mirror of
https://github.com/peter-tanner/peter-tanner.github.io.git
synced 2024-11-30 12:00:18 +08:00
Fix $\Delta f_max$ formulas
This commit is contained in:
parent
81935d491c
commit
96c6185640
|
@ -321,11 +321,11 @@ $$
|
||||||
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
|
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
|
||||||
s(t) &= A_c\cos(\theta_i(t))=A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_{-\infty}^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
|
s(t) &= A_c\cos(\theta_i(t))=A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_{-\infty}^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
|
||||||
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
|
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
|
||||||
f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)\quad\text{Instantaneous frequency from instantaneous phase}\\
|
f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)=f_c+k_f m(t)=f_c+\Delta f_\text{max}\hat m(t)\quad\text{Instantaneous frequency}\\
|
||||||
\Delta f&=\beta f_m=k_f A_m f_m = \max_t(k_f m(t))- \min_t(k_f m(t))\quad\text{Maximum frequency deviation}\\
|
\Delta f_\text{max}&=\max_t|f_i(t)-f_c|=k_f \max_t |m(t)|\quad\text{Maximum frequency deviation}\\
|
||||||
\Delta f&=\max_t(f_i(t))- \min_t(f_i(t))\quad\text{Maximum frequency deviation}\\
|
\Delta f_\text{max}&=k_f A_m\quad\text{Maximum frequency deviation (sinusoidal)}\\
|
||||||
\beta&=\frac{\Delta f}{f_m}=k_f A_m\quad\text{Modulation index}\\
|
\beta&=\frac{\Delta f_\text{max}}{f_m}\quad\text{Modulation index}\\
|
||||||
D&=\frac{\Delta f}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
|
D&=\frac{\Delta f_\text{max}}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
@ -353,12 +353,11 @@ $$
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
B &= 2Mf_m = 2(\beta + 1)f_m\\
|
B &= 2Mf_m = 2(\beta + 1)f_m\\
|
||||||
&= 2(\Delta f+f_m)\\
|
&= 2(\Delta f_\text{max}+f_m)\\
|
||||||
&= 2(k_f A_m+f_m)\\
|
|
||||||
&= 2(D+1)W_m\\
|
&= 2(D+1)W_m\\
|
||||||
B &= \begin{cases}
|
B &= \begin{cases}
|
||||||
2(\Delta f+f_m) & \text{FM, sinusoidal message}\\
|
2(\Delta f_\text{max}+f_m)=2(\Delta f_\text{max}+W_m) & \text{FM, sinusoidal message}\\
|
||||||
2(\Delta\phi + 1)f_m & \text{PM, sinusoidal message}
|
2(\Delta\phi_\text{max} + 1)f_m=2(\Delta \phi_\text{max}+1)W_m & \text{PM, sinusoidal message}
|
||||||
\end{cases}\\
|
\end{cases}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
Loading…
Reference in New Issue
Block a user