mirror of
https://github.com/peter-tanner/peter-tanner.github.io.git
synced 2024-11-30 20:10:18 +08:00
Compare commits
No commits in common. "96c6185640743d87eea4970a710f9d7742a1129a" and "aae6077d77d4270f6901c081ce021100a68eab63" have entirely different histories.
96c6185640
...
aae6077d77
|
@ -321,11 +321,11 @@ $$
|
||||||
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
|
s(t) &= A_c\cos\left[2\pi f_c t + k_p m(t)\right]\quad\text{Phase modulated (PM)}\\
|
||||||
s(t) &= A_c\cos(\theta_i(t))=A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_{-\infty}^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
|
s(t) &= A_c\cos(\theta_i(t))=A_c\cos\left[2\pi f_c t + 2 \pi k_f \int_{-\infty}^t m(\tau) d\tau\right]\quad\text{Frequency modulated (FM)}\\
|
||||||
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
|
s(t) &= A_c\cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right]\quad\text{FM single tone}\\
|
||||||
f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)=f_c+k_f m(t)=f_c+\Delta f_\text{max}\hat m(t)\quad\text{Instantaneous frequency}\\
|
f_i(t) &= \frac{1}{2\pi}\frac{d}{dt}\theta_i(t)\quad\text{Instantaneous frequency from instantaneous phase}\\
|
||||||
\Delta f_\text{max}&=\max_t|f_i(t)-f_c|=k_f \max_t |m(t)|\quad\text{Maximum frequency deviation}\\
|
\Delta f&=\beta f_m=k_f A_m f_m = \max_t(k_f m(t))- \min_t(k_f m(t))\quad\text{Maximum frequency deviation}\\
|
||||||
\Delta f_\text{max}&=k_f A_m\quad\text{Maximum frequency deviation (sinusoidal)}\\
|
\Delta f&=\max_t(f_i(t))- \min_t(f_i(t))\quad\text{Maximum frequency deviation}\\
|
||||||
\beta&=\frac{\Delta f_\text{max}}{f_m}\quad\text{Modulation index}\\
|
\beta&=\frac{\Delta f}{f_m}=k_f A_m\quad\text{Modulation index}\\
|
||||||
D&=\frac{\Delta f_\text{max}}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
|
D&=\frac{\Delta f}{W_m}\quad\text{Deviation ratio, where $W_m$ is bandwidth of $m(t)$ (Use FT)}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
@ -353,11 +353,12 @@ $$
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
B &= 2Mf_m = 2(\beta + 1)f_m\\
|
B &= 2Mf_m = 2(\beta + 1)f_m\\
|
||||||
&= 2(\Delta f_\text{max}+f_m)\\
|
&= 2(\Delta f+f_m)\\
|
||||||
|
&= 2(k_f A_m+f_m)\\
|
||||||
&= 2(D+1)W_m\\
|
&= 2(D+1)W_m\\
|
||||||
B &= \begin{cases}
|
B &= \begin{cases}
|
||||||
2(\Delta f_\text{max}+f_m)=2(\Delta f_\text{max}+W_m) & \text{FM, sinusoidal message}\\
|
2(\Delta f+f_m) & \text{FM, sinusoidal message}\\
|
||||||
2(\Delta\phi_\text{max} + 1)f_m=2(\Delta \phi_\text{max}+1)W_m & \text{PM, sinusoidal message}
|
2(\Delta\phi + 1)f_m & \text{PM, sinusoidal message}
|
||||||
\end{cases}\\
|
\end{cases}\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
@ -437,9 +438,8 @@ $$
|
||||||
t&=nT_s\\
|
t&=nT_s\\
|
||||||
T_s&=\frac{1}{f_s}\\
|
T_s&=\frac{1}{f_s}\\
|
||||||
x_s(t)&=x(t)\delta_s(t)=x(t)\sum_{n\in\mathbb{Z}}\delta(t-nT_s)=\sum_{n\in\mathbb{Z}}x(nT_s)\delta(t-nT_s)\\
|
x_s(t)&=x(t)\delta_s(t)=x(t)\sum_{n\in\mathbb{Z}}\delta(t-nT_s)=\sum_{n\in\mathbb{Z}}x(nT_s)\delta(t-nT_s)\\
|
||||||
X_s(f)&=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
|
X_s(f)&=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
|
||||||
\implies X_s(f)&=\sum_{n\in\mathbb{Z}}f_s X\left(f-n f_s\right)\quad\text{Sampling (FT)}\\
|
B&>\frac{1}{2}f_s, 2B>f_s\rightarrow\text{Aliasing}\\
|
||||||
B&>\frac{1}{2}f_s\implies 2B>f_s\rightarrow\text{Aliasing}\\
|
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
@ -484,12 +484,6 @@ $$
|
||||||
|
|
||||||
Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidth.
|
Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidth.
|
||||||
|
|
||||||
```math
|
|
||||||
\text{Nyquist rate} = 2B\quad\text{Nyquist interval}=\frac{1}{2B}
|
|
||||||
```
|
|
||||||
|
|
||||||
<!-- MATH END -->
|
|
||||||
|
|
||||||
![By Bob K - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=94674142](/assets/img/2024-10-29-Idiots-guide-to-ELEC/Nyquist_frequency_&_rate.svg)
|
![By Bob K - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=94674142](/assets/img/2024-10-29-Idiots-guide-to-ELEC/Nyquist_frequency_&_rate.svg)
|
||||||
|
|
||||||
### Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to `assets/img/2024-10-29-Idiots-guide-to-ELEC/sampling.png`)
|
### Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to `assets/img/2024-10-29-Idiots-guide-to-ELEC/sampling.png`)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user