mirror of
https://github.com/peter-tanner/peter-tanner.github.io.git
synced 2024-11-30 12:00:18 +08:00
Rearrange some stuff and resolve some lint errors
This commit is contained in:
parent
81829688c8
commit
da36203d8c
|
@ -153,7 +153,7 @@ G_y(f)&=G(f)G_w(f)\\
|
||||||
| ergodic in mean | $$\lim_{T\to\infty}\braket{X(t)}_T=m_X(t)=m_X$$ | $$\lim_{T\to\infty}\text{VAR}[\braket{X(t)}_T]=0$$ |
|
| ergodic in mean | $$\lim_{T\to\infty}\braket{X(t)}_T=m_X(t)=m_X$$ | $$\lim_{T\to\infty}\text{VAR}[\braket{X(t)}_T]=0$$ |
|
||||||
| ergodic in autocorrelation function | $$\lim_{T\to\infty}\braket{X(t+\tau)X(t)}_T=R_X(\tau)$$ | $$\lim_{T\to\infty}\text{VAR}[\braket{X(t+\tau)X(t)}_T]=0$$ |
|
| ergodic in autocorrelation function | $$\lim_{T\to\infty}\braket{X(t+\tau)X(t)}_T=R_X(\tau)$$ | $$\lim_{T\to\infty}\text{VAR}[\braket{X(t+\tau)X(t)}_T]=0$$ |
|
||||||
|
|
||||||
**A WSS random process needs to be both ergodic in mean and autocorrelation to be considered an ergodic process**
|
Note: **A WSS random process needs to be both ergodic in mean and autocorrelation to be considered an ergodic process**
|
||||||
|
|
||||||
### Other identities
|
### Other identities
|
||||||
|
|
||||||
|
@ -434,7 +434,7 @@ Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidt
|
||||||
### Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to `assets/img/2024-10-29-Idiots-guide-to-ELEC/sampling.png`)
|
### Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to `assets/img/2024-10-29-Idiots-guide-to-ELEC/sampling.png`)
|
||||||
|
|
||||||
Cannot add directly due to copyright!
|
Cannot add directly due to copyright!
|
||||||
|
|
||||||
<!-- ![sampling](copyrighted_assets/img/2024-10-29-Idiots-guide-to-ELEC/sampling.png) -->
|
<!-- ![sampling](copyrighted_assets/img/2024-10-29-Idiots-guide-to-ELEC/sampling.png) -->
|
||||||
<!-- ![sampling](/assets/img/2024-10-29-Idiots-guide-to-ELEC/sampling.png) -->
|
<!-- ![sampling](/assets/img/2024-10-29-Idiots-guide-to-ELEC/sampling.png) -->
|
||||||
|
|
||||||
|
@ -593,22 +593,22 @@ Note on energy per symbol: Since $|s_i(t)|=A_c$, have to normalize distance as f
|
||||||
<details>
|
<details>
|
||||||
<summary>Code</summary>
|
<summary>Code</summary>
|
||||||
<pre><code>
|
<pre><code>
|
||||||
tBitstream[bitstream_, Tb_, title_] :=
|
tBitstream[bitstream_, Tb_, title_] :=
|
||||||
Module[{timeSteps, gridLines, plot},
|
Module[{timeSteps, gridLines, plot},
|
||||||
timeSteps =
|
timeSteps =
|
||||||
Flatten[Table[{(n - 1) Tb, bitstream[[n]]}, {n, 1,
|
Flatten[Table[{(n - 1) Tb, bitstream[[n]]}, {n, 1,
|
||||||
Length[bitstream]}] /. {t_, v_} :> { {t, v}, {t + Tb, v}}, 1];
|
Length[bitstream]}] /. {t_, v_} :> { {t, v}, {t + Tb, v}}, 1];
|
||||||
gridLines = {Join[
|
gridLines = {Join[
|
||||||
Table[{n Tb, Dashed}, {n, 1, 2 Length[bitstream], 2}],
|
Table[{n Tb, Dashed}, {n, 1, 2 Length[bitstream], 2}],
|
||||||
Table[{n Tb, Thin}, {n, 0, 2 Length[bitstream], 2}]], None};
|
Table[{n Tb, Thin}, {n, 0, 2 Length[bitstream], 2}]], None};
|
||||||
plot =
|
plot =
|
||||||
Labeled[ListLinePlot[timeSteps, InterpolationOrder -> 0,
|
Labeled[ListLinePlot[timeSteps, InterpolationOrder -> 0,
|
||||||
PlotRange -> Full, GridLines -> gridLines, PlotStyle -> Thick,
|
PlotRange -> Full, GridLines -> gridLines, PlotStyle -> Thick,
|
||||||
Ticks -> {Table[{n Tb,
|
Ticks -> {Table[{n Tb,
|
||||||
Row[{n, "\!\(\*SubscriptBox[\(T\), \(b\)]\)"}]}, {n, 0,
|
Row[{n, "\!\(\*SubscriptBox[\(T\), \(b\)]\)"}]}, {n, 0,
|
||||||
Length[bitstream]}], {-1, 0, 1}},
|
Length[bitstream]}], {-1, 0, 1}},
|
||||||
LabelStyle -> Directive[Bold, 12],
|
LabelStyle -> Directive[Bold, 12],
|
||||||
PlotRangePadding -> {Scaled[.05]}, AspectRatio -> 0.1,
|
PlotRangePadding -> {Scaled[.05]}, AspectRatio -> 0.1,
|
||||||
ImageSize -> Large], {Style[title, "Text", 16]}, {Right}]];
|
ImageSize -> Large], {Style[title, "Text", 16]}, {Right}]];
|
||||||
|
|
||||||
tBitstream[{0, 1, 0, 0, 1, 0, 1, 1, 1, 0}, 1, "Bitstream Step Plot"]
|
tBitstream[{0, 1, 0, 0, 1, 0, 1, 1, 1, 0}, 1, "Bitstream Step Plot"]
|
||||||
|
@ -666,26 +666,6 @@ Bit error rate (BER) from matched filter outputs and filter output noise
|
||||||
|
|
||||||
## Value tables for $\text{erf}(x)$ and $Q(x)$
|
## Value tables for $\text{erf}(x)$ and $Q(x)$
|
||||||
|
|
||||||
### $\text{erf}(x)$ function
|
|
||||||
|
|
||||||
| $x$ | $\text{erf}(x)$ | $x$ | $\text{erf}(x)$ | $x$ | $\text{erf}(x)$ |
|
|
||||||
| ------ | --------------- | ------ | --------------- | ------ | --------------- |
|
|
||||||
| $0.00$ | $0.00000$ | $0.75$ | $0.71116$ | $1.50$ | $0.96611$ |
|
|
||||||
| $0.05$ | $0.05637$ | $0.80$ | $0.74210$ | $1.55$ | $0.97162$ |
|
|
||||||
| $0.10$ | $0.11246$ | $0.85$ | $0.77067$ | $1.60$ | $0.97635$ |
|
|
||||||
| $0.15$ | $0.16800$ | $0.90$ | $0.79691$ | $1.65$ | $0.98038$ |
|
|
||||||
| $0.20$ | $0.22270$ | $0.95$ | $0.82089$ | $1.70$ | $0.98379$ |
|
|
||||||
| $0.25$ | $0.27633$ | $1.00$ | $0.84270$ | $1.75$ | $0.98667$ |
|
|
||||||
| $0.30$ | $0.32863$ | $1.05$ | $0.86244$ | $1.80$ | $0.98909$ |
|
|
||||||
| $0.35$ | $0.37938$ | $1.10$ | $0.88021$ | $1.85$ | $0.99111$ |
|
|
||||||
| $0.40$ | $0.42839$ | $1.15$ | $0.89612$ | $1.90$ | $0.99279$ |
|
|
||||||
| $0.45$ | $0.47548$ | $1.20$ | $0.91031$ | $1.95$ | $0.99418$ |
|
|
||||||
| $0.50$ | $0.52050$ | $1.25$ | $0.92290$ | $2.00$ | $0.99532$ |
|
|
||||||
| $0.55$ | $0.56332$ | $1.30$ | $0.93401$ | $2.50$ | $0.99959$ |
|
|
||||||
| $0.60$ | $0.60386$ | $1.35$ | $0.94376$ | $3.00$ | $0.99998$ |
|
|
||||||
| $0.65$ | $0.64203$ | $1.40$ | $0.95229$ | $3.30$ | $0.999998$\*\* |
|
|
||||||
| $0.70$ | $0.67780$ | $1.45$ | $0.95970$ | | |
|
|
||||||
|
|
||||||
### $Q(x)$ function
|
### $Q(x)$ function
|
||||||
|
|
||||||
| $x$ | $Q(x)$ | $x$ | $Q(x)$ | $x$ | $Q(x)$ | $x$ | $Q(x)$ |
|
| $x$ | $Q(x)$ | $x$ | $Q(x)$ | $x$ | $Q(x)$ | $x$ | $Q(x)$ |
|
||||||
|
@ -735,12 +715,34 @@ Bit error rate (BER) from matched filter outputs and filter output noise
|
||||||
| $2.10$ | $0.017864$ | $4.40$ | $5.4125 \times 10^{-6}$ | $6.65$ | $1.4655 \times 10^{-11}$ | $8.90$ | $2.7923 \times 10^{-19}$ |
|
| $2.10$ | $0.017864$ | $4.40$ | $5.4125 \times 10^{-6}$ | $6.65$ | $1.4655 \times 10^{-11}$ | $8.90$ | $2.7923 \times 10^{-19}$ |
|
||||||
| $2.15$ | $0.015778$ | $4.45$ | $4.2935 \times 10^{-6}$ | $6.70$ | $1.0421 \times 10^{-11}$ | $8.95$ | $1.7774 \times 10^{-19}$ |
|
| $2.15$ | $0.015778$ | $4.45$ | $4.2935 \times 10^{-6}$ | $6.70$ | $1.0421 \times 10^{-11}$ | $8.95$ | $1.7774 \times 10^{-19}$ |
|
||||||
| $2.20$ | $0.013903$ | $4.50$ | $3.3977 \times 10^{-6}$ | $6.75$ | $7.3923 \times 10^{-12}$ | $9.00$ | $1.1286 \times 10^{-19}$ |
|
| $2.20$ | $0.013903$ | $4.50$ | $3.3977 \times 10^{-6}$ | $6.75$ | $7.3923 \times 10^{-12}$ | $9.00$ | $1.1286 \times 10^{-19}$ |
|
||||||
| $2.25$ | $0.012224$ | | | | |
|
| $2.25$ | $0.012224$ | | | | | | |
|
||||||
|
|
||||||
Adapted from table 6.1 M F Mesiya - Contemporary Communication Systems
|
Adapted from table 6.1 M F Mesiya - Contemporary Communication Systems
|
||||||
|
|
||||||
|
### $\text{erf}(x)$ function
|
||||||
|
|
||||||
|
| $x$ | $\text{erf}(x)$ | $x$ | $\text{erf}(x)$ | $x$ | $\text{erf}(x)$ |
|
||||||
|
| ------ | --------------- | ------ | --------------- | ------ | --------------- |
|
||||||
|
| $0.00$ | $0.00000$ | $0.75$ | $0.71116$ | $1.50$ | $0.96611$ |
|
||||||
|
| $0.05$ | $0.05637$ | $0.80$ | $0.74210$ | $1.55$ | $0.97162$ |
|
||||||
|
| $0.10$ | $0.11246$ | $0.85$ | $0.77067$ | $1.60$ | $0.97635$ |
|
||||||
|
| $0.15$ | $0.16800$ | $0.90$ | $0.79691$ | $1.65$ | $0.98038$ |
|
||||||
|
| $0.20$ | $0.22270$ | $0.95$ | $0.82089$ | $1.70$ | $0.98379$ |
|
||||||
|
| $0.25$ | $0.27633$ | $1.00$ | $0.84270$ | $1.75$ | $0.98667$ |
|
||||||
|
| $0.30$ | $0.32863$ | $1.05$ | $0.86244$ | $1.80$ | $0.98909$ |
|
||||||
|
| $0.35$ | $0.37938$ | $1.10$ | $0.88021$ | $1.85$ | $0.99111$ |
|
||||||
|
| $0.40$ | $0.42839$ | $1.15$ | $0.89612$ | $1.90$ | $0.99279$ |
|
||||||
|
| $0.45$ | $0.47548$ | $1.20$ | $0.91031$ | $1.95$ | $0.99418$ |
|
||||||
|
| $0.50$ | $0.52050$ | $1.25$ | $0.92290$ | $2.00$ | $0.99532$ |
|
||||||
|
| $0.55$ | $0.56332$ | $1.30$ | $0.93401$ | $2.50$ | $0.99959$ |
|
||||||
|
| $0.60$ | $0.60386$ | $1.35$ | $0.94376$ | $3.00$ | $0.99998$ |
|
||||||
|
| $0.65$ | $0.64203$ | $1.40$ | $0.95229$ | $3.30$ | $0.999998$\*\* |
|
||||||
|
| $0.70$ | $0.67780$ | $1.45$ | $0.95970$ | | |
|
||||||
|
|
||||||
\*\*The value of $\text{erf}(3.30)$ should be $\approx0.999997$ instead, but this value is quoted in the formula table.
|
\*\*The value of $\text{erf}(3.30)$ should be $\approx0.999997$ instead, but this value is quoted in the formula table.
|
||||||
|
|
||||||
|
<div style="page-break-after: always;"></div>
|
||||||
|
|
||||||
### Receiver output shit
|
### Receiver output shit
|
||||||
|
|
||||||
```math
|
```math
|
||||||
|
@ -811,7 +813,7 @@ To solve this type of question:
|
||||||
|
|
||||||
### Nyquist stuff
|
### Nyquist stuff
|
||||||
|
|
||||||
#### Condition for 0 ISI TODO:
|
#### TODO: Condition for 0 ISI
|
||||||
|
|
||||||
```math
|
```math
|
||||||
P_r(kT)=\begin{cases}
|
P_r(kT)=\begin{cases}
|
||||||
|
@ -830,8 +832,6 @@ P_r(kT)=\begin{cases}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
```
|
```
|
||||||
|
|
||||||
<div style="page-break-after: always;"></div>
|
|
||||||
|
|
||||||
### Table of bandpass signalling and BER
|
### Table of bandpass signalling and BER
|
||||||
|
|
||||||
| **Binary Bandpass Signaling** | **$B_\text{null-null}$ (Hz)** | **$B_\text{abs-abs}\color{red}=2B_\text{abs}$ (Hz)** | **BER with Coherent Detection** | **BER with Noncoherent Detection** |
|
| **Binary Bandpass Signaling** | **$B_\text{null-null}$ (Hz)** | **$B_\text{abs-abs}\color{red}=2B_\text{abs}$ (Hz)** | **BER with Coherent Detection** | **BER with Noncoherent Detection** |
|
||||||
|
|
Loading…
Reference in New Issue
Block a user