## Power types in motor | Type | Description | Equivalent terms | | ------------------ | ---------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------- | | Input power | Power into machine. $V_T=V_{3\phi}$, $I_L=I_{3\phi}$ | $P_\text{in}$, $\sqrt{3}V_TI_L\cos(\theta)$ | | Output power | Mechanical output power of the machine, excludes losses | $P_\text{out}$, $P_\text{load}$ | | Converted power | Total electrical power converted to mechanical power, includes useful power and mechanical losses inside machine | $P_\text{conv}$, $P_\text{converted}$, $P_\text{mech}$, $P_\text{developed}$, $\tau_\text{mech}\times\omega_m$ | | Airgap power | Power transmitted over airgap. | $P_\text{AG}$, $\tau_\text{mech}\times\omega_s$ | | Mechanical loss | Power lost to friction and windage | $P_\text{mechanical loss}$, $P_\text{F\\\&W}$, $P_\text{friction and windage}$ | | Core loss | Power lost in machine magnetic material due to hysteresis loss and eddy currents | $P_\text{core}$ | | Rotor copper loss | Due to resistance of rotor windings | $P_r$, $P_\text{RCL}$ | | Stator copper loss | Due to resistance of stator windings | $P_s$, $P_\text{SCL}$ | | Miscellaneous loss | Add 1% to losses to account for other unmeasured losses | $P_\text{misc}$, $P_\text{stray}$ | ![](2022-10-25-11-33-40.png) $$ \begin{align} P_\text{in}&=P_\text{SCL}+P_\text{RCL}+P_\text{core}+P_\text{F\\\&W}+P_\text{misc}+P_\text{out}\\ P_\text{AG}&=P_\text{RCL}+P_\text{F\\\&W}+P_\text{misc}+P_\text{out}\\ P_\text{mech}&=P_\text{F\\\&W}+P_\text{misc}+P_\text{out} \end{align} $$ ## No-load test | Assumption | Eqn | Reason | | ------------------------------ | ----------------- | ------------------------------ | | rotor current is insignificant | $I_r \approx 0$ | high rotor resistance | | no output mechanical power | $P_\text{out}=0$ | no load | | high rotor resistance | $R_r/s\to \infty$ | $s\to 0$, high slip at no load | Using assumptions, remove rotor part of circuit and only consider stator and magnetizing path. ![](2022-10-25-11-45-26.png) ## Blocked rotor test | Assumption | Eqn | Reason | | ----------------------- | ---------------------------------- | ------------------------------------------------------------------------------- | | ignore magnetizing path | $I_r\ggg I_m$ | magnetizing current is low compared to rotor current as rotor resistance is low | | low rotor resistance | $R_r/s\approx R_r$ | $s\approx 1$, slip is $1$ when blocked | | | $X_r\approx f_0/f_{BL}\times X_r'$ | $X_r'\approx X_{BL}/2$ | | | $X_r'\approx X_{BL}/2$ | $X_s\approx X_r'$ | | | $X_s\approx X_r'$ | ![](2022-10-25-11-46-04.png) ## Equivalent model | Assumption | Eqn | Reason | | ---------- | ------------------------ | ------------------------------------ | | | $x_m\approx X_m$ | $R_c\ggg X_m\Rightarrow r_c\lll x_m$ | | | $r_c\approx {X_m}^2/R_c$ | $R_c\ggg X_m\Rightarrow r_c\lll x_m$ |