Double check all are in the correct phase! Multiplications and divisions by 3 or 3 where necessary must be checked! Try annotating everything that does not have an associated phase.
+
Check conjugate in current. Sˉ=VˉIˉ∗
+
Check transformer parameters are referred to the proper side
+
+
Y-Δ transformation (Balanced case)
+
ZΔ=3ZY
+
Types of power factors (From ENSC2003)
+
Where Sˉ=∣Sˉ∣∠φ:
+
φ=arctan(PQ)=θv−θi
+
+
+
+
+
+
Lagging
+
Leading
+
Unity
+
+
+
+
+
Voltage
+
Current behind
+
Current ahead
+
In phase
+
+
+
Load type
+
Inductive
+
Capacitive
+
Resistive
+
+
+
Q
+
Q>0
+
Q<0
+
Q=0
+
+
+
φ
+
φ>0°
+
φ<0°
+
φ=0°
+
+
+
PF [Load]
+
[0,1)
+
[0,1)
+
1
+
+
+
PF [Source]
+
[0,−1)
+
[0,−1)
+
−1
+
+
+
+
Power types in induction motor
+
+
+
+
Type
+
Description
+
Equivalent terms
+
+
+
+
+
Input power
+
Power into machine. VT=V3ϕ, IL=I3ϕ
+
Pin, 3VTILcos(θ)
+
+
+
Output power
+
Mechanical output power of the machine, excludes losses
+
Pout, Pload
+
+
+
Converted power
+
Total electrical power converted to mechanical power, includes useful power and mechanical losses inside machine
Ignore shunt resistance. Refer from primary side. Use KVL to determine Vin.
+
Voltage regulation is typically small.
+
∣Vin∣=∣Vrated,P+IL,P⋅Zˉ∣
+
+
+
+
DC machine
+
+
+
+
Separately excited machine
+
Shunt excited
+
Series excited
+
+
+
+
+
+
+
+
+
+
+
Similar torque-speed characteristic to separately-excited machine
+
High torque per ampere. Used in high-torque applications
+
+
+
Requires two independent voltage sources
+
+
Do not run unloaded - infinite speed at 0 torque as ω∝1/τ
+
+
+
Motor control using Rf
+
Motor control using RF
+
Motor control using VT.
+
+
+
+
Starting DC motors
+
RA might need to be adjusted so it is high initially in large DC motors, as the starting current is high since there is no back-emf created by EA.
+
Magnetizating curve
+
When a question specifies the field current or Radj, refer to magnetization curve. Magnetizating curve is valid at a specific speed nm1, and the curve is used to find EA1. Using the load condition to find the armature current IA=τind/(KΦ), VA can be used to find a second induced EMF EA2. Using EA2 find the speed nm2 by scaling nm1 by EA2/EA1.
+
Idk
+
Pmech=EAIA
+
+
No-load separately excited machine. Assuming no mechanical losses.
+
EA=VA (No load)
+
+
IA=0 (No load)
+
+
Armature reaction causes increase in speed and causes instability as the core saturates near the poles. Can be reduced with compensating winding which is in series with the armature coil.
+
KΦω=EA
+
+
KΦIA=τ
+
+
For shunt motor
+
KΦ=ωVT−RAIA
+
+
τ=KΦIA=ωVT−RAIAIA
+
+
Assume no saturation, speed locked(?):
+
This doesn't seem right. We are meant to use the machine constant and the proportionality of current to magnetic flux.
+
EA1EA2=If1If2
+
+
+
+
\ No newline at end of file
diff --git a/README.md b/README.md
index 3f34483..e4e299b 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,8 @@
+```
+!\[\]\(([^\)]*)\)
+
+```
+
> Why are the drawings bad?
I draw them with a mouse
@@ -43,7 +48,7 @@ $$ \varphi = \arctan\left(\frac{Q}{P}\right) = \theta_v-\theta_i$$
| Stator copper loss | Due to resistance of stator windings | $P_s$, $P_\text{SCL}$ |
| Miscellaneous loss | Add 1% to losses to account for other unmeasured losses | $P_\text{misc}$, $P_\text{stray}$ |
-![](2022-10-25-11-33-40.png)
+
$$
\begin{align}
@@ -72,7 +77,7 @@ Note - assume loss is 0 if not mentioned!
### Diagram
-![](2022-10-26-22-06-19.png)
+
### Equivalent model
@@ -87,19 +92,21 @@ Note - assume loss is 0 if not mentioned!
### Diagram
-![](2022-10-26-21-53-13.png)
+
### DC test
#### $\Delta$ machine
$$R_s=\frac{3}{2}\cdot\frac{V_{\text{DC},3\phi}}{I_{\text{DC},3\phi}}$$
-![](2022-10-26-22-43-25.png)
+
+
#### Y machine
$$R_s=\frac{1}{2}\cdot\frac{V_{\text{DC},3\phi}}{I_{\text{DC},3\phi}}$$
-![](2022-10-26-22-48-09.png)
+
+
### No-load test
@@ -114,7 +121,7 @@ $$R_s=\frac{1}{2}\cdot\frac{V_{\text{DC},3\phi}}{I_{\text{DC},3\phi}}$$
Using assumptions, remove rotor part of circuit and only consider stator and magnetizing path.
-![](2022-10-25-11-45-26.png)
+
### Blocked rotor test
@@ -133,7 +140,7 @@ Using assumptions, remove rotor part of circuit and only consider stator and mag
Ignore magnetizing path
-![](2022-10-25-11-46-04.png)
+
## Synchronous machine
@@ -170,9 +177,9 @@ $$\text{VR}=\frac{|V_\text{NL}|-|V_\text{FL}|}{|V_\text{FL}|}=\frac{|E_A|-|V_{1\
- Calculate $E_A$ at full load by calculating the current as shown above.
- $V_\text{NL}$ is the no-load voltage, which in the no-load case will be $E_A$.
-| No-load | Full-load |
-| ---------------------------- | ---------------------------- |
-| ![](2022-10-27-20-15-13.png) | ![](2022-10-27-20-19-47.png) |
+| No-load | Full-load |
+| ---------------------------------------------------------------- | ---------------------------------------------------------------- |
+|
|
|
| Power factor | Voltage regulation |
| ------------ | ------------------ |
@@ -184,9 +191,9 @@ $$\text{VR}=\frac{|V_\text{NL}|-|V_\text{FL}|}{|V_\text{FL}|}=\frac{|E_A|-|V_{1\
#### **Note** - double-check if the axis refers to per-phase or line voltage/current.
-| Open-circuit test | Short-circuit test |
-| ---------------------------- | ---------------------------- |
-| ![](2022-10-27-15-31-49.png) | ![](2022-10-27-15-32-07.png) |
+| Open-circuit test | Short-circuit test |
+| ----------------------------------------------------------------- | ---------------------------------------------------------------- |
+|
-| Open-circuit test | Short-circuit test |
-| ---------------------------- | ---------------------------- |
-| ![](2022-10-28-15-53-29.png) | ![](2022-10-28-15-52-58.png) |
+| Open-circuit test | Short-circuit test |
+| ---------------------------------------------------------------- | ---------------------------------------------------------------- |
+|
|
|
#### Voltage regulation
@@ -243,16 +250,16 @@ Voltage regulation is typically small.
$$|V_\text{in}|=|V_\text{rated,P}+I_\text{L,P}\cdot\bar Z|$$
-![](2022-10-28-16-30-51.png)
+
### DC machine
-| Separately excited machine | Shunt excited | Series excited |
-| ---------------------------------------- | ----------------------------------------------------------------- | --------------------------------------------------------------------------------- |
-| ![](2022-10-28-18-21-53.png) | ![](2022-10-28-18-22-17.png) | ![](2022-10-28-18-28-51.png) |
-| | Similar torque-speed characteristic to separately-excited machine | High torque per ampere. Used in high-torque applications |
-| Requires two independent voltage sources | | Do not run unloaded - infinite speed at 0 torque as $\omega\propto 1/\sqrt{\tau}$ |
-| Motor control using $R_f$ | Motor control using $R_F$ | Motor control using $V_T$. |
+| Separately excited machine | Shunt excited | Series excited |
+| ---------------------------------------------------- | ----------------------------------------------------------------- | --------------------------------------------------------------------------------- |
+|
|
|
|
+| | Similar torque-speed characteristic to separately-excited machine | High torque per ampere. Used in high-torque applications |
+| Requires two independent voltage sources | | Do not run unloaded - infinite speed at 0 torque as $\omega\propto 1/\sqrt{\tau}$ |
+| Motor control using $R_f$ | Motor control using $R_F$ | Motor control using $V_T$. |
#### Starting DC motors