mirror of
https://github.com/peter-tanner/peter-tanner.github.io.git
synced 2024-11-30 12:00:18 +08:00
Fix modulation index, add tri
This commit is contained in:
parent
96c6185640
commit
4552d13867
|
@ -79,13 +79,13 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
## Fourier transform identities and properties
|
||||
|
||||
| Time domain $x(t)$ | Frequency domain $X(f)$ |
|
||||
| --------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ---------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| $\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)$ | $T \text{sinc}(fT)$ |
|
||||
| $\text{sinc}(2Wt)$ | $\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$ |
|
||||
| $\exp(-at)u(t),\quad a>0$ | $\frac{1}{a + j2\pi f}$ |
|
||||
| $\exp(-a\lvert t \rvert),\quad a>0$ | $\frac{2a}{a^2 + (2\pi f)^2}$ |
|
||||
| $\exp(-\pi t^2)$ | $\exp(-\pi f^2)$ |
|
||||
| $1 - \frac{\lvert t \rvert}{T},\quad\lvert t \rvert < T$ | $T \text{sinc}^2(fT)$ |
|
||||
| $1 - \frac{\lvert t \rvert}{T},\quad\lvert t \rvert < T\quad\text{tri}(t/T)$ | $T \text{sinc}^2(fT)$ |
|
||||
| $\delta(t)$ | $1$ |
|
||||
| $1$ | $\delta(f)$ |
|
||||
| $\delta(t - t_0)$ | $\exp(-j2\pi f t_0)$ |
|
||||
|
@ -127,6 +127,7 @@ $$
|
|||
\text{sgn}(t) &= \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}&\text{Signum Function}\\
|
||||
\text{sinc}(2Wt) &= \frac{\sin(2\pi W t)}{2\pi W t}&\text{sinc Function}\\
|
||||
\text{rect}(t) = \Pi(t) &= \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & \lvert t \rvert > 0.5 \end{cases}&\text{Rectangular/Gate Function}\\
|
||||
\text{tri}(t/T) &= \begin{cases} 1 - \frac{|t|}{T}, & \lvert t\rvert < T \\ 0, & \lvert t \rvert > T \end{cases}=\Pi(t/T)*\Pi(t/T)&\text{Triangle Function}\\
|
||||
g(t)*h(t)=(g*h)(t)&=\int_\infty^\infty g(\tau)h(t-\tau)d\tau&\text{Convolution}\\
|
||||
\end{align*}
|
||||
$$
|
||||
|
@ -154,9 +155,13 @@ $$
|
|||
\end{align*}
|
||||
$$
|
||||
|
||||
### $\text{rect}$ function
|
||||
### Shape functions
|
||||
|
||||
![rect](/assets/img/2024-10-29-Idiots-guide-to-ELEC/rect.drawio.svg)
|
||||
| $\text{rect}$ function | $\text{tri}$ function |
|
||||
| -------------------------------------------------------------------- | --------------------- |
|
||||
| ![rect](/assets/img/2024-10-29-Idiots-guide-to-ELEC/rect.drawio.svg) | TODO: Add graphic. |
|
||||
|
||||
Tri placeholder: For $\text{tri}(t/T)=1-\|t\|/T$, Intersects $x$ axis at $-T$ and $T$ and $y$ axis at $1$.
|
||||
|
||||
### Bessel function
|
||||
|
||||
|
@ -288,11 +293,11 @@ $$
|
|||
|
||||
$$
|
||||
\begin{align*}
|
||||
m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
|
||||
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
|
||||
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
|
||||
x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right], \\
|
||||
&\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
|
||||
m_a &= \frac{|\min_t(k_a m(t))|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
|
||||
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
|
||||
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
|
||||
P_c &=\frac{ {A_c}^2}{2}\quad\text{Carrier power}\\
|
||||
P_x &=\frac{1}{4}{m_a}^2{A_c}^2\\
|
||||
\eta&=\frac{\text{Signal Power}}{\text{Total Power}}=\frac{P_x}{P_x+P_c}\\
|
||||
|
|
Loading…
Reference in New Issue
Block a user