> Why are the drawings bad? I draw them with a mouse ### Types of power factors (From `ENSC2003`) Where $\bar{S}=|\bar{S}|\angle\varphi$: $$ \varphi = \arctan\left(\frac{Q}{P}\right) = \theta_v-\theta_i$$ | | Lagging | Leading | Unity | | ----------- | -------------- | ------------- | ------------ | | Voltage | Current behind | Current ahead | In phase | | Load type | Inductive | Capacitive | Resistive | | $Q$ | $Q>0$ | $Q<0$ | $Q=0$ | | $\varphi$ | $\varphi>0°$ | $\varphi<0°$ | $\varphi=0°$ | | PF [Load] | $[0,1)$ | $[0,1)$ | $1$ | | PF [Source] | $[0,-1)$ | $[0,-1)$ | $-1$ | ## Power types in motor | Type | Description | Equivalent terms | | ------------------ | ---------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------- | | Input power | Power into machine. $V_T=V_{3\phi}$, $I_L=I_{3\phi}$ | $P_\text{in}$, $\sqrt{3}V_TI_L\cos(\theta)$ | | Output power | Mechanical output power of the machine, excludes losses | $P_\text{out}$, $P_\text{load}$ | | Converted power | Total electrical power converted to mechanical power, includes useful power and mechanical losses inside machine | $P_\text{conv}$, $P_\text{converted}$, $P_\text{mech}$, $P_\text{developed}$, $\tau_\text{mech}\times\omega_m$ | | Airgap power | Power transmitted over airgap. | $P_\text{AG}$, $\tau_\text{mech}\times\omega_s$ | | Mechanical loss | Power lost to friction and windage | $P_\text{mechanical loss}$, $P_\text{F\\\&W}$, $P_\text{friction and windage}$ | | Core loss | Power lost in machine magnetic material due to hysteresis loss and eddy currents | $P_\text{core}$ | | Rotor copper loss | Due to resistance of rotor windings | $P_r$, $P_\text{RCL}$ | | Stator copper loss | Due to resistance of stator windings | $P_s$, $P_\text{SCL}$ | | Miscellaneous loss | Add 1% to losses to account for other unmeasured losses | $P_\text{misc}$, $P_\text{stray}$ | ![](2022-10-25-11-33-40.png) $$ \begin{align} P_\text{in}&=P_\text{SCL}+P_\text{RCL}+P_\text{core}+P_\text{F\\\&W}+P_\text{misc}+P_\text{out}\\ P_\text{AG}&=P_\text{RCL}+P_\text{F\\\&W}+P_\text{misc}+P_\text{out}\\ P_\text{mech}&=P_\text{F\\\&W}+P_\text{misc}+P_\text{out} \end{align} $$ Note - assume loss is 0 if not mentioned! | Type | Description | Symbols | | ------------------------- | ------------------------------------------- | --------------------------------------- | | Load torque, Shaft torque | Torque experienced by load after all losses | $\tau_\text{load}$, $\tau_\text{shaft}$ | ## $3\phi$ induction motor ### Etc. - Slip speed $N_\text{slip}=N_{s\text{ (sync)}}-N_r=sN_{s\text{ (sync)}}$ - "1/4 of rated load" != "1/4 times full load" - Means 1/4 of full load slip as it is in the linear region. Accounts for the minimum load. - Rated power stated in machine specification refers to the output power $P_\text{out}$, and excludes all losses. - Speed regulation using machine speed: $$\text{SR}=\frac{N_{r,\text{NL}}-N_{r,\text{FL}}}{N_{r,\text{FL}}}$$ ### Diagram ![](2022-10-26-22-06-19.png) ### Equivalent model #### Assumptions - $x_m\approx X_m$ - $R_c\ggg X_m\Rightarrow r_c\lll x_m$ - $x_m=\frac{{R_c}^2}{{R_c}^2+{X_m}^2}X_m\approx\frac{\cancel{{R_c}^2}}{\cancel{{R_c}^2}}X_m=X_m$ - $r_c\approx {X_m}^2/R_c$ - $R_c\ggg X_m\Rightarrow r_c\lll x_m$ - $r_c=\frac{{X_m}^2}{{R_c}^2+{X_m}^2}R_c\approx\frac{{X_m}^2}{{R_c}^2}R_c=\frac{{X_m}^2}{R_c}$ ### Diagram ![](2022-10-26-21-53-13.png) ### DC test #### $\Delta$ machine $$R_s=\frac{3}{2}\cdot\frac{V_{\text{DC},3\phi}}{I_{\text{DC},3\phi}}$$ ![](2022-10-26-22-43-25.png) #### Y machine $$R_s=\frac{1}{2}\cdot\frac{V_{\text{DC},3\phi}}{I_{\text{DC},3\phi}}$$ ![](2022-10-26-22-48-09.png) ### No-load test #### Assumptions - $P_\text{out}=0$ - No output power as no load. - $R_r/s=\infty$ and $I_r=0$ - Infinite rotor resistance, ignore rotor path. #### Diagram Using assumptions, remove rotor part of circuit and only consider stator and magnetizing path. ![](2022-10-25-11-45-26.png) ### Blocked rotor test #### Assumptions - Ignore magnetizing path, $I_m=0$ - $I_r\ggg I_m$ as $R_r/s\ggg Z_m$ - $R_r/s=R_r$, $s=1$ - Slip is $1$ as rotor is blocked. - $x_s=x_r'$ - Same number of turns in stator and rotor - and $x_r=f_0/f_\text{BL} \times x_r'$ - Note: $x_r'$ is the inductance at $f_\text{BL}$, the blocked rotor test frequency which is less than the nominal frequency $f_0$ #### Diagram Ignore magnetizing path ![](2022-10-25-11-46-04.png) --- ## Single-phase induction motor ### Diagram ![](2022-10-26-21-47-29.png) ### Blocked-rotor #### Diagram ![](2022-10-26-21-48-00.png) ### No-load #### Diagram ![](2022-10-26-21-47-49.png)