}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">6.8092</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">14</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.65</mn></mrow><annotation encoding="application/x-tex">0.65</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.65</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.25785</mn></mrow><annotation encoding="application/x-tex">0.25785</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.25785</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.95</mn></mrow><annotation encoding="application/x-tex">2.95</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.95</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0015889</mn></mrow><annotation encoding="application/x-tex">0.0015889</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0015889</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.20</mn></mrow><annotation encoding="application/x-tex">5.20</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.20</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>9.9644</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow><annotation encoding="application/x-tex">9.9644 \times 10^{-8}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">9.9644</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.45</mn></mrow><annotation encoding="application/x-tex">7.45</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.45</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.667</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>14</mn></mrow></msup></mrow><annotation encoding="application/x-tex">4.667 \times 10^{-14}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4.667</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">14</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.70</mn></mrow><annotation encoding="application/x-tex">0.70</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.70</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.24196</mn></mrow><annotation encoding="application/x-tex">0.24196</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.24196</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.00</mn></mrow><annotation encoding="application/x-tex">3.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0013499</mn></mrow><annotation encoding="application/x-tex">0.0013499</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0013499</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.25</mn></mrow><annotation encoding="application/x-tex">5.25</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.25</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.605</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow><annotation encoding="application/x-tex">7.605 \times 10^{-8}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">7.605</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.50</mn></mrow><annotation encoding="application/x-tex">7.50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.50</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.1909</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>14</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.1909 \times 10^{-14}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.1909</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">14</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.75</mn></mrow><annotation encoding="application/x-tex">0.75</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.75</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.22663</mn></mrow><annotation encoding="application/x-tex">0.22663</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.22663</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.05</mn></mrow><annotation encoding="application/x-tex">3.05</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.05</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0011442</mn></mrow><annotation encoding="application/x-tex">0.0011442</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0011442</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.30</mn></mrow><annotation encoding="application/x-tex">5.30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.30</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.7901</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow><annotation encoding="application/x-tex">5.7901 \times 10^{-8}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">5.7901</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.55</mn></mrow><annotation encoding="application/x-tex">7.55</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.55</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.1763</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>14</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.1763 \times 10^{-14}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.1763</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">14</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.80</mn></mrow><annotation encoding="application/x-tex">0.80</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.80</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.21186</mn></mrow><annotation encoding="application/x-tex">0.21186</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.21186</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.10</mn></mrow><annotation encoding="application/x-tex">3.10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.10</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0009676</mn></mrow><annotation encoding="application/x-tex">0.0009676</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0009676</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.35</mn></mrow><annotation encoding="application/x-tex">5.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.35</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.3977</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow><annotation encoding="application/x-tex">4.3977 \times 10^{-8}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4.3977</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.60</mn></mrow><annotation encoding="application/x-tex">7.60</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.60</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.4807</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>14</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.4807 \times 10^{-14}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.4807</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">14</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.85</mn></mrow><annotation encoding="application/x-tex">0.85</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.85</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.19766</mn></mrow><annotation encoding="application/x-tex">0.19766</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.19766</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.15</mn></mrow><annotation encoding="application/x-tex">3.15</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.15</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00081635</mn></mrow><annotation encoding="application/x-tex">0.00081635</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00081635</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.40</mn></mrow><annotation encoding="application/x-tex">5.40</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.40</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.332</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.332 \times 10^{-8}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.332</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.65</mn></mrow><annotation encoding="application/x-tex">7.65</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.65</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.0049</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>14</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.0049 \times 10^{-14}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.0049</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">14</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.90</mn></mrow><annotation encoding="application/x-tex">0.90</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.90</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.18406</mn></mrow><annotation encoding="application/x-tex">0.18406</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.18406</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.20</mn></mrow><annotation encoding="application/x-tex">3.20</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.20</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00068714</mn></mrow><annotation encoding="application/x-tex">0.00068714</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00068714</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.45</mn></mrow><annotation encoding="application/x-tex">5.45</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.45</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.5185</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.5185 \times 10^{-8}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.5185</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.70</mn></mrow><annotation encoding="application/x-tex">7.70</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.70</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.8033</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow><annotation encoding="application/x-tex">6.8033 \times 10^{-15}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">6.8033</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">15</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.95</mn></mrow><annotation encoding="application/x-tex">0.95</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.95</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.17106</mn></mrow><annotation encoding="application/x-tex">0.17106</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.17106</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.25</mn></mrow><annotation encoding="application/x-tex">3.25</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.25</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00057703</mn></mrow><annotation encoding="application/x-tex">0.00057703</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00057703</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.50</mn></mrow><annotation encoding="application/x-tex">5.50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.50</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.899</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.899 \times 10^{-8}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.899</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.75</mn></mrow><annotation encoding="application/x-tex">7.75</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.75</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.5946</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow><annotation encoding="application/x-tex">4.5946 \times 10^{-15}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4.5946</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">15</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.00</mn></mrow><annotation encoding="application/x-tex">1.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.15866</mn></mrow><annotation encoding="application/x-tex">0.15866</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.15866</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.30</mn></mrow><annotation encoding="application/x-tex">3.30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.30</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00048342</mn></mrow><annotation encoding="application/x-tex">0.00048342</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00048342</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.55</mn></mrow><annotation encoding="application/x-tex">5.55</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.55</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.4283</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.4283 \times 10^{-8}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.4283</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.80</mn></mrow><annotation encoding="application/x-tex">7.80</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.80</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.0954</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.0954 \times 10^{-15}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.0954</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">15</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.05</mn></mrow><annotation encoding="application/x-tex">1.05</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.05</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.14686</mn></mrow><annotation encoding="application/x-tex">0.14686</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.14686</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.35</mn></mrow><annotation encoding="application/x-tex">3.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.35</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00040406</mn></mrow><annotation encoding="application/x-tex">0.00040406</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00040406</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.60</mn></mrow><annotation encoding="application/x-tex">5.60</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.60</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.0718</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.0718 \times 10^{-8}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.0718</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.85</mn></mrow><annotation encoding="application/x-tex">7.85</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.85</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.0802</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.0802 \times 10^{-15}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.0802</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">15</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.10</mn></mrow><annotation encoding="application/x-tex">1.10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.10</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.13567</mn></mrow><annotation encoding="application/x-tex">0.13567</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.13567</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.40</mn></mrow><annotation encoding="application/x-tex">3.40</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.40</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00033693</mn></mrow><annotation encoding="application/x-tex">0.00033693</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00033693</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.65</mn></mrow><annotation encoding="application/x-tex">5.65</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.65</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.0224</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow><annotation encoding="application/x-tex">8.0224 \times 10^{-9}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">8.0224</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">9</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.90</mn></mrow><annotation encoding="application/x-tex">7.90</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.90</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.3945</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.3945 \times 10^{-15}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.3945</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">15</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.15</mn></mrow><annotation encoding="application/x-tex">1.15</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.15</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.12507</mn></mrow><annotation encoding="application/x-tex">0.12507</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.12507</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.45</mn></mrow><annotation encoding="application/x-tex">3.45</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.45</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00028029</mn></mrow><annotation encoding="application/x-tex">0.00028029</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00028029</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.70</mn></mrow><annotation encoding="application/x-tex">5.70</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.70</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.9904</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow><annotation encoding="application/x-tex">5.9904 \times 10^{-3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">5.9904</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.95</mn></mrow><annotation encoding="application/x-tex">7.95</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7.95</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>9.3256</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>16</mn></mrow></msup></mrow><annotation encoding="application/x-tex">9.3256 \times 10^{-16}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">9.3256</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">16</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.20</mn></mrow><annotation encoding="application/x-tex">1.20</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.20</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.11507</mn></mrow><annotation encoding="application/x-tex">0.11507</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.11507</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.50</mn></mrow><annotation encoding="application/x-tex">3.50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.50</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00023263</mn></mrow><annotation encoding="application/x-tex">0.00023263</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00023263</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.75</mn></mrow><annotation encoding="application/x-tex">5.75</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.75</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.4622</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow><annotation encoding="application/x-tex">4.4622 \times 10^{-9}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4.4622</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">9</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.00</mn></mrow><annotation encoding="application/x-tex">8.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.221</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>16</mn></mrow></msup></mrow><annotation encoding="application/x-tex">6.221 \times 10^{-16}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">6.221</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">16</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.25</mn></mrow><annotation encoding="application/x-tex">1.25</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.25</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.10565</mn></mrow><annotation encoding="application/x-tex">0.10565</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.10565</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.55</mn></mrow><annotation encoding="application/x-tex">3.55</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.55</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00019262</mn></mrow><annotation encoding="application/x-tex">0.00019262</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00019262</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.80</mn></mrow><annotation encoding="application/x-tex">5.80</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.80</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.3157</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.3157 \times 10^{-9}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.3157</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">9</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.05</mn></mrow><annotation encoding="application/x-tex">8.05</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.05</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.1397</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>16</mn></mrow></msup></mrow><annotation encoding="application/x-tex">4.1397 \times 10^{-16}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4.1397</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">16</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.30</mn></mrow><annotation encoding="application/x-tex">1.30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.30</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0968</mn></mrow><annotation encoding="application/x-tex">0.0968</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0968</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.60</mn></mrow><annotation encoding="application/x-tex">3.60</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.60</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00015911</mn></mrow><annotation encoding="application/x-tex">0.00015911</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00015911</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.85</mn></mrow><annotation encoding="application/x-tex">5.85</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.85</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.4579</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.4579 \times 10^{-9}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.4579</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">9</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.10</mn></mrow><annotation encoding="application/x-tex">8.10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.10</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.748</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>16</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.748 \times 10^{-16}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.748</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">16</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.35</mn></mrow><annotation encoding="application/x-tex">1.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.35</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.088508</mn></mrow><annotation encoding="application/x-tex">0.088508</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.088508</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.65</mn></mrow><annotation encoding="application/x-tex">3.65</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.65</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.00013112</mn></mrow><annotation encoding="application/x-tex">0.00013112</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.00013112</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.90</mn></mrow><annotation encoding="application/x-tex">5.90</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.90</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.8175</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.8175 \times 10^{-9}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.8175</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">9</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.15</mn></mrow><annotation encoding="application/x-tex">8.15</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.15</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.8196</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>16</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.8196 \times 10^{-16}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.8196</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">16</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.40</mn></mrow><annotation encoding="application/x-tex">1.40</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.40</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.080757</mn></mrow><annotation encoding="application/x-tex">0.080757</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.080757</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.70</mn></mrow><annotation encoding="application/x-tex">3.70</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.70</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.0001078</mn></mrow><annotation encoding="application/x-tex">0.0001078</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.0001078</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.95</mn></mrow><annotation encoding="application/x-tex">5.95</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5.95</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.3407</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.3407 \times 10^{-9}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.3407</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">9</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.20</mn></mrow><annotation encoding="application/x-tex">8.20</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.20</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.2019</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>16</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.2019 \times 10^{-16}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.2019</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">16</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.45</mn></mrow><annotation encoding="application/x-tex">1.45</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.45</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.073529</mn></mrow><annotation encoding="application/x-tex">0.073529</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.073529</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.75</mn></mrow><annotation encoding="application/x-tex">3.75</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.75</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.8417</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow><annotation encoding="application/x-tex">8.8417 \times 10^{-5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">8.8417</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.00</mn></mrow><annotation encoding="application/x-tex">6.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>9.8659</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow><annotation encoding="application/x-tex">9.8659 \times 10^{-10}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">9.8659</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">10</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.25</mn></mrow><annotation encoding="application/x-tex">8.25</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.25</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.9197</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>17</mn></mrow></msup></mrow><annotation encoding="application/x-tex">7.9197 \times 10^{-17}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">7.9197</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">17</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.50</mn></mrow><annotation encoding="application/x-tex">1.50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.50</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.066807</mn></mrow><annotation encoding="application/x-tex">0.066807</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.066807</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.80</mn></mrow><annotation encoding="application/x-tex">3.80</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.80</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.2348</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow><annotation encoding="application/x-tex">7.2348 \times 10^{-5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">7.2348</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.05</mn></mrow><annotation encoding="application/x-tex">6.05</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.05</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.2423</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow><annotation encoding="application/x-tex">7.2423 \times 10^{-10}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">7.2423</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">10</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.30</mn></mrow><annotation encoding="application/x-tex">8.30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.30</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.2056</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>17</mn></mrow></msup></mrow><annotation encoding="application/x-tex">5.2056 \times 10^{-17}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">5.2056</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">17</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.55</mn></mrow><annotation encoding="application/x-tex">1.55</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.55</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.060571</mn></mrow><annotation encoding="application/x-tex">0.060571</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.060571</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.85</mn></mrow><annotation encoding="application/x-tex">3.85</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.85</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.9059</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow><annotation encoding="application/x-tex">5.9059 \times 10^{-5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">5.9059</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.10</mn></mrow><annotation encoding="application/x-tex">6.10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.10</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.3034</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow><annotation encoding="application/x-tex">5.3034 \times 10^{-10}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">5.3034</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">10</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.35</mn></mrow><annotation encoding="application/x-tex">8.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.35</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.4131</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>17</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.4131 \times 10^{-17}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.4131</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">17</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.60</mn></mrow><annotation encoding="application/x-tex">1.60</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.60</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.054799</mn></mrow><annotation encoding="application/x-tex">0.054799</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.054799</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.90</mn></mrow><annotation encoding="application/x-tex">3.90</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.90</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.8096</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow><annotation encoding="application/x-tex">4.8096 \times 10^{-5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4.8096</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.15</mn></mrow><annotation encoding="application/x-tex">6.15</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.15</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.8741</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.8741 \times 10^{-10}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.8741</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">10</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.40</mn></mrow><annotation encoding="application/x-tex">8.40</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.40</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.2324</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>17</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.2324 \times 10^{-17}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.2324</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">17</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.65</mn></mrow><annotation encoding="application/x-tex">1.65</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.65</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.049471</mn></mrow><annotation encoding="application/x-tex">0.049471</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.049471</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.95</mn></mrow><annotation encoding="application/x-tex">3.95</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3.95</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.9076</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.9076 \times 10^{-5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.9076</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.20</mn></mrow><annotation encoding="application/x-tex">6.20</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.20</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.8232</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.8232 \times 10^{-10}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.8232</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">10</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.45</mn></mrow><annotation encoding="application/x-tex">8.45</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.45</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.4565</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>17</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.4565 \times 10^{-17}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.4565</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">17</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.70</mn></mrow><annotation encoding="application/x-tex">1.70</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.70</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.044565</mn></mrow><annotation encoding="application/x-tex">0.044565</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.044565</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.00</mn></mrow><annotation encoding="application/x-tex">4.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.1671</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.1671 \times 10^{-5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.1671</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.25</mn></mrow><annotation encoding="application/x-tex">6.25</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.25</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.0523</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.0523 \times 10^{-10}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.0523</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">10</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.50</mn></mrow><annotation encoding="application/x-tex">8.50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.50</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>9.4795</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>18</mn></mrow></msup></mrow><annotation encoding="application/x-tex">9.4795 \times 10^{-18}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">9.4795</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">18</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.75</mn></mrow><annotation encoding="application/x-tex">1.75</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.75</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.040059</mn></mrow><annotation encoding="application/x-tex">0.040059</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.040059</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.05</mn></mrow><annotation encoding="application/x-tex">4.05</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.05</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.5609</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.5609 \times 10^{-5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.5609</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.30</mn></mrow><annotation encoding="application/x-tex">6.30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.30</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.4882</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.4882 \times 10^{-10}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.4882</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">10</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.55</mn></mrow><annotation encoding="application/x-tex">8.55</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.55</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.1544</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>18</mn></mrow></msup></mrow><annotation encoding="application/x-tex">6.1544 \times 10^{-18}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">6.1544</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">18</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.80</mn></mrow><annotation encoding="application/x-tex">1.80</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.80</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.03593</mn></mrow><annotation encoding="application/x-tex">0.03593</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.03593</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.10</mn></mrow><annotation encoding="application/x-tex">4.10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.10</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.0658</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.0658 \times 10^{-5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.0658</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.35</mn></mrow><annotation encoding="application/x-tex">6.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.35</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.0766</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.0766 \times 10^{-10}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.0766</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">10</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.60</mn></mrow><annotation encoding="application/x-tex">8.60</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.60</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.9858</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>18</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.9858 \times 10^{-18}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.9858</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">18</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.85</mn></mrow><annotation encoding="application/x-tex">1.85</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.85</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.032157</mn></mrow><annotation encoding="application/x-tex">0.032157</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.032157</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.15</mn></mrow><annotation encoding="application/x-tex">4.15</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.15</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.6624</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.6624 \times 10^{-5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.6624</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.40</mn></mrow><annotation encoding="application/x-tex">6.40</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.40</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.7688</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow><annotation encoding="application/x-tex">7.7688 \times 10^{-11}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">7.7688</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">11</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.65</mn></mrow><annotation encoding="application/x-tex">8.65</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.65</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.575</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>18</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.575 \times 10^{-18}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.575</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">18</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.90</mn></mrow><annotation encoding="application/x-tex">1.90</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.90</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.028717</mn></mrow><annotation encoding="application/x-tex">0.028717</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.028717</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.20</mn></mrow><annotation encoding="application/x-tex">4.20</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.20</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.3346</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.3346 \times 10^{-5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.3346</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.45</mn></mrow><annotation encoding="application/x-tex">6.45</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.45</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.5925</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow><annotation encoding="application/x-tex">5.5925 \times 10^{-11}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">5.5925</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">11</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.70</mn></mrow><annotation encoding="application/x-tex">8.70</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.70</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.6594</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>18</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.6594 \times 10^{-18}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.6594</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">18</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.95</mn></mrow><annotation encoding="application/x-tex">1.95</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1.95</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.025588</mn></mrow><annotation encoding="application/x-tex">0.025588</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.025588</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.25</mn></mrow><annotation encoding="application/x-tex">4.25</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.25</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.0689</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.0689 \times 10^{-5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.0689</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.50</mn></mrow><annotation encoding="application/x-tex">6.50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.50</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.016</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow><annotation encoding="application/x-tex">4.016 \times 10^{-11}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4.016</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">11</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.75</mn></mrow><annotation encoding="application/x-tex">8.75</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.75</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.0668</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>18</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.0668 \times 10^{-18}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.0668</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">18</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.00</mn></mrow><annotation encoding="application/x-tex">2.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.02275</mn></mrow><annotation encoding="application/x-tex">0.02275</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.02275</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.30</mn></mrow><annotation encoding="application/x-tex">4.30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.30</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.5399</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow><annotation encoding="application/x-tex">8.5399 \times 10^{-6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">8.5399</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.55</mn></mrow><annotation encoding="application/x-tex">6.55</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.55</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.8769</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.8769 \times 10^{-11}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.8769</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">11</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.80</mn></mrow><annotation encoding="application/x-tex">8.80</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.80</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.8408</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>19</mn></mrow></msup></mrow><annotation encoding="application/x-tex">6.8408 \times 10^{-19}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">6.8408</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">19</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.05</mn></mrow><annotation encoding="application/x-tex">2.05</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.05</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.020182</mn></mrow><annotation encoding="application/x-tex">0.020182</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.020182</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.35</mn></mrow><annotation encoding="application/x-tex">4.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.35</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.8069</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow><annotation encoding="application/x-tex">6.8069 \times 10^{-6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">6.8069</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.60</mn></mrow><annotation encoding="application/x-tex">6.60</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.60</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.0558</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.0558 \times 10^{-11}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.0558</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">11</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.85</mn></mrow><annotation encoding="application/x-tex">8.85</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.85</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.376</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>19</mn></mrow></msup></mrow><annotation encoding="application/x-tex">4.376 \times 10^{-19}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4.376</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">19</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.10</mn></mrow><annotation encoding="application/x-tex">2.10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.10</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.017864</mn></mrow><annotation encoding="application/x-tex">0.017864</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.017864</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.40</mn></mrow><annotation encoding="application/x-tex">4.40</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.40</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5.4125</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow><annotation encoding="application/x-tex">5.4125 \times 10^{-6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">5.4125</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.65</mn></mrow><annotation encoding="application/x-tex">6.65</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.65</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.4655</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.4655 \times 10^{-11}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.4655</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">11</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.90</mn></mrow><annotation encoding="application/x-tex">8.90</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.90</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.7923</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>19</mn></mrow></msup></mrow><annotation encoding="application/x-tex">2.7923 \times 10^{-19}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2.7923</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">19</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.15</mn></mrow><annotation encoding="application/x-tex">2.15</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.15</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.015778</mn></mrow><annotation encoding="application/x-tex">0.015778</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.015778</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.45</mn></mrow><annotation encoding="application/x-tex">4.45</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.45</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.2935</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow><annotation encoding="application/x-tex">4.2935 \times 10^{-6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4.2935</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.70</mn></mrow><annotation encoding="application/x-tex">6.70</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.70</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.0421</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.0421 \times 10^{-11}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.0421</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">11</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>8.95</mn></mrow><annotation encoding="application/x-tex">8.95</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">8.95</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.7774</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>19</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.7774 \times 10^{-19}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.7774</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">19</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.20</mn></mrow><annotation encoding="application/x-tex">2.20</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.20</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.013903</mn></mrow><annotation encoding="application/x-tex">0.013903</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.013903</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4.50</mn></mrow><annotation encoding="application/x-tex">4.50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4.50</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.3977</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow><annotation encoding="application/x-tex">3.3977 \times 10^{-6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3.3977</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6.75</mn></mrow><annotation encoding="application/x-tex">6.75</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6.75</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7.3923</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup></mrow><annotation encoding="application/x-tex">7.3923 \times 10^{-12}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">7.3923</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">12</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>9.00</mn></mrow><annotation encoding="application/x-tex">9.00</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">9.00</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.1286</mn><mo>×</mo><mn>1</mn><msup><mn>0</mn><mrow><mo>−</mo><mn>19</mn></mrow></msup></mrow><annotation encoding="application/x-tex">1.1286 \times 10^{-19}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1.1286</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">19</span></span></span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.25</mn></mrow><annotation encoding="application/x-tex">2.25</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2.25</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.012224</mn></mrow><annotation encoding="application/x-tex">0.012224</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.012224</span></span></span></span></td>
|
||
<td></td>
|
||
<td></td>
|
||
<td></td>
|
||
<td></td>
|
||
<td></td>
|
||
<td></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<p>Adapted from table 6.1 M F Mesiya - Contemporary Communication Systems</p>
|
||
<p>**The value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>erf</mtext><mo stretchy="false">(</mo><mn>3.30</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{erf}(3.30)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">erf</span></span><span class="mopen">(</span><span class="mord">3.30</span><span class="mclose">)</span></span></span></span> should be <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>≈</mo><mn>0.999997</mn></mrow><annotation encoding="application/x-tex">\approx0.999997</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4831em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.999997</span></span></span></span> instead, but this value is quoted in the formula table.</p>
|
||
<h3 id="receiver-output-shit">Receiver output shit</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>r</mi><mi>o</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mrow><mo fence="true">{</mo><mtable rowspacing="0.36em" columnalign="left left" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>s</mi><mrow><mi>o</mi><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>n</mi><mi>o</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mtext>code 1</mtext></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>s</mi><mrow><mi>o</mi><mn>2</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>n</mi><mi>o</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mtext>code 0</mtext></mstyle></mtd></mtr></mtable></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>n</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>:</mo><mtext>AWGN with </mtext><msubsup><mi>σ</mi><mi>o</mi><mn>2</mn></msubsup></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
r_o(t)&=\begin{cases}
|
||
s_{o1}(t)+n_o(t) & \text{code 1}\\
|
||
s_{o2}(t)+n_o(t) & \text{code 0}\\
|
||
\end{cases}\\
|
||
n&: \text{AWGN with }\sigma_o^2\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.8241em;vertical-align:-2.1621em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6621em;"><span style="top:-4.6621em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-2.2479em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1621em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6621em;"><span style="top:-4.6621em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">{</span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.69em;"><span style="top:-3.69em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">o</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">o</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.19em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:1em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.69em;"><span style="top:-3.69em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord text"><span class="mord">code 1</span></span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord text"><span class="mord">code 0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.19em;"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-2.2479em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">AWGN with </span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-2.453em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">o</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1621em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<!--
|
||
```math
|
||
\begin{align*}
|
||
G_x(f)
|
||
\end{align*}
|
||
``` -->
|
||
<h2 id="isi-channel-model">ISI, channel model</h2>
|
||
<h3 id="nyquist-criterion-for-zero-isi-1">Nyquist criterion for zero ISI</h3>
|
||
<p>TODO:</p>
|
||
<h3 id="nomenclature">Nomenclature</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>D</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>→</mo><mtext>Symbol Rate, Max. Signalling Rate</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>T</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>→</mo><mtext>Symbol Duration</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>M</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>→</mo><mtext>Symbol set size</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>W</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>→</mo><mtext>Bandwidth</mtext></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
D&\rightarrow\text{Symbol Rate, Max. Signalling Rate}\\
|
||
T&\rightarrow\text{Symbol Duration}\\
|
||
M&\rightarrow\text{Symbol set size}\\
|
||
W&\rightarrow\text{Bandwidth}\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6em;vertical-align:-2.75em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.25em;"><span style="top:-5.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span><span style="top:-0.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.75em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.25em;"><span style="top:-5.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Symbol Rate, Max. Signalling Rate</span></span></span></span><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Symbol Duration</span></span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Symbol set size</span></span></span></span><span style="top:-0.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Bandwidth</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.75em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="raised-cosine-rc-pulse">Raised cosine (RC) pulse</h3>
|
||
<p><img src="images/RC.drawio.svg" alt="Raised cosine pulse"></p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">0\leq\alpha\leq1
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7804em;vertical-align:-0.136em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span></p>
|
||
<p>⚠ NOTE might not be safe to assume <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>T</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>=</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">T'=T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span></span>, if you can solve the question without <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span></span> then use that method.</p>
|
||
<p>To solve this type of question:</p>
|
||
<ol>
|
||
<li>Use the formula for <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span> below</li>
|
||
<li>Consult the BER table below to get the BER which relates the noise of the channel <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>N</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">N_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> to <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mi>b</mi></msub></mrow><annotation encoding="application/x-tex">E_b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> and to <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>R</mi><mi>b</mi></msub></mrow><annotation encoding="application/x-tex">R_b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>.</li>
|
||
</ol>
|
||
<table>
|
||
<thead>
|
||
<tr>
|
||
<th>Linear modulation (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span>-PSK, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span>-QAM)</th>
|
||
<th>NRZ unipolar encoding</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi><mo>=</mo><msub><mi>B</mi><mstyle mathcolor="lime"><mtext>abs-abs</mtext></mstyle></msub></mrow><annotation encoding="application/x-tex">W=B_\text{\color{lime}abs-abs}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight" style="color:lime;">abs-abs</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi><mo>=</mo><msub><mi>B</mi><mstyle mathcolor="lime"><mtext>abs</mtext></mstyle></msub></mrow><annotation encoding="application/x-tex">W=B_\text{\color{lime}abs}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight" style="color:lime;">abs</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi><mo>=</mo><msub><mi>B</mi><mtext>abs-abs</mtext></msub><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>α</mi></mrow><mi>T</mi></mfrac><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo stretchy="false">)</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">W=B_\text{abs-abs}=\frac{1+\alpha}{T}=(1+\alpha)D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">abs-abs</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1901em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi><mo>=</mo><msub><mi>B</mi><mtext>abs</mtext></msub><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>α</mi></mrow><mrow><mn>2</mn><mi>T</mi></mrow></mfrac><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo stretchy="false">)</mo><mi>D</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">W=B_\text{abs}=\frac{1+\alpha}{2T}=(1+\alpha)D/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">abs</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1901em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mord">/2</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mfrac><mrow><mi>W</mi><mtext> symbol/s</mtext></mrow><mrow><mn>1</mn><mo>+</mo><mi>α</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">D=\frac{W\text{ symbol/s}}{1+\alpha}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.4133em;vertical-align:-0.4033em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">W</span><span class="mord text mtight"><span class="mord mtight"> symbol/s</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4033em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>W</mi><mtext> symbol/s</mtext></mrow><mrow><mn>1</mn><mo>+</mo><mi>α</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">D=\frac{2W\text{ symbol/s}}{1+\alpha}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.4133em;vertical-align:-0.4033em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">W</span><span class="mord text mtight"><span class="mord mtight"> symbol/s</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4033em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<h4 id="symbol-set-size-m">Symbol set size <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span></h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>D</mi><mtext> symbol/s</mtext></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mn>2</mn><mi>W</mi><mtext> Hz</mtext></mrow><mrow><mn>1</mn><mo>+</mo><mi>α</mi></mrow></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>R</mi><mi>b</mi></msub><mtext> bit/s</mtext></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mi>D</mi><mtext> symbol/s</mtext><mo stretchy="false">)</mo><mo>×</mo><mo stretchy="false">(</mo><mi>k</mi><mtext> bit/symbol</mtext><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>M</mi><mtext> symbol/set</mtext></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msup><mn>2</mn><mi>k</mi></msup></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>E</mi><mi>b</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>P</mi><mi>T</mi><mo>=</mo><msub><mi>P</mi><mtext>av</mtext></msub><mi mathvariant="normal">/</mi><msub><mi>R</mi><mi>b</mi></msub><mspace width="1em"/><mtext>Energy per bit</mtext></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
D\text{ symbol/s}&=\frac{2W\text{ Hz}}{1+\alpha}\\
|
||
R_b\text{ bit/s}&=(D\text{ symbol/s})\times(k\text{ bit/symbol})\\
|
||
M\text{ symbol/set}&=2^k\\
|
||
E_b&=PT=P_\text{av}/R_b\quad\text{Energy per bit}\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6.9888em;vertical-align:-3.2444em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.7444em;"><span style="top:-5.7444em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mord text"><span class="mord"> symbol/s</span></span></span></span><span style="top:-3.8351em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord text"><span class="mord"> bit/s</span></span></span></span><span style="top:-2.2759em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mord text"><span class="mord"> symbol/set</span></span></span></span><span style="top:-0.7759em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.2444em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.7444em;"><span style="top:-5.7444em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mord text"><span class="mord"> Hz</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.8351em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mord text"><span class="mord"> symbol/s</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord text"><span class="mord"> bit/symbol</span></span><span class="mclose">)</span></span></span><span style="top:-2.2759em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8991em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span></span></span></span></span></span></span><span style="top:-0.7759em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">PT</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">av</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Energy per bit</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.2444em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="nyquist-stuff">Nyquist stuff</h3>
|
||
<h4 id="condition-for-0-isi-todo">Condition for 0 ISI TODO:</h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>P</mi><mi>r</mi></msub><mo stretchy="false">(</mo><mi>k</mi><mi>T</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo fence="true">{</mo><mtable rowspacing="0.36em" columnalign="left left" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>k</mi><mo mathvariant="normal">≠</mo><mn>0</mn></mrow></mstyle></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">P_r(kT)=\begin{cases}
|
||
1 & k=0\\
|
||
0 & k\neq0
|
||
\end{cases}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:3em;vertical-align:-1.25em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">{</span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.69em;"><span style="top:-3.69em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.19em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:1em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.69em;"><span style="top:-3.69em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mrel"><span class="mord vbox"><span class="thinbox"><span class="rlap"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="inner"><span class="mord"><span class="mrel"></span></span></span><span class="fix"></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.19em;"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
|
||
<h4 id="other">Other</h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext>Excess BW</mtext></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>B</mi><mtext>abs</mtext></msub><mo>−</mo><msub><mi>B</mi><mtext>Nyquist</mtext></msub><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>α</mi></mrow><mrow><mn>2</mn><mi>T</mi></mrow></mfrac><mo>−</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>T</mi></mrow></mfrac><mo>=</mo><mfrac><mi>α</mi><mrow><mn>2</mn><mi>T</mi></mrow></mfrac><mspace width="1em"/><mrow><mtext>FOR NRZ (Use correct </mtext><mstyle scriptlevel="0" displaystyle="false"><msub><mi>B</mi><mtext>abs</mtext></msub></mstyle><mtext>)</mtext></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>α</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mtext>Excess BW</mtext><msub><mi>B</mi><mtext>Nyquist</mtext></msub></mfrac><mo>=</mo><mfrac><mrow><msub><mi>B</mi><mtext>abs</mtext></msub><mo>−</mo><msub><mi>B</mi><mtext>Nyquist</mtext></msub></mrow><msub><mi>B</mi><mtext>Nyquist</mtext></msub></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>T</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>1</mn><mi mathvariant="normal">/</mi><mi>D</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\text{Excess BW}&=B_\text{abs}-B_\text{Nyquist}=\frac{1+\alpha}{2T}-\frac{1}{2T}=\frac{\alpha}{2T}\quad\text{FOR NRZ (Use correct $B_\text{abs}$)}\\
|
||
\alpha&=\frac{\text{Excess BW}}{B_\text{Nyquist}}=\frac{B_\text{abs}-B_\text{Nyquist}}{B_\text{Nyquist}}\\
|
||
T&=1/D
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6.4399em;vertical-align:-2.9699em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.4699em;"><span style="top:-5.5088em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord text"><span class="mord">Excess BW</span></span></span></span><span style="top:-3.1625em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-1.0504em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.9699em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.4699em;"><span style="top:-5.5088em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">abs</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">Nyquist</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">FOR NRZ (Use correct </span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">abs</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">)</span></span></span></span><span style="top:-3.1625em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">Nyquist</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord text"><span class="mord">Excess BW</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9721em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">Nyquist</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">abs</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">Nyquist</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9721em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-1.0504em;"><span class="pstrut" style="height:3.3603em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">1/</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.9699em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<div style="page-break-after: always;"></div>
|
||
<h3 id="table-of-bandpass-signalling-and-ber">Table of bandpass signalling and BER</h3>
|
||
<table>
|
||
<thead>
|
||
<tr>
|
||
<th><strong>Binary Bandpass Signaling</strong></th>
|
||
<th><strong><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>B</mi><mtext>null-null</mtext></msub></mrow><annotation encoding="application/x-tex">B_\text{null-null}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">null-null</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> (Hz)</strong></th>
|
||
<th><strong><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>B</mi><mtext>abs-abs</mtext></msub><mstyle mathcolor="red"><mo>=</mo><mn>2</mn><msub><mi>B</mi><mtext>abs</mtext></msub></mstyle></mrow><annotation encoding="application/x-tex">B_\text{abs-abs}\color{red}=2B_\text{abs}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">abs-abs</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel" style="color:red;">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord" style="color:red;">2</span><span class="mord" style="color:red;"><span class="mord mathnormal" style="margin-right:0.05017em;color:red;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord text mtight" style="color:red;"><span class="mord mtight" style="color:red;">abs</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> (Hz)</strong></th>
|
||
<th><strong>BER with Coherent Detection</strong></th>
|
||
<th><strong>BER with Noncoherent Detection</strong></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td>ASK, unipolar NRZ</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><msub><mi>R</mi><mi>b</mi></msub></mrow><annotation encoding="application/x-tex">2R_b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>R</mi><mi>b</mi></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">R_b (1 + \alpha)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mrow><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mi>N</mi><mn>0</mn></msub></mrow></msqrt><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">Q\left( \sqrt{E_b / N_0} \right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.935em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.895em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.305em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.5</mn><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><mo stretchy="false">(</mo><mn>2</mn><msub><mi>N</mi><mn>0</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">0.5\exp(-E_b / (2N_0))</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0.5</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mopen">(</span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">))</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td>BPSK</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><msub><mi>R</mi><mi>b</mi></msub></mrow><annotation encoding="application/x-tex">2R_b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>R</mi><mi>b</mi></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">R_b (1 + \alpha)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mclose">)</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mrow><mn>2</mn><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mi>N</mi><mn>0</mn></msub></mrow></msqrt><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">Q\left( \sqrt{2E_b / N_0} \right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.935em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.895em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.305em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></td>
|
||
<td>Requires coherent detection</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Sunde's FSK</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><msub><mi>R</mi><mi>b</mi></msub></mrow><annotation encoding="application/x-tex">3R_b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord">3</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></td>
|
||
<td></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mrow><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mi>N</mi><mn>0</mn></msub></mrow></msqrt><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">Q\left( \sqrt{E_b / N_0} \right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.935em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.895em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.305em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.5</mn><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><mo stretchy="false">(</mo><mn>2</mn><msub><mi>N</mi><mn>0</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">0.5\exp(-E_b / (2N_0))</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0.5</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mopen">(</span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">))</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td>DBPSK, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span>-ary Bandpass Signaling</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><msub><mi>R</mi><mi>b</mi></msub></mrow><annotation encoding="application/x-tex">2R_b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>R</mi><mi>b</mi></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">R_b (1 + \alpha)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mclose">)</span></span></span></span></td>
|
||
<td></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.5</mn><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mi>N</mi><mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">0.5\exp(-E_b / N_0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0.5</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td>QPSK/OQPSK (<strong><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mo>=</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">M=4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4</span></span></span></span>, PSK</strong>)</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>R</mi><mi>b</mi></msub></mrow><annotation encoding="application/x-tex">R_b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><msub><mi>R</mi><mi>b</mi></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">\frac{R_b (1 + \alpha)}{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.355em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3488em;margin-left:-0.0077em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1512em;"><span></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mrow><mn>2</mn><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mi>N</mi><mn>0</mn></msub></mrow></msqrt><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">Q\left( \sqrt{2E_b / N_0} \right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.935em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.895em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.305em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></td>
|
||
<td>Requires coherent detection</td>
|
||
</tr>
|
||
<tr>
|
||
<td>MSK</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.5</mn><msub><mi>R</mi><mi>b</mi></msub></mrow><annotation encoding="application/x-tex">1.5R_b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord">1.5</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mn>3</mn><msub><mi>R</mi><mi>b</mi></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><mn>4</mn></mfrac></mrow><annotation encoding="application/x-tex">\frac{3R_b (1 + \alpha)}{4}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.355em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3488em;margin-left:-0.0077em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1512em;"><span></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mrow><mn>2</mn><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mi>N</mi><mn>0</mn></msub></mrow></msqrt><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">Q\left( \sqrt{2E_b / N_0} \right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.935em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.895em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.305em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></td>
|
||
<td>Requires coherent detection</td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span>-PSK (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mo>></mo><mn>4</mn></mrow><annotation encoding="application/x-tex">M > 4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4</span></span></span></span>)</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><msub><mi>R</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow><annotation encoding="application/x-tex">2R_b / \log_2 M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><msub><mi>R</mi><mi>b</mi></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><mrow><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{R_b (1 + \alpha)}{\log_2 M}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.5411em;vertical-align:-0.5311em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mop mtight"><span class="mop mtight"><span class="mtight">l</span><span class="mtight">o</span><span class="mtight" style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span style="top:-2.2341em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2659em;"><span></span></span></span></span></span></span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3488em;margin-left:-0.0077em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1512em;"><span></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5311em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>2</mn><mrow><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow></mfrac><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mrow><mn>2</mn><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi><msup><mrow><mi>sin</mi><mo></mo></mrow><mn>2</mn></msup><mrow><mo fence="true">(</mo><mi>π</mi><mi mathvariant="normal">/</mi><mi>M</mi><mo fence="true">)</mo></mrow><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mi>N</mi><mn>0</mn></msub></mrow></msqrt><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\frac{2}{\log_2 M} Q\left( \sqrt{2 \log_2 M \sin^2 \left( \pi / M \right) E_b / N_0} \right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.4em;vertical-align:-0.95em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mop mtight"><span class="mop mtight"><span class="mtight">l</span><span class="mtight">o</span><span class="mtight" style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span style="top:-2.2341em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2659em;"><span></span></span></span></span></span></span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5311em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.2959em;"><span class="svg-align" style="top:-3.8em;"><span class="pstrut" style="height:3.8em;"></span><span class="mord" style="padding-left:1em;"><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">sin</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8719em;"><span style="top:-3.1208em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.2559em;"><span class="pstrut" style="height:3.8em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.88em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.88em" viewBox="0 0 400000 1944" preserveAspectRatio="xMinYMin slice"><path d="M983 90
|
||
l0 -0
|
||
c4,-6.7,10,-10,18,-10 H400000v40
|
||
H1013.1s-83.4,268,-264.1,840c-180.7,572,-277,876.3,-289,913c-4.7,4.7,-12.7,7,-24,7
|
||
s-12,0,-12,0c-1.3,-3.3,-3.7,-11.7,-7,-25c-35.3,-125.3,-106.7,-373.3,-214,-744
|
||
c-10,12,-21,25,-33,39s-32,39,-32,39c-6,-5.3,-15,-14,-27,-26s25,-30,25,-30
|
||
c26.7,-32.7,52,-63,76,-91s52,-60,52,-60s208,722,208,722
|
||
c56,-175.3,126.3,-397.3,211,-666c84.7,-268.7,153.8,-488.2,207.5,-658.5
|
||
c53.7,-170.3,84.5,-266.8,92.5,-289.5z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5441em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span></span></td>
|
||
<td>Requires coherent detection</td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span>-DPSK (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mo>></mo><mn>4</mn></mrow><annotation encoding="application/x-tex">M > 4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4</span></span></span></span>)</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><msub><mi>R</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow><annotation encoding="application/x-tex">2R_b / \log_2 M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><msub><mi>R</mi><mi>b</mi></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><mrow><mn>2</mn><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{R_b (1 + \alpha)}{2 \log_2 M}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.5411em;vertical-align:-0.5311em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mop mtight"><span class="mop mtight"><span class="mtight">l</span><span class="mtight">o</span><span class="mtight" style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span style="top:-2.2341em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2659em;"><span></span></span></span></span></span></span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3488em;margin-left:-0.0077em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1512em;"><span></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5311em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
<td></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>2</mn><mrow><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow></mfrac><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mrow><mn>4</mn><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi><msup><mrow><mi>sin</mi><mo></mo></mrow><mn>2</mn></msup><mrow><mo fence="true">(</mo><mi>π</mi><mi mathvariant="normal">/</mi><mo stretchy="false">(</mo><mn>2</mn><mi>M</mi><mo stretchy="false">)</mo><mo fence="true">)</mo></mrow><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mi>N</mi><mn>0</mn></msub></mrow></msqrt><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\frac{2}{\log_2 M} Q\left( \sqrt{4 \log_2 M \sin^2 \left( \pi / (2M) \right) E_b / N_0} \right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.4em;vertical-align:-0.95em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mop mtight"><span class="mop mtight"><span class="mtight">l</span><span class="mtight">o</span><span class="mtight" style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span style="top:-2.2341em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2659em;"><span></span></span></span></span></span></span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5311em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.2959em;"><span class="svg-align" style="top:-3.8em;"><span class="pstrut" style="height:3.8em;"></span><span class="mord" style="padding-left:1em;"><span class="mord">4</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">sin</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8719em;"><span style="top:-3.1208em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.2559em;"><span class="pstrut" style="height:3.8em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.88em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.88em" viewBox="0 0 400000 1944" preserveAspectRatio="xMinYMin slice"><path d="M983 90
|
||
l0 -0
|
||
c4,-6.7,10,-10,18,-10 H400000v40
|
||
H1013.1s-83.4,268,-264.1,840c-180.7,572,-277,876.3,-289,913c-4.7,4.7,-12.7,7,-24,7
|
||
s-12,0,-12,0c-1.3,-3.3,-3.7,-11.7,-7,-25c-35.3,-125.3,-106.7,-373.3,-214,-744
|
||
c-10,12,-21,25,-33,39s-32,39,-32,39c-6,-5.3,-15,-14,-27,-26s25,-30,25,-30
|
||
c26.7,-32.7,52,-63,76,-91s52,-60,52,-60s208,722,208,722
|
||
c56,-175.3,126.3,-397.3,211,-666c84.7,-268.7,153.8,-488.2,207.5,-658.5
|
||
c53.7,-170.3,84.5,-266.8,92.5,-289.5z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5441em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span>-QAM (Square constellation)</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><msub><mi>R</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow><annotation encoding="application/x-tex">2R_b / \log_2 M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><msub><mi>R</mi><mi>b</mi></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><mrow><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{R_b (1 + \alpha)}{\log_2 M}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.5411em;vertical-align:-0.5311em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mop mtight"><span class="mop mtight"><span class="mtight">l</span><span class="mtight">o</span><span class="mtight" style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span style="top:-2.2341em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2659em;"><span></span></span></span></span></span></span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3488em;margin-left:-0.0077em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1512em;"><span></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5311em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>4</mn><mrow><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow></mfrac><mrow><mo fence="true">(</mo><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><msqrt><mi>M</mi></msqrt></mfrac><mo fence="true">)</mo></mrow><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mrow><mfrac><mrow><mn>3</mn><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow><mrow><mi>M</mi><mo>−</mo><mn>1</mn></mrow></mfrac><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mi>N</mi><mn>0</mn></msub></mrow></msqrt><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\frac{4}{\log_2 M} \left( 1 - \frac{1}{\sqrt{M}} \right) Q\left( \sqrt{\frac{3 \log_2 M}{M - 1} E_b / N_0} \right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.4em;vertical-align:-0.95em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mop mtight"><span class="mop mtight"><span class="mtight">l</span><span class="mtight">o</span><span class="mtight" style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span style="top:-2.2341em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2659em;"><span></span></span></span></span></span></span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5311em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.5374em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9323em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight" style="padding-left:0.833em;"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span><span style="top:-2.8923em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail mtight" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1077em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.538em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.2744em;"><span class="svg-align" style="top:-3.8em;"><span class="pstrut" style="height:3.8em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9822em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4961em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mop mtight"><span class="mop mtight"><span class="mtight">l</span><span class="mtight">o</span><span class="mtight" style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span style="top:-2.2341em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2659em;"><span></span></span></span></span></span></span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4033em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.2344em;"><span class="pstrut" style="height:3.8em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.88em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.88em" viewBox="0 0 400000 1944" preserveAspectRatio="xMinYMin slice"><path d="M983 90
|
||
l0 -0
|
||
c4,-6.7,10,-10,18,-10 H400000v40
|
||
H1013.1s-83.4,268,-264.1,840c-180.7,572,-277,876.3,-289,913c-4.7,4.7,-12.7,7,-24,7
|
||
s-12,0,-12,0c-1.3,-3.3,-3.7,-11.7,-7,-25c-35.3,-125.3,-106.7,-373.3,-214,-744
|
||
c-10,12,-21,25,-33,39s-32,39,-32,39c-6,-5.3,-15,-14,-27,-26s25,-30,25,-30
|
||
c26.7,-32.7,52,-63,76,-91s52,-60,52,-60s208,722,208,722
|
||
c56,-175.3,126.3,-397.3,211,-666c84.7,-268.7,153.8,-488.2,207.5,-658.5
|
||
c53.7,-170.3,84.5,-266.8,92.5,-289.5z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5656em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span></span></td>
|
||
<td>Requires coherent detection</td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span>-FSK Coherent</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>+</mo><mn>3</mn><mo stretchy="false">)</mo><msub><mi>R</mi><mi>b</mi></msub></mrow><mrow><mn>2</mn><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{(M + 3) R_b}{2 \log_2 M}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.5411em;vertical-align:-0.5311em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mop mtight"><span class="mop mtight"><span class="mtight">l</span><span class="mtight">o</span><span class="mtight" style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span style="top:-2.2341em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2659em;"><span></span></span></span></span></span></span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span><span class="mbin mtight">+</span><span class="mord mtight">3</span><span class="mclose mtight">)</span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3488em;margin-left:-0.0077em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1512em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5311em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></td>
|
||
<td></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi>M</mi><mo>−</mo><mn>1</mn></mrow><mrow><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow></mfrac><mi>Q</mi><mrow><mo fence="true">(</mo><msqrt><mrow><mo stretchy="false">(</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi><mo stretchy="false">)</mo><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mi>N</mi><mn>0</mn></msub></mrow></msqrt><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\frac{M - 1}{\log_2 M} Q\left( \sqrt{(\log_2 M) E_b / N_0} \right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8723em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mop mtight"><span class="mop mtight"><span class="mtight">l</span><span class="mtight">o</span><span class="mtight" style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span style="top:-2.2341em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2659em;"><span></span></span></span></span></span></span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5311em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.935em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mopen">(</span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.895em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.305em;"><span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></td>
|
||
<td></td>
|
||
</tr>
|
||
<tr>
|
||
<td>Noncoherent</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mi>M</mi><msub><mi>R</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow><annotation encoding="application/x-tex">2M R_b / \log_2 M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0077em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span></td>
|
||
<td></td>
|
||
<td></td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi>M</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi></mrow></mfrac><mn>0.5</mn><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mrow><mo>−</mo><mo stretchy="false">(</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>M</mi><mo stretchy="false">)</mo><msub><mi>E</mi><mi>b</mi></msub><mi mathvariant="normal">/</mi><mn>2</mn><msub><mi>N</mi><mn>0</mn></msub></mrow><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\frac{M - 1}{2 \log_2 M} 0.5\exp({-(\log_2 M) E_b / 2N_0})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.4034em;vertical-align:-0.5311em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8723em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mop mtight"><span class="mop mtight"><span class="mtight">l</span><span class="mtight">o</span><span class="mtight" style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span style="top:-2.2341em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2659em;"><span></span></span></span></span></span></span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5311em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord">0.5</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord"><span class="mord">−</span><span class="mopen">(</span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<p>Adapted from table 11.4 M F Mesiya - Contemporary Communication Systems</p>
|
||
<h3 id="psd-of-modulated-signals">PSD of modulated signals</h3>
|
||
<table>
|
||
<thead>
|
||
<tr>
|
||
<th>Modulation</th>
|
||
<th><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>G</mi><mi>x</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G_x(f)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mclose">)</span></span></span></span></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td>Quadrature</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mstyle mathcolor="red"><mfrac><msup><msub><mi>A</mi><mi>c</mi></msub><mn>2</mn></msup><mn>4</mn></mfrac><mo stretchy="false">[</mo><msub><mi>G</mi><mi>I</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo>−</mo><msub><mi>f</mi><mi>c</mi></msub><mo stretchy="false">)</mo><mo>+</mo><msub><mi>G</mi><mi>I</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo>+</mo><msub><mi>f</mi><mi>c</mi></msub><mo stretchy="false">)</mo><mo>+</mo><msub><mi>G</mi><mi>Q</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo>−</mo><msub><mi>f</mi><mi>c</mi></msub><mo stretchy="false">)</mo><mo>+</mo><msub><mi>G</mi><mi>Q</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo>+</mo><msub><mi>f</mi><mi>c</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mstyle></mrow><annotation encoding="application/x-tex">\color{red}\frac{{A_c}^2}{4}[G_I(f-f_c)+G_I(f+f_c)+G_Q(f-f_c)+G_Q(f+f_c)]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.379em;vertical-align:-0.345em;"></span><span class="mord" style="color:red;"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.034em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mtight" style="color:red;"><span class="mord mtight" style="color:red;">4</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="color:red;border-bottom-width:0.04em;"></span></span><span style="top:-3.4101em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mtight" style="color:red;"><span class="mord mtight" style="color:red;"><span class="mord mtight" style="color:red;"><span class="mord mtight" style="color:red;"><span class="mord mathnormal mtight" style="color:red;">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style="color:red;"><span class="mord mathnormal mtight" style="color:red;">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style="color:red;"><span class="mord mtight" style="color:red;">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen" style="color:red;">[</span><span class="mord" style="color:red;"><span class="mord mathnormal" style="color:red;">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mathnormal mtight" style="margin-right:0.07847em;color:red;">I</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen" style="color:red;">(</span><span class="mord mathnormal" style="margin-right:0.10764em;color:red;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin" style="color:red;">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord" style="color:red;"><span class="mord mathnormal" style="margin-right:0.10764em;color:red;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mathnormal mtight" style="color:red;">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose" style="color:red;">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin" style="color:red;">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord" style="color:red;"><span class="mord mathnormal" style="color:red;">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mathnormal mtight" style="margin-right:0.07847em;color:red;">I</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen" style="color:red;">(</span><span class="mord mathnormal" style="margin-right:0.10764em;color:red;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin" style="color:red;">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord" style="color:red;"><span class="mord mathnormal" style="margin-right:0.10764em;color:red;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mathnormal mtight" style="color:red;">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose" style="color:red;">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin" style="color:red;">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord" style="color:red;"><span class="mord mathnormal" style="color:red;">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mathnormal mtight" style="color:red;">Q</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen" style="color:red;">(</span><span class="mord mathnormal" style="margin-right:0.10764em;color:red;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin" style="color:red;">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord" style="color:red;"><span class="mord mathnormal" style="margin-right:0.10764em;color:red;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mathnormal mtight" style="color:red;">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose" style="color:red;">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin" style="color:red;">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord" style="color:red;"><span class="mord mathnormal" style="color:red;">G</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mathnormal mtight" style="color:red;">Q</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mopen" style="color:red;">(</span><span class="mord mathnormal" style="margin-right:0.10764em;color:red;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin" style="color:red;">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord" style="color:red;"><span class="mord mathnormal" style="margin-right:0.10764em;color:red;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mathnormal mtight" style="color:red;">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose" style="color:red;">)]</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td>Linear</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mstyle mathcolor="red"><mfrac><mrow><mi mathvariant="normal">∣</mi><mi>V</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><msup><mi mathvariant="normal">∣</mi><mn>2</mn></msup></mrow><mn>2</mn></mfrac><msubsup><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></msubsup><mi>R</mi><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>j</mi><mn>2</mn><mi>π</mi><mi>l</mi><mi>f</mi><mi>T</mi><mo stretchy="false">)</mo><mspace width="1em"/><mtext>What??</mtext></mstyle></mrow><annotation encoding="application/x-tex">\color{red}\frac{|V(f)|^2}{2}\sum_{l=-\infty}^\infty R(l)\exp(-j2\pi l f T)\quad\text{What??}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.467em;vertical-align:-0.358em;"></span><span class="mord" style="color:red;"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1089em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mtight" style="color:red;"><span class="mord mtight" style="color:red;">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="color:red;border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mtight" style="color:red;"><span class="mord mtight" style="color:red;">∣</span><span class="mord mathnormal mtight" style="margin-right:0.22222em;color:red;">V</span><span class="mopen mtight" style="color:red;">(</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;color:red;">f</span><span class="mclose mtight" style="color:red;">)</span><span class="mord mtight" style="color:red;"><span class="mord mtight" style="color:red;">∣</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style="color:red;"><span class="mord mtight" style="color:red;">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop" style="color:red;"><span class="mop op-symbol small-op" style="color:red;position:relative;top:0em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8043em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mtight" style="color:red;"><span class="mord mathnormal mtight" style="margin-right:0.01968em;color:red;">l</span><span class="mrel mtight" style="color:red;">=</span><span class="mord mtight" style="color:red;">−</span><span class="mord mtight" style="color:red;">∞</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:red;"><span class="mord mtight" style="color:red;">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.358em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.00773em;color:red;">R</span><span class="mopen" style="color:red;">(</span><span class="mord mathnormal" style="margin-right:0.01968em;color:red;">l</span><span class="mclose" style="color:red;">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop" style="color:red;"><span style="color:red;">e</span><span style="color:red;">x</span><span style="color:red;">p</span></span><span class="mopen" style="color:red;">(</span><span class="mord" style="color:red;">−</span><span class="mord mathnormal" style="margin-right:0.05724em;color:red;">j</span><span class="mord" style="color:red;">2</span><span class="mord mathnormal" style="margin-right:0.03588em;color:red;">π</span><span class="mord mathnormal" style="margin-right:0.01968em;color:red;">l</span><span class="mord mathnormal" style="margin-right:0.10764em;color:red;">f</span><span class="mord mathnormal" style="margin-right:0.13889em;color:red;">T</span><span class="mclose" style="color:red;">)</span><span class="mspace" style="color:red;margin-right:1em;"></span><span class="mord text" style="color:red;"><span class="mord" style="color:red;">What??</span></span></span></span></span></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<h3 id="symbol-error-probability">Symbol error probability</h3>
|
||
<ul>
|
||
<li>Minimum distance between any two point</li>
|
||
<li>Different from bit error since a symbol can contain multiple bits</li>
|
||
</ul>
|
||
<h2 id="information-theory">Information theory</h2>
|
||
<h3 id="entropy-for-discrete-random-variables">Entropy for discrete random variables</h3>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>≥</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><munder><mo>∑</mo><mrow><msub><mi>x</mi><mi>i</mi></msub><mo>∈</mo><msub><mi>A</mi><mi>x</mi></msub></mrow></munder><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo stretchy="false">)</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><munder><mo>∑</mo><mrow><msub><mi>x</mi><mi>i</mi></msub><mo>∈</mo><msub><mi>A</mi><mi>x</mi></msub></mrow></munder><munder><mo>∑</mo><mrow><msub><mi>y</mi><mi>i</mi></msub><mo>∈</mo><msub><mi>A</mi><mi>y</mi></msub></mrow></munder><msub><mi>p</mi><mrow><mi>X</mi><mi>Y</mi></mrow></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi>y</mi><mi>i</mi></msub><mo stretchy="false">)</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><msub><mi>p</mi><mrow><mi>X</mi><mi>Y</mi></mrow></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi>y</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="1em"/><mtext>Joint entropy</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>H</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mspace width="1em"/><mrow><mtext>Joint entropy if </mtext><mstyle scriptlevel="0" displaystyle="false"><mi>x</mi></mstyle><mtext> and </mtext><mstyle scriptlevel="0" displaystyle="false"><mi>y</mi></mstyle><mtext> independent</mtext></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mi mathvariant="normal">∣</mi><mi>y</mi><mo>=</mo><msub><mi>y</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><munder><mo>∑</mo><mrow><msub><mi>x</mi><mi>i</mi></msub><mo>∈</mo><msub><mi>A</mi><mi>x</mi></msub></mrow></munder><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mi mathvariant="normal">∣</mi><mi>y</mi><mo>=</mo><msub><mi>y</mi><mi>j</mi></msub><mo stretchy="false">)</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mi mathvariant="normal">∣</mi><mi>y</mi><mo>=</mo><msub><mi>y</mi><mi>j</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="1em"/><mtext>Conditional entropy</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mi mathvariant="normal">∣</mi><mi>y</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><munder><mo>∑</mo><mrow><msub><mi>y</mi><mi>j</mi></msub><mo>∈</mo><msub><mi>A</mi><mi>y</mi></msub></mrow></munder><msub><mi>p</mi><mi>Y</mi></msub><mo stretchy="false">(</mo><msub><mi>y</mi><mi>j</mi></msub><mo stretchy="false">)</mo><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mi mathvariant="normal">∣</mi><mi>y</mi><mo>=</mo><msub><mi>y</mi><mi>j</mi></msub><mo stretchy="false">)</mo><mspace width="1em"/><mtext>Average conditional entropy, equivocation</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mi mathvariant="normal">∣</mi><mi>y</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><munder><mo>∑</mo><mrow><msub><mi>x</mi><mi>i</mi></msub><mo>∈</mo><msub><mi>A</mi><mi>x</mi></msub></mrow></munder><munder><mo>∑</mo><mrow><msub><mi>y</mi><mi>i</mi></msub><mo>∈</mo><msub><mi>A</mi><mi>y</mi></msub></mrow></munder><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi>y</mi><mi>j</mi></msub><mo stretchy="false">)</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mi mathvariant="normal">∣</mi><mi>y</mi><mo>=</mo><msub><mi>y</mi><mi>j</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mi mathvariant="normal">∣</mi><mi>y</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>−</mo><mi>H</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>H</mi><mo stretchy="false">(</mo><mi>y</mi><mi mathvariant="normal">∣</mi><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>H</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>+</mo><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mi mathvariant="normal">∣</mi><mi>y</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
H(x) &\geq 0\\
|
||
H(x) &= -\sum_{x_i\in A_x} p_X(x_i) \log_2(p_X(x_i))\\
|
||
H(x,y) &= -\sum_{x_i\in A_x}\sum_{y_i\in A_y} p_{XY}(x_i,y_i)\log_2(p_{XY}(x_i,y_i)) \quad\text{Joint entropy}\\
|
||
H(x,y) &= H(x)+H(y) \quad\text{Joint entropy if $x$ and $y$ independent}\\
|
||
H(x|y=y_j) &= -\sum_{x_i\in A_x} p_X(x_i|y=y_j) \log_2(p_X(x_i|y=y_j)) \quad\text{Conditional entropy}\\
|
||
H(x|y) &= -\sum_{y_j\in A_y} p_Y(y_j) H(x|y=y_j) \quad\text{Average conditional entropy, equivocation}\\
|
||
H(x|y) &= -\sum_{x_i\in A_x}\sum_{y_i\in A_y} p_X(x_i,y_j) \log_2(p_X(x_i|y=y_j))\\
|
||
H(x|y) &= H(x,y)-H(y)\\
|
||
H(x,y) &= H(x) + H(y|x) = H(y) + H(x|y)\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:20.0139em;vertical-align:-9.7569em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:10.2569em;"><span style="top:-12.4669em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span><span style="top:-10.7569em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span><span style="top:-8.0125em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span><span style="top:-5.3808em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span><span style="top:-3.6708em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-0.9264em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span><span style="top:1.9153em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span><span style="top:4.5469em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span><span style="top:6.0469em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:9.7569em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:10.2569em;"><span style="top:-12.4669em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span></span></span><span style="top:-10.7569em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.05em;"><span style="top:-1.8557em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3944em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">))</span></span></span><span style="top:-8.0125em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.05em;"><span style="top:-1.8557em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3944em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.05em;"><span style="top:-1.8557em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:-0.0359em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2819em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.4917em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span><span class="mord mathnormal mtight" style="margin-right:0.22222em;">Y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span><span class="mord mathnormal mtight" style="margin-right:0.22222em;">Y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">))</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Joint entropy</span></span></span></span><span style="top:-5.3808em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Joint entropy if </span><span class="mord mathnormal">x</span><span class="mord"> and </span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mord"> independent</span></span></span></span><span style="top:-3.6708em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.05em;"><span style="top:-1.8557em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3944em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">))</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Conditional entropy</span></span></span></span><span style="top:-0.9264em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.05em;"><span style="top:-1.8557em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:-0.0359em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2819em;"><span></span></span></span></span></span></span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2819em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.4917em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.22222em;">Y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Average conditional entropy, equivocation</span></span></span></span><span style="top:1.9153em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.05em;"><span style="top:-1.8557em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3944em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.05em;"><span style="top:-1.8557em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:-0.0359em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1645em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2819em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.4917em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">))</span></span></span><span style="top:4.5469em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span><span style="top:6.0469em;"><span class="pstrut" style="height:3.05em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mord">∣</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:9.7569em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<p>Entropy is <strong>maximized</strong> when all have an equal probability.</p>
|
||
<h3 id="differential-entropy-for-continuous-random-variables">Differential entropy for continuous random variables</h3>
|
||
<p>TODO: Cut out if not required</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><msub><mo>∫</mo><mi mathvariant="double-struck">R</mi></msub><msub><mi>f</mi><mi>X</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><msub><mi>f</mi><mi>X</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mi>d</mi><mi>x</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
h(x) &= -\int_\mathbb{R}f_X(x)\log_2(f_X(x))dx
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.572em;vertical-align:-1.036em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.536em;"><span style="top:-3.536em;"><span class="pstrut" style="height:3.36em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.036em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.536em;"><span style="top:-3.536em;"><span class="pstrut" style="height:3.36em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:-0.4297em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbb mtight">R</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9119em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.1076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">))</span><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.036em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="mutual-information">Mutual information</h3>
|
||
<p>Amount of entropy decrease of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> after observation by <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>.</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>I</mi><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">;</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mi mathvariant="normal">∣</mi><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo><mi>H</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>−</mo><mi>H</mi><mo stretchy="false">(</mo><mi>y</mi><mi mathvariant="normal">∣</mi><mi>x</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
I(x;y) &= H(x)-H(x|y)=H(y)-H(y|x)\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.5em;vertical-align:-0.5em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1em;"><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">;</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1em;"><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mord">∣</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="channel-model">Channel model</h3>
|
||
<p>Vertical, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span>: input<br>
|
||
Horizontal, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>: output</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="bold">P</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mn>11</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mn>12</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>1</mn><mi>N</mi></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mn>21</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mn>22</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>2</mn><mi>N</mi></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">⋱</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>M</mi><mn>1</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>M</mi><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>M</mi><mi>N</mi></mrow></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">\mathbf{P}=\left[\begin{matrix}
|
||
p_{11} & p_{12} &\dots & p_{1N}\\
|
||
p_{21} & p_{22} &\dots & p_{2N}\\
|
||
\vdots & \vdots &\ddots & \vdots\\
|
||
p_{M1} & p_{M2} &\dots & p_{MN}\\
|
||
\end{matrix}\right]
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:5.46em;vertical-align:-2.48em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.95em;"><span style="top:-4.95em;"><span class="pstrut" style="height:7.4em;"></span><span style="width:0.667em;height:5.400em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.667em" height="5.400em" viewBox="0 0 667 5400"><path d="M403 1759 V84 H666 V0 H319 V1759 v1800 v1759 h347 v-84
|
||
H403z M403 1759 V0 H319 V1759 v1800 v1759 h84z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.45em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">11</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">21</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">12</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">22</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.64em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-4.44em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-2.58em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">⋱</span></span></span><span style="top:-1.38em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">MN</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.95em;"><span style="top:-4.95em;"><span class="pstrut" style="height:7.4em;"></span><span style="width:0.667em;height:5.400em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.667em" height="5.400em" viewBox="0 0 667 5400"><path d="M347 1759 V0 H0 V84 H263 V1759 v1800 v1759 H0 v84 H347z
|
||
M347 1759 V0 H263 V1759 v1800 v1759 h84z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.45em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.16em" columnalign="center center center center center" columnlines="solid none none none" columnspacing="1em" rowlines="solid none none none"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>P</mi><mo stretchy="false">(</mo><msub><mi>y</mi><mi>j</mi></msub><mi mathvariant="normal">∣</mi><msub><mi>x</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>y</mi><mn>1</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>y</mi><mn>2</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>y</mi><mi>N</mi></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mn>1</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mn>11</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mn>12</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>1</mn><mi>N</mi></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mn>2</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mn>21</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mn>22</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>2</mn><mi>N</mi></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">⋱</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mi>M</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>M</mi><mn>1</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>M</mi><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>M</mi><mi>N</mi></mrow></msub></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{c|cccc}
|
||
P(y_j|x_i)& y_1 & y_2 & \dots & y_N \\\hline
|
||
x_1 & p_{11} & p_{12} & \dots & p_{1N} \\
|
||
x_2 & p_{21} & p_{22} & \dots & p_{2N} \\
|
||
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
||
x_M & p_{M1} & p_{M2} & \dots & p_{MN} \\
|
||
\end{array}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6.66em;vertical-align:-3.08em;"></span><span class="mord"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.58em;"><span style="top:-5.58em;"><span class="pstrut" style="height:5.58em;"></span><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.58em;"><span style="top:-6.4275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-5.2275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.0275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.1675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-0.9675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.08em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="vertical-separator" style="height:6.66em;border-right-width:0.04em;border-right-style:solid;margin:0 -0.02em;vertical-align:-3.08em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.58em;"><span style="top:-6.4275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-5.2275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">11</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.0275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">21</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.1675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-0.9675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.08em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.58em;"><span style="top:-6.4275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-5.2275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">12</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.0275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">22</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.1675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-0.9675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.08em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.58em;"><span style="top:-6.24em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-5.04em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-3.84em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-1.98em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">⋱</span></span></span><span style="top:-0.78em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.08em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.58em;"><span style="top:-6.4275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-5.2275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.0275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.1675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-0.9675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">MN</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.08em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span style="top:-7.96em;"><span class="pstrut" style="height:5.58em;"></span><span class="hline" style="border-bottom-width:0.04em;"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.08em;"><span></span></span></span></span></span></span></span></span></span></p>
|
||
<p>Input has probability distribution <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>a</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo stretchy="false">(</mo><mi>X</mi><mo>=</mo><msub><mi>a</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p_X(a_i)=P(X=a_i)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></p>
|
||
<p>Channel maps alphabet <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">‘</mi><mo stretchy="false">{</mo><msub><mi>a</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>a</mi><mi>M</mi></msub><mo stretchy="false">}</mo><mo>→</mo><mo stretchy="false">{</mo><msub><mi>b</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>b</mi><mi>N</mi></msub><mo stretchy="false">}</mo><mi mathvariant="normal">‘</mi></mrow><annotation encoding="application/x-tex">`\{a_1,\dots,a_M\} \to \{b_1,\dots,b_N\}`</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">‘</span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span><span class="mord">‘</span></span></span></span></p>
|
||
<p>Output has probabiltiy distribution <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>p</mi><mi>Y</mi></msub><mo stretchy="false">(</mo><msub><mi>b</mi><mi>j</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo stretchy="false">(</mo><mi>y</mi><mo>=</mo><msub><mi>b</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p_Y(b_j)=P(y=b_j)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.22222em;">Y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>p</mi><mi>Y</mi></msub><mo stretchy="false">(</mo><msub><mi>b</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mi>P</mi><mo stretchy="false">[</mo><mi>x</mi><mo>=</mo><msub><mi>a</mi><mi>i</mi></msub><mo separator="true">,</mo><mi>y</mi><mo>=</mo><msub><mi>b</mi><mi>j</mi></msub><mo stretchy="false">]</mo><mspace width="1em"/><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>N</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mi>P</mi><mo stretchy="false">[</mo><mi>X</mi><mo>=</mo><msub><mi>a</mi><mi>i</mi></msub><mo stretchy="false">]</mo><mi>P</mi><mo stretchy="false">[</mo><mi>Y</mi><mo>=</mo><msub><mi>b</mi><mi>j</mi></msub><mi mathvariant="normal">∣</mi><mi>X</mi><mo>=</mo><msub><mi>a</mi><mi>i</mi></msub><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mo stretchy="false">[</mo><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>p</mi><mi>Y</mi></msub><mo stretchy="false">(</mo><msub><mi>b</mi><mn>0</mn></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>p</mi><mi>Y</mi></msub><mo stretchy="false">(</mo><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>p</mi><mi>Y</mi></msub><mo stretchy="false">(</mo><msub><mi>b</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><mo stretchy="false">]</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">[</mo><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>a</mi><mn>0</mn></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>a</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><mo stretchy="false">]</mo><mo>×</mo><mi mathvariant="bold">P</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
p_Y(b_j) &= \sum_{i=1}^{M}P[x=a_i,y=b_j]\quad 1\leq j\leq N \\
|
||
&= \sum_{i=1}^{M}P[X=a_i]P[Y=b_j|X=a_i]\\
|
||
[\begin{matrix}p_Y(b_0)&p_Y(b_1)&\dots&p_Y(b_j)\end{matrix}] &= [\begin{matrix}p_X(a_0)&p_X(a_1)&\dots&p_X(a_i)\end{matrix}]\times\mathbf{P}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:8.322em;vertical-align:-3.911em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.411em;"><span style="top:-6.411em;"><span class="pstrut" style="height:3.8283em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.22222em;">Y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.005em;"><span class="pstrut" style="height:3.8283em;"></span><span class="mord"></span></span><span style="top:-0.5773em;"><span class="pstrut" style="height:3.8283em;"></span><span class="mord"><span class="mopen">[</span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.22222em;">Y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.22222em;">Y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.22222em;">Y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span></span></span><span class="mclose">]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.911em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.411em;"><span style="top:-6.411em;"><span class="pstrut" style="height:3.8283em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8283em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">[</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">]</span><span class="mspace" style="margin-right:1em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span><span style="top:-3.005em;"><span class="pstrut" style="height:3.8283em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8283em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">]</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">]</span></span></span><span style="top:-0.5773em;"><span class="pstrut" style="height:3.8283em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">[</span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span></span></span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathbf">P</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.911em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h4 id="fast-procedure-to-calculate-iyx">Fast procedure to calculate <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi><mo stretchy="false">(</mo><mi>y</mi><mo separator="true">;</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">I(y;x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mpunct">;</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mtext>1. Find </mtext><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mtext>2. Find </mtext><mo stretchy="false">[</mo><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>p</mi><mi>Y</mi></msub><mo stretchy="false">(</mo><msub><mi>b</mi><mn>0</mn></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>p</mi><mi>Y</mi></msub><mo stretchy="false">(</mo><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>p</mi><mi>Y</mi></msub><mo stretchy="false">(</mo><msub><mi>b</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>a</mi><mn>0</mn></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>a</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><mo stretchy="false">]</mo><mo>×</mo><mi mathvariant="bold">P</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mrow><mtext>3. Multiply each row in </mtext><mstyle scriptlevel="0" displaystyle="false"><mtext mathvariant="bold">P</mtext></mstyle><mtext> by </mtext><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>a</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mstyle><mtext> since </mtext><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>X</mi><mi>Y</mi></mrow></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi>y</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo stretchy="false">(</mo><msub><mi>y</mi><mi>i</mi></msub><mi mathvariant="normal">∣</mi><msub><mi>x</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mi>P</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mstyle></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mrow><mtext>4. Find </mtext><mstyle scriptlevel="0" displaystyle="false"><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo></mstyle><mtext> using each element from (3.)</mtext></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mtext>5. Find </mtext><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mi mathvariant="normal">∣</mi><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>−</mo><mi>H</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mtext>6. Find </mtext><mi>I</mi><mo stretchy="false">(</mo><mi>y</mi><mo separator="true">;</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mi mathvariant="normal">∣</mi><mi>y</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
&\text{1. Find }H(x)\\
|
||
&\text{2. Find }[\begin{matrix}p_Y(b_0)&p_Y(b_1)&\dots&p_Y(b_j)\end{matrix}] = [\begin{matrix}p_X(a_0)&p_X(a_1)&\dots&p_X(a_i)\end{matrix}]\times\mathbf{P}\\
|
||
&\text{3. Multiply each row in $\textbf{P}$ by $p_X(a_i)$ since $p_{XY}(x_i,y_i)=P(y_i|x_i)P(x_i)$}\\
|
||
&\text{4. Find $H(x,y)$ using each element from (3.)}\\
|
||
&\text{5. Find }H(x|y)=H(x,y)-H(y)\\
|
||
&\text{6. Find }I(y;x)=H(x)-H(x|y)\\
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:9.01em;vertical-align:-4.255em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.755em;"><span style="top:-6.765em;"><span class="pstrut" style="height:2.85em;"></span><span class="mord"></span></span><span style="top:-5.255em;"><span class="pstrut" style="height:2.85em;"></span><span class="mord"></span></span><span style="top:-3.755em;"><span class="pstrut" style="height:2.85em;"></span><span class="mord"></span></span><span style="top:-2.255em;"><span class="pstrut" style="height:2.85em;"></span><span class="mord"></span></span><span style="top:-0.755em;"><span class="pstrut" style="height:2.85em;"></span><span class="mord"></span></span><span style="top:0.745em;"><span class="pstrut" style="height:2.85em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.255em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.755em;"><span style="top:-6.915em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mord text"><span class="mord">1. Find </span></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span><span style="top:-5.405em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mord text"><span class="mord">2. Find </span></span><span class="mopen">[</span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.22222em;">Y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.22222em;">Y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.22222em;">Y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span></span></span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">[</span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span></span></span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathbf">P</span></span></span><span style="top:-3.905em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mord text"><span class="mord">3. Multiply each row in </span><span class="mord text"><span class="mord textbf">P</span></span><span class="mord"> by </span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"> since </span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span><span class="mord mathnormal mtight" style="margin-right:0.22222em;">Y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span style="top:-2.405em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mord text"><span class="mord">4. Find </span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mord"> using each element from (3.)</span></span></span></span><span style="top:-0.905em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mord text"><span class="mord">5. Find </span></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span><span style="top:0.595em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mord text"><span class="mord">6. Find </span></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mpunct">;</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mord">∣</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.255em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="channel-types">Channel types</h3>
|
||
<table>
|
||
<thead>
|
||
<tr>
|
||
<th>Type</th>
|
||
<th>Definition</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td>Symmetric channel</td>
|
||
<td>Every row is a permutation of every other row, Every column is a permutation of every other column. <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>Symmetric</mtext><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mtext>Weakly symmetric</mtext></mrow><annotation encoding="application/x-tex">\text{Symmetric}\implies\text{Weakly symmetric}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord text"><span class="mord">Symmetric</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord text"><span class="mord">Weakly symmetric</span></span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td>Weakly symmetric</td>
|
||
<td>Every row is a permutation of every other row, Every column has the same sum</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<h4 id="channel-capacity-of-weakly-symmetric-channel">Channel capacity of weakly symmetric channel</h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>C</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>→</mo><mtext>Channel capacity (bits/channels used)</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>N</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>→</mo><mtext>Output alphabet size</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi mathvariant="bold">p</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>→</mo><mtext>Probability vector, any row of the transition matrix</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>C</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>−</mo><mi>H</mi><mo stretchy="false">(</mo><mi mathvariant="bold">p</mi><mo stretchy="false">)</mo><mspace width="1em"/><mtext>Capacity for weakly symmetric and symmetric channels</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>R</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo><</mo><mi>C</mi><mtext> for error-free transmission</mtext></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
C &\to\text{Channel capacity (bits/channels used)}\\
|
||
N &\to\text{Output alphabet size}\\
|
||
\mathbf{p} &\to\text{Probability vector, any row of the transition matrix}\\
|
||
C &= \log_2(N)-H(\mathbf{p})\quad\text{Capacity for weakly symmetric and symmetric channels}\\
|
||
R &< C \text{ for error-free transmission}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:7.5em;vertical-align:-3.5em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4em;"><span style="top:-6.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span><span style="top:-4.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbf">p</span></span></span><span style="top:-1.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span><span style="top:-0.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.5em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4em;"><span style="top:-6.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Channel capacity (bits/channels used)</span></span></span></span><span style="top:-4.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Output alphabet size</span></span></span></span><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Probability vector, any row of the transition matrix</span></span></span></span><span style="top:-1.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.08125em;">H</span><span class="mopen">(</span><span class="mord mathbf">p</span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Capacity for weakly symmetric and symmetric channels</span></span></span></span><span style="top:-0.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord text"><span class="mord"> for error-free transmission</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.5em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h4 id="channel-capacity-of-an-awgn-channel">Channel capacity of an AWGN channel</h4>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><msub><mi>n</mi><mi>i</mi></msub><mspace width="1em"/><msub><mi>n</mi><mi>i</mi></msub><mo>∼</mo><mi>N</mi><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><msub><mi>N</mi><mn>0</mn></msub><mi mathvariant="normal">/</mi><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">y_i=x_i+n_i\quad n_i\thicksim N(0,N_0/2)
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∼</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/2</span><span class="mclose">)</span></span></span></span></span></p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>C</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mrow><mo fence="true">(</mo><mn>1</mn><mo>+</mo><mfrac><msub><mi>P</mi><mtext>av</mtext></msub><mrow><msub><mi>N</mi><mn>0</mn></msub><mi mathvariant="normal">/</mi><mn>2</mn></mrow></mfrac><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">C=\frac{1}{2}\log_2\left(1+\frac{P_\text{av}}{N_0/2}\right)
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.4em;vertical-align:-0.95em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">av</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span></span></span></p>
|
||
<h4 id="channel-capacity-of-a-bandwidth-awgn-channel">Channel capacity of a bandwidth AWGN channel</h4>
|
||
<p>Note: Define XOR (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>⊕</mo></mrow><annotation encoding="application/x-tex">\oplus</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord">⊕</span></span></span></span>) as exclusive OR, or modulo-2 addition.</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>P</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>→</mo><mtext>Bandwidth limited average power</mtext></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>y</mi><mi>i</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mtext>bandpass</mtext><mi>W</mi></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mo>+</mo><msub><mi>n</mi><mi>i</mi></msub><mspace width="1em"/><msub><mi>n</mi><mi>i</mi></msub><mo>∼</mo><mi>N</mi><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><msub><mi>N</mi><mn>0</mn></msub><mi mathvariant="normal">/</mi><mn>2</mn><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>C</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>W</mi><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mrow><mo fence="true">(</mo><mn>1</mn><mo>+</mo><mfrac><msub><mi>P</mi><mi>s</mi></msub><mrow><msub><mi>N</mi><mn>0</mn></msub><mi>W</mi></mrow></mfrac><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>C</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>W</mi><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mtext>SNR</mtext><mo stretchy="false">)</mo><mspace width="1em"/><mtext>SNR</mtext><mo>=</mo><msub><mi>P</mi><mi>s</mi></msub><mi mathvariant="normal">/</mi><mo stretchy="false">(</mo><msub><mi>N</mi><mn>0</mn></msub><mi>W</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
P_s&\to\text{Bandwidth limited average power}\\
|
||
y_i&=\text{bandpass}_W(x_i)+n_i\quad n_i\thicksim N(0,N_0/2)\\
|
||
C&=W\log_2\left(1+\frac{P_s}{N_0 W}\right)\\
|
||
C&=W\log_2(1+\text{SNR})\quad\text{SNR}=P_s/(N_0 W)
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:7.2em;vertical-align:-3.35em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.85em;"><span style="top:-6.46em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.96em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.85em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span><span style="top:-0.76em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.35em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.85em;"><span style="top:-6.46em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Bandwidth limited average power</span></span></span></span><span style="top:-4.96em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord text"><span class="mord">bandpass</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2342em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">W</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∼</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/2</span><span class="mclose">)</span></span></span><span style="top:-2.85em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.836em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span><span style="top:-0.76em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord text"><span class="mord">SNR</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">SNR</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.35em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h2 id="channel-code">Channel code</h2>
|
||
<table>
|
||
<thead>
|
||
<tr>
|
||
<th></th>
|
||
<th></th>
|
||
<th></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td>Hamming weight</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>w</mi><mi>H</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">w_H(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0269em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.08125em;">H</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></td>
|
||
<td>Number of <code>'1'</code> in codeword <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td>Hamming distance</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mi>H</mi></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mi>w</mi><mi>H</mi></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>⊕</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">d_H(x_1,x_2)=w_H(x_1\oplus x_2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.08125em;">H</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:-0.0269em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.08125em;">H</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⊕</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></td>
|
||
<td>Number of different bits between codewords <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">x_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">x_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> which is the hamming weight of the XOR of the two codes.</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Minimum distance</td>
|
||
<td><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mtext>min</mtext></msub></mrow><annotation encoding="application/x-tex">d_\text{min}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3175em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">min</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></td>
|
||
<td><strong>IMPORTANT</strong>: <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo mathvariant="normal">≠</mo><mtext mathvariant="bold">0</mtext></mrow><annotation encoding="application/x-tex">x\neq\textbf{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mrel"><span class="mord vbox"><span class="thinbox"><span class="rlap"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="inner"><span class="mord"><span class="mrel"></span></span></span><span class="fix"></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord text"><span class="mord textbf">0</span></span></span></span></span>, excludes weight of all-zero codeword. For a linear block code, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mtext>min</mtext></msub><mo>=</mo><msub><mi>w</mi><mtext>min</mtext></msub></mrow><annotation encoding="application/x-tex">d_\text{min}=w_\text{min}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3175em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">min</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3175em;"><span style="top:-2.55em;margin-left:-0.0269em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">min</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<h3 id="linear-block-code">Linear block code</h3>
|
||
<p>Code is <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo separator="true">,</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n,k)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mclose">)</span></span></span></span></p>
|
||
<p><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> is the width of a codeword</p>
|
||
<p><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mn>2</mn><mi>k</mi></msup></mrow><annotation encoding="application/x-tex">2^k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8491em;"></span><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span></span></span></span></span></span></span></span> codewords</p>
|
||
<p>A linear block code must be a subspace and satisfy both:</p>
|
||
<ol>
|
||
<li>Zero vector must be present at least once</li>
|
||
<li>The XOR of any codeword pair in the code must result in a codeword that is already present in the code table.</li>
|
||
</ol>
|
||
<p>For a linear block code, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mtext>min</mtext></msub><mo>=</mo><msub><mi>w</mi><mtext>min</mtext></msub></mrow><annotation encoding="application/x-tex">d_\text{min}=w_\text{min}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3175em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">min</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3175em;"><span style="top:-2.55em;margin-left:-0.0269em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">min</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="code-generation">Code generation</h3>
|
||
<p>Each generator vector is a binary string of size <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span>. There are <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> generator vectors in <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">G</mi></mrow><annotation encoding="application/x-tex">\mathbf{G}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">G</span></span></span></span>.</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi mathvariant="bold">g</mi><mi>i</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">[</mo><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>g</mi><mrow><mi>i</mi><mo separator="true">,</mo><mn>0</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>g</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>g</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr></mtable><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mstyle mathcolor="darkgray"><msub><mi mathvariant="bold">g</mi><mn>0</mn></msub></mstyle></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mstyle mathcolor="darkgray"><mo>=</mo><mo stretchy="false">[</mo><mn>1010</mn><mo stretchy="false">]</mo><mspace width="1em"/><mrow><mtext>Example for </mtext><mstyle scriptlevel="0" displaystyle="false"><mi>n</mi><mo>=</mo><mn>4</mn></mstyle></mrow></mstyle></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi mathvariant="bold">G</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.16em" columnalign="center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi mathvariant="bold">g</mi><mn>0</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi mathvariant="bold">g</mi><mn>1</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi mathvariant="bold">g</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>g</mi><mrow><mn>0</mn><mo separator="true">,</mo><mn>0</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>g</mi><mrow><mn>0</mn><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>g</mi><mrow><mn>0</mn><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>g</mi><mrow><mn>1</mn><mo separator="true">,</mo><mn>0</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>g</mi><mrow><mn>1</mn><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>g</mi><mrow><mn>1</mn><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">⋱</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>g</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>g</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>g</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\mathbf{g}_i&=[\begin{matrix}
|
||
g_{i,0}& \dots & g_{i,n-2} & g_{i,n-1}
|
||
\end{matrix}]\\
|
||
\color{darkgray}\mathbf{g}_0&\color{darkgray}=[1010]\quad\text{Example for $n=4$}\\
|
||
\mathbf{G}&=\left[\begin{matrix}
|
||
\mathbf{g}_0\\
|
||
\mathbf{g}_1\\
|
||
\vdots\\
|
||
\mathbf{g}_{k-1}\\
|
||
\end{matrix}\right]=\left[\begin{matrix}
|
||
g_{0,0}& \dots & g_{0,n-2} & g_{0,n-1}\\
|
||
g_{1,0}& \dots & g_{1,n-2} & g_{1,n-1}\\
|
||
\vdots & \ddots & \vdots & \vdots\\
|
||
g_{k-1,0}& \dots & g_{k-1,n-2} & g_{k-1,n-1}\\
|
||
\end{matrix}\right]
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:8.77em;vertical-align:-4.135em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.635em;"><span style="top:-8.765em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"><span class="mord mathbf" style="margin-right:0.01597em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.016em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-7.265em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord" style="color:darkgray;"><span class="mord mathbf" style="margin-right:0.01597em;color:darkgray;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.016em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style="color:darkgray;"><span class="mord mtight" style="color:darkgray;">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.625em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord mathbf">G</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.135em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.635em;"><span style="top:-8.765em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">[</span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mpunct mtight">,</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span></span></span><span class="mclose">]</span></span></span><span style="top:-7.265em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel" style="color:darkgray;">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen" style="color:darkgray;">[</span><span class="mord" style="color:darkgray;">1010</span><span class="mclose" style="color:darkgray;">]</span><span class="mspace" style="color:darkgray;margin-right:1em;"></span><span class="mord text" style="color:darkgray;"><span class="mord" style="color:darkgray;">Example for </span><span class="mord mathnormal" style="color:darkgray;">n</span><span class="mspace" style="color:darkgray;margin-right:0.2778em;"></span><span class="mrel" style="color:darkgray;">=</span><span class="mspace" style="color:darkgray;margin-right:0.2778em;"></span><span class="mord" style="color:darkgray;">4</span></span></span></span><span style="top:-3.625em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.95em;"><span style="top:-4.95em;"><span class="pstrut" style="height:7.4em;"></span><span style="width:0.667em;height:5.400em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.667em" height="5.400em" viewBox="0 0 667 5400"><path d="M403 1759 V84 H666 V0 H319 V1759 v1800 v1759 h347 v-84
|
||
H403z M403 1759 V0 H319 V1759 v1800 v1759 h84z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.45em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathbf" style="margin-right:0.01597em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.016em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathbf" style="margin-right:0.01597em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.016em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathbf" style="margin-right:0.01597em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.016em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.95em;"><span style="top:-4.95em;"><span class="pstrut" style="height:7.4em;"></span><span style="width:0.667em;height:5.400em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.667em" height="5.400em" viewBox="0 0 667 5400"><path d="M347 1759 V0 H0 V84 H263 V1759 v1800 v1759 H0 v84 H347z
|
||
M347 1759 V0 H263 V1759 v1800 v1759 h84z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.45em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.95em;"><span style="top:-4.95em;"><span class="pstrut" style="height:7.4em;"></span><span style="width:0.667em;height:5.400em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.667em" height="5.400em" viewBox="0 0 667 5400"><path d="M403 1759 V84 H666 V0 H319 V1759 v1800 v1759 h347 v-84
|
||
H403z M403 1759 V0 H319 V1759 v1800 v1759 h84z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.45em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.64em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-4.44em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-2.58em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">⋱</span></span></span><span style="top:-1.38em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.95em;"><span style="top:-4.95em;"><span class="pstrut" style="height:7.4em;"></span><span style="width:0.667em;height:5.400em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.667em" height="5.400em" viewBox="0 0 667 5400"><path d="M347 1759 V0 H0 V84 H263 V1759 v1800 v1759 H0 v84 H347z
|
||
M347 1759 V0 H263 V1759 v1800 v1759 h84z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.45em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.135em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<p>A message block <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">m</mi></mrow><annotation encoding="application/x-tex">\mathbf{m}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord mathbf">m</span></span></span></span> is coded as <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">x</mi></mrow><annotation encoding="application/x-tex">\mathbf{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord mathbf">x</span></span></span></span> using the generation codewords in <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">G</mi></mrow><annotation encoding="application/x-tex">\mathbf{G}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">G</span></span></span></span>:</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi mathvariant="bold">m</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">[</mo><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>m</mi><mn>0</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>m</mi><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>m</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr></mtable><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mstyle mathcolor="darkgray"><mi mathvariant="bold">m</mi></mstyle></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mstyle mathcolor="darkgray"><mo>=</mo><mo stretchy="false">[</mo><mn>101001</mn><mo stretchy="false">]</mo><mspace width="1em"/><mrow><mtext>Example for </mtext><mstyle scriptlevel="0" displaystyle="false"><mi>k</mi><mo>=</mo><mn>6</mn></mstyle></mrow></mstyle></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi mathvariant="bold">x</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi mathvariant="bold">m</mi><mi mathvariant="bold">G</mi><mo>=</mo><msub><mi>m</mi><mn>0</mn></msub><msub><mi mathvariant="bold">g</mi><mn>0</mn></msub><mo>+</mo><msub><mi>m</mi><mn>1</mn></msub><msub><mi mathvariant="bold">g</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>m</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mi mathvariant="bold">g</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\mathbf{m}&=[\begin{matrix}
|
||
m_{0}& \dots & m_{n-2} & m_{k-1}
|
||
\end{matrix}]\\
|
||
\color{darkgray}\mathbf{m}&\color{darkgray}=[101001]\quad\text{Example for $k=6$}\\
|
||
\mathbf{x} &= \mathbf{m}\mathbf{G}=m_0\mathbf{g}_0+m_1\mathbf{g}_1+\dots+m_{k-1}\mathbf{g}_{k-1}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.51em;vertical-align:-2.005em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.505em;"><span style="top:-4.655em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbf">m</span></span></span><span style="top:-3.155em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbf" style="color:darkgray;">m</span></span></span><span style="top:-1.655em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbf">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.005em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.505em;"><span style="top:-4.655em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">[</span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span></span></span><span class="mclose">]</span></span></span><span style="top:-3.155em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel" style="color:darkgray;">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen" style="color:darkgray;">[</span><span class="mord" style="color:darkgray;">101001</span><span class="mclose" style="color:darkgray;">]</span><span class="mspace" style="color:darkgray;margin-right:1em;"></span><span class="mord text" style="color:darkgray;"><span class="mord" style="color:darkgray;">Example for </span><span class="mord mathnormal" style="margin-right:0.03148em;color:darkgray;">k</span><span class="mspace" style="color:darkgray;margin-right:0.2778em;"></span><span class="mrel" style="color:darkgray;">=</span><span class="mspace" style="color:darkgray;margin-right:0.2778em;"></span><span class="mord" style="color:darkgray;">6</span></span></span></span><span style="top:-1.655em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathbf">mG</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathbf" style="margin-right:0.01597em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.016em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathbf" style="margin-right:0.01597em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.016em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathbf" style="margin-right:0.01597em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.016em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.005em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h3 id="systemic-linear-block-code">Systemic linear block code</h3>
|
||
<p>Contains <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> message bits (Copy <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">m</mi></mrow><annotation encoding="application/x-tex">\mathbf{m}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord mathbf">m</span></span></span></span> as-is) and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n-k)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mclose">)</span></span></span></span> parity bits after the message bits.</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi mathvariant="bold">G</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mtable rowspacing="0.16em" columnalign="center center" columnlines="solid" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo stretchy="false">[</mo><msub><mi mathvariant="bold">I</mi><mi>k</mi></msub></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi mathvariant="bold">P</mi><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr></mtable><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.16em" columnalign="center center" columnlines="solid" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">⋱</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>0</mn><mo separator="true">,</mo><mn>0</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>0</mn><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>0</mn><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>1</mn><mo separator="true">,</mo><mn>0</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>1</mn><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>1</mn><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">⋱</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr></mtable></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi mathvariant="bold">m</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">[</mo><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>m</mi><mn>0</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>m</mi><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>m</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr></mtable><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi mathvariant="bold">x</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi mathvariant="bold">m</mi><mi mathvariant="bold">G</mi><mo>=</mo><mi mathvariant="bold">m</mi><mtable rowspacing="0.16em" columnalign="center center" columnlines="solid" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo stretchy="false">[</mo><msub><mi mathvariant="bold">I</mi><mi>k</mi></msub></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi mathvariant="bold">P</mi><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr></mtable><mo>=</mo><mtable rowspacing="0.16em" columnalign="center center" columnlines="solid" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo stretchy="false">[</mo><msub><mrow><mi mathvariant="bold">m</mi><mi mathvariant="bold">I</mi></mrow><mi>k</mi></msub></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mrow><mi mathvariant="bold">m</mi><mi mathvariant="bold">P</mi></mrow><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr></mtable><mo>=</mo><mtable rowspacing="0.16em" columnalign="center center" columnlines="solid" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo stretchy="false">[</mo><mi mathvariant="bold">m</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi mathvariant="bold">b</mi><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr></mtable></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi mathvariant="bold">b</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi mathvariant="bold">m</mi><mi mathvariant="bold">P</mi><mspace width="1em"/><mrow><mtext>Parity bits of </mtext><mstyle scriptlevel="0" displaystyle="false"><mi mathvariant="bold">x</mi></mstyle></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\mathbf{G}&=\begin{array}{c|c}[\mathbf{I}_k & \mathbf{P}]\end{array}=\left[
|
||
\begin{array}{c|c}
|
||
\begin{matrix}
|
||
1 & 0 & \dots & 0\\
|
||
0 & 1 & \dots & 0\\
|
||
\vdots & \vdots & \ddots & \vdots\\
|
||
0& 0 & \dots & 1\\
|
||
\end{matrix}
|
||
&
|
||
\begin{matrix}
|
||
p_{0,0}& \dots & p_{0,n-2} & p_{0,n-1}\\
|
||
p_{1,0}& \dots & p_{1,n-2} & p_{1,n-1}\\
|
||
\vdots & \ddots & \vdots & \vdots\\
|
||
p_{k-1,0}& \dots & p_{k-1,n-2} & p_{k-1,n-1}\\
|
||
\end{matrix}\end{array}\right]\\
|
||
\mathbf{m}&=[\begin{matrix}
|
||
m_{0}& \dots & m_{n-2} & m_{k-1}
|
||
\end{matrix}]\\
|
||
\mathbf{x} &= \mathbf{m}\mathbf{G}= \mathbf{m} \begin{array}{c|c}[\mathbf{I}_k & \mathbf{P}]\end{array}=\begin{array}{c|c}[\mathbf{mI}_k & \mathbf{mP}]\end{array}=\begin{array}{c|c}[\mathbf{m} & \mathbf{b}]\end{array}\\
|
||
\mathbf{b} &= \mathbf{m}\mathbf{P}\quad\text{Parity bits of $\mathbf{x}$}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:10.28em;vertical-align:-4.89em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:5.39em;"><span style="top:-7.39em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord mathbf">G</span></span></span><span style="top:-3.76em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord mathbf">m</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord mathbf">x</span></span></span><span style="top:-0.75em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord mathbf">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.89em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:5.39em;"><span style="top:-7.39em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">[</span><span class="mord"><span class="mord mathbf">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="vertical-separator" style="height:1.2em;border-right-width:0.04em;border-right-style:solid;margin:0 -0.02em;vertical-align:-0.35em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbf">P</span><span class="mclose">]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.95em;"><span style="top:-4.95em;"><span class="pstrut" style="height:7.4em;"></span><span style="width:0.667em;height:5.400em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.667em" height="5.400em" viewBox="0 0 667 5400"><path d="M403 1759 V84 H666 V0 H319 V1759 v1800 v1759 h347 v-84
|
||
H403z M403 1759 V0 H319 V1759 v1800 v1759 h84z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.45em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-4.98em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.64em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-4.44em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-2.58em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">⋱</span></span></span><span style="top:-1.38em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="vertical-separator" style="height:5.46em;border-right-width:0.04em;border-right-style:solid;margin:0 -0.02em;vertical-align:-2.48em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-4.98em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.64em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-4.44em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-2.58em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">⋱</span></span></span><span style="top:-1.38em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.95em;"><span style="top:-4.95em;"><span class="pstrut" style="height:7.4em;"></span><span style="width:0.667em;height:5.400em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.667em" height="5.400em" viewBox="0 0 667 5400"><path d="M347 1759 V0 H0 V84 H263 V1759 v1800 v1759 H0 v84 H347z
|
||
M347 1759 V0 H263 V1759 v1800 v1759 h84z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.45em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.76em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">[</span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span></span></span><span class="mclose">]</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathbf">mG</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathbf">m</span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">[</span><span class="mord"><span class="mord mathbf">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="vertical-separator" style="height:1.2em;border-right-width:0.04em;border-right-style:solid;margin:0 -0.02em;vertical-align:-0.35em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbf">P</span><span class="mclose">]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">[</span><span class="mord"><span class="mord"><span class="mord mathbf">mI</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="vertical-separator" style="height:1.2em;border-right-width:0.04em;border-right-style:solid;margin:0 -0.02em;vertical-align:-0.35em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">mP</span></span><span class="mclose">]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">[</span><span class="mord mathbf">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="vertical-separator" style="height:1.2em;border-right-width:0.04em;border-right-style:solid;margin:0 -0.02em;vertical-align:-0.35em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.85em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbf">b</span><span class="mclose">]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.35em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span></span></span><span style="top:-0.75em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathbf">mP</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">Parity bits of </span><span class="mord mathbf">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.89em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h4 id="parity-check-matrix-mathbfh">Parity check matrix <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">H</mi></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span></span></span></span></h4>
|
||
<p>Transpose <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">P</mi></mrow><annotation encoding="application/x-tex">\mathbf{P}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">P</span></span></span></span> for the parity check matrix</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi mathvariant="bold">H</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mtable rowspacing="0.16em" columnalign="center center" columnlines="solid" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo stretchy="false">[</mo><msup><mi mathvariant="bold">P</mi><mtext>T</mtext></msup></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi mathvariant="bold">I</mi><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr></mtable></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.16em" columnalign="center center" columnlines="solid" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msup><msub><mtext mathvariant="bold">p</mtext><mn>0</mn></msub><mtext>T</mtext></msup></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msup><msub><mtext mathvariant="bold">p</mtext><mn>1</mn></msub><mtext>T</mtext></msup></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msup><msub><mtext mathvariant="bold">p</mtext><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mtext>T</mtext></msup></mstyle></mtd></mtr></mtable></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi mathvariant="bold">I</mi><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.16em" columnalign="center center" columnlines="solid" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>0</mn><mo separator="true">,</mo><mn>0</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>0</mn><mo separator="true">,</mo><mi>k</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>0</mn><mo separator="true">,</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>1</mn><mo separator="true">,</mo><mn>0</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>1</mn><mo separator="true">,</mo><mi>k</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mn>1</mn><mo separator="true">,</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">⋱</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mi>k</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>p</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd></mtr></mtable></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">⋱</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace mathbackground="black" width="0em" height="1.5em"></mspace></mpadded></mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msup><mrow><mi mathvariant="bold">x</mi><mi mathvariant="bold">H</mi></mrow><mtext>T</mtext></msup></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn mathvariant="bold">0</mn><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mtext>Codeword is valid</mtext></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\mathbf{H}&=\begin{array}{c|c}[\mathbf{P}^\text{T} & \mathbf{I}_{n-k}]\end{array}\\
|
||
&=\left[
|
||
\begin{array}{c|c}
|
||
\begin{matrix}
|
||
{\textbf{p}_0}^\text{T} & {\textbf{p}_1}^\text{T} & \dots & {\textbf{p}_{k-1}}^\text{T}
|
||
\end{matrix}
|
||
&
|
||
\mathbf{I}_{n-k}\end{array}\right]\\
|
||
&=\left[
|
||
\begin{array}{c|c}
|
||
\begin{matrix}
|
||
p_{0,0}& \dots & p_{0,k-2} & p_{0,k-1}\\
|
||
p_{1,0}& \dots & p_{1,k-2} & p_{1,k-1}\\
|
||
\vdots & \ddots & \vdots & \vdots\\
|
||
p_{n-1,0}& \dots & p_{n-1,k-2} & p_{n-1,k-1}\\
|
||
\end{matrix}
|
||
&
|
||
\begin{matrix}
|
||
1 & 0 & \dots & 0\\
|
||
0 & 1 & \dots & 0\\
|
||
\vdots & \vdots & \ddots & \vdots\\
|
||
0& 0 & \dots & 1\\
|
||
\end{matrix}\end{array}\right]\\
|
||
\mathbf{xH}^\text{T}&=\mathbf{0}\implies\text{Codeword is valid}
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:10.3633em;vertical-align:-4.9317em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:5.4317em;"><span style="top:-9.561em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord mathbf">H</span></span></span><span style="top:-8.0457em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"></span></span><span style="top:-4.4057em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"></span></span><span style="top:-0.7083em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">xH</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9173em;"><span style="top:-3.139em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.9317em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:5.4317em;"><span style="top:-9.561em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8507em;"><span style="top:-3.0093em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">[</span><span class="mord"><span class="mord mathbf">P</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3507em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="vertical-separator" style="height:1.2013em;border-right-width:0.04em;border-right-style:solid;margin:0 -0.02em;vertical-align:-0.3507em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8507em;"><span style="top:-3.0093em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mclose">]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3507em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span></span></span><span style="top:-8.0457em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8553em;"><span style="top:-3.0047em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8507em;"><span style="top:-3.0093em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord text"><span class="mord textbf">p</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3507em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8507em;"><span style="top:-3.0093em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord text"><span class="mord textbf">p</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3507em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8507em;"><span style="top:-3.0093em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3507em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8507em;"><span style="top:-3.0093em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord text"><span class="mord textbf">p</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.242em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3025em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3507em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3553em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="vertical-separator" style="height:1.2107em;border-right-width:0.04em;border-right-style:solid;margin:0 -0.02em;vertical-align:-0.3553em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8553em;"><span style="top:-3.0047em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3553em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">]</span></span></span></span></span><span style="top:-4.4057em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.95em;"><span style="top:-4.95em;"><span class="pstrut" style="height:7.4em;"></span><span style="width:0.667em;height:5.400em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.667em" height="5.400em" viewBox="0 0 667 5400"><path d="M403 1759 V84 H666 V0 H319 V1759 v1800 v1759 h347 v-84
|
||
H403z M403 1759 V0 H319 V1759 v1800 v1759 h84z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.45em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-4.98em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.64em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-4.44em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-2.58em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">⋱</span></span></span><span style="top:-1.38em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="vertical-separator" style="height:5.46em;border-right-width:0.04em;border-right-style:solid;margin:0 -0.02em;vertical-align:-2.48em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-4.98em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.64em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-4.44em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-2.58em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">⋱</span></span></span><span style="top:-1.38em;"><span class="pstrut" style="height:3.5em;"></span><span class="mord"><span class="minner">…</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.98em;"><span style="top:-5.8275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-4.6275em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.7675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width:0em;border-top-width:1.5em;bottom:0em;"></span></span></span></span><span style="top:-1.5675em;"><span class="pstrut" style="height:3.6875em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.48em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.95em;"><span style="top:-4.95em;"><span class="pstrut" style="height:7.4em;"></span><span style="width:0.667em;height:5.400em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.667em" height="5.400em" viewBox="0 0 667 5400"><path d="M347 1759 V0 H0 V84 H263 V1759 v1800 v1759 H0 v84 H347z
|
||
M347 1759 V0 H263 V1759 v1800 v1759 h84z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.45em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-0.7083em;"><span class="pstrut" style="height:4.98em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathbf">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">Codeword is valid</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.9317em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h4 id="procedure-to-find-parity-check-matrix-from-list-of-codewords">Procedure to find parity check matrix from list of codewords</h4>
|
||
<ol>
|
||
<li>From the number of codewords, find <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo>=</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">k=\log_2(N)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mclose">)</span></span></span></span></li>
|
||
<li>Partition codewords into <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> information bits and remaining bits into <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow><annotation encoding="application/x-tex">n-k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> parity bits. The information bits should be a simple counter (?).</li>
|
||
<li>Express parity bits as a linear combination of information bits</li>
|
||
<li>Put coefficients into <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext mathvariant="bold">P</mtext></mrow><annotation encoding="application/x-tex">\textbf{P}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord text"><span class="mord textbf">P</span></span></span></span></span> matrix and find <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext mathvariant="bold">H</mtext></mrow><annotation encoding="application/x-tex">\textbf{H}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord text"><span class="mord textbf">H</span></span></span></span></span></li>
|
||
</ol>
|
||
<p>Example:</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.16em" columnalign="center center center center" columnspacing="1em" rowlines="solid none none none"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mn>1</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mn>2</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mn>3</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mn>4</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mn>5</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mstyle mathcolor="magenta"><mn>1</mn></mstyle></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mstyle mathcolor="magenta"><mn>0</mn></mstyle></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mstyle mathcolor="magenta"><mn>0</mn></mstyle></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mstyle mathcolor="magenta"><mn>1</mn></mstyle></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mstyle mathcolor="magenta"><mn>0</mn></mstyle></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mstyle mathcolor="magenta"><mn>0</mn></mstyle></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mstyle mathcolor="magenta"><mn>1</mn></mstyle></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mstyle mathcolor="magenta"><mn>1</mn></mstyle></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{cccc}
|
||
x_1 & x_2 & x_3 & x_4 & x_5 \\\hline
|
||
\color{magenta}1&\color{magenta}0&1&1&0\\
|
||
\color{magenta}0&\color{magenta}1&1&1&1\\
|
||
\color{magenta}0&\color{magenta}0&0&0&0\\
|
||
\color{magenta}1&\color{magenta}1&0&0&1\\
|
||
\end{array}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6em;vertical-align:-2.75em;"></span><span class="mord"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.25em;"><span style="top:-5.25em;"><span class="pstrut" style="height:5.25em;"></span><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.25em;"><span style="top:-5.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="color:magenta;">1</span></span></span><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="color:magenta;">0</span></span></span><span style="top:-1.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="color:magenta;">0</span></span></span><span style="top:-0.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="color:magenta;">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.75em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.25em;"><span style="top:-5.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="color:magenta;">0</span></span></span><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="color:magenta;">1</span></span></span><span style="top:-1.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="color:magenta;">0</span></span></span><span style="top:-0.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="color:magenta;">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.75em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.25em;"><span style="top:-5.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-1.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-0.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.75em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.25em;"><span style="top:-5.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-1.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-0.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.75em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.25em;"><span style="top:-5.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-1.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-0.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.75em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span style="top:-7.3em;"><span class="pstrut" style="height:5.25em;"></span><span class="hline" style="border-bottom-width:0.04em;"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.75em;"><span></span></span></span></span></span></span></span></span></span></p>
|
||
<p>Set <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">x_1,x_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> as information bits. Express <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>3</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>4</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>5</mn></msub></mrow><annotation encoding="application/x-tex">x_3,x_4,x_5</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> in terms of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">x_1,x_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>.</p>
|
||
<p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>x</mi><mn>3</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><mo>⊕</mo><msub><mi>x</mi><mn>2</mn></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>x</mi><mn>4</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><mo>⊕</mo><msub><mi>x</mi><mn>2</mn></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>x</mi><mn>5</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>x</mi><mn>2</mn></msub></mrow></mstyle></mtd></mtr></mtable><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mtext mathvariant="bold">P</mtext></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mtable rowspacing="0.16em" columnalign="center center center" columnlines="solid none" columnspacing="1em" rowlines="solid none none"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mn>1</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mn>2</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mn>3</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mn>4</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mn>5</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow></mrow></mstyle></mtd></mtr></mtable></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mtext mathvariant="bold">H</mtext></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.16em" columnalign="center center" columnlines="solid" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mtable rowspacing="0.16em" columnalign="center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mtable rowspacing="0.16em" columnalign="center center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
\begin{aligned}
|
||
x_3 &= x_1\oplus x_2\\
|
||
x_4 &= x_1\oplus x_2\\
|
||
x_5 &= x_2\\
|
||
\end{aligned}
|
||
\implies\textbf{P}&=
|
||
\begin{array}{c|cc}
|
||
& x_1 & x_2 \\\hline
|
||
x_3&1&1&\\
|
||
x_4&1&1&\\
|
||
x_5&0&1&\\
|
||
\end{array}\\
|
||
\textbf{H}&=\left[
|
||
\begin{array}{c|c}
|
||
\begin{matrix}
|
||
1&1\\
|
||
1&1\\
|
||
0&1\\
|
||
\end{matrix}
|
||
&
|
||
\begin{matrix}
|
||
1 & 0 & 0\\
|
||
0 & 1 & 0\\
|
||
0 & 0 & 1\\
|
||
\end{matrix}\end{array}\right]
|
||
\end{align*}
|
||
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:9em;vertical-align:-4.25em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.75em;"><span style="top:-6.75em;"><span class="pstrut" style="height:4.65em;"></span><span class="mord"><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.5em;"><span style="top:-4.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-1.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.5em;"><span style="top:-4.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⊕</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⊕</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-1.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord textbf">P</span></span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:4.65em;"></span><span class="mord"><span class="mord text"><span class="mord textbf">H</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.25em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.75em;"><span style="top:-6.75em;"><span class="pstrut" style="height:4.65em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.65em;"><span style="top:-4.65em;"><span class="pstrut" style="height:4.65em;"></span><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.65em;"><span style="top:-4.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-1.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="vertical-separator" style="height:4.8em;border-right-width:0.04em;border-right-style:solid;margin:0 -0.02em;vertical-align:-2.15em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.65em;"><span style="top:-4.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-1.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.65em;"><span style="top:-4.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-1.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.45em;"><span class="pstrut" style="height:2.84em;"></span><span class="mord"></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:2.84em;"></span><span class="mord"></span></span><span style="top:-1.05em;"><span class="pstrut" style="height:2.84em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span style="top:-6.1em;"><span class="pstrut" style="height:4.65em;"></span><span class="hline" style="border-bottom-width:0.04em;"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15em;"><span></span></span></span></span></span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:4.65em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.05em;"><span class="pstrut" style="height:5.6em;"></span><span style="width:0.667em;height:3.600em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.667em" height="3.600em" viewBox="0 0 667 3600"><path d="M403 1759 V84 H666 V0 H319 V1759 v0 v1759 h347 v-84
|
||
H403z M403 1759 V0 H319 V1759 v0 v1759 h84z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.05em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-1.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-1.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="vertical-separator" style="height:3.6em;border-right-width:0.04em;border-right-style:solid;margin:0 -0.02em;vertical-align:-1.55em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.05em;"><span class="pstrut" style="height:4.05em;"></span><span class="mord"><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-1.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.81em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.05em;"><span class="pstrut" style="height:5.6em;"></span><span style="width:0.667em;height:3.600em;"><svg xmlns="http://www.w3.org/2000/svg" width="0.667em" height="3.600em" viewBox="0 0 667 3600"><path d="M347 1759 V0 H0 V84 H263 V1759 v0 v1759 H0 v84 H347z
|
||
M347 1759 V0 H263 V1759 v0 v1759 h84z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.25em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<h4 id="error-detection-and-correction">Error detection and correction</h4>
|
||
<p><strong>Detection</strong> of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">s</span></span></span></span> errors: <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mtext>min</mtext></msub><mo>≥</mo><mi>s</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">d_\text{min}\geq s+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3175em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">min</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">s</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></p>
|
||
<p><strong>Correction</strong> of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotation encoding="application/x-tex">u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span></span></span></span> errors: <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mtext>min</mtext></msub><mo>≥</mo><mn>2</mn><mi>u</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">d_\text{min}\geq 2u+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3175em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">min</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2</span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></p>
|
||
<h2 id="checklist">CHECKLIST</h2>
|
||
<ul>
|
||
<li>Transfer function in complex envelope form <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>h</mi><mo>~</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\tilde{h}(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1813em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9313em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">h</span></span><span style="top:-3.6134em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">~</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span> should be divided by two.</li>
|
||
<li>Convolutions: do not forget width when using graphical method</li>
|
||
<li>todo: add more items to check</li>
|
||
</ul>
|
||
|
||
<script async src="https://cdn.jsdelivr.net/npm/katex-copytex@latest/dist/katex-copytex.min.js"></script>
|
||
|
||
</body>
|
||
</html> |