/** * @author Rich Tibbett / https://github.com/richtr * @author mrdoob / http://mrdoob.com/ * @author Tony Parisi / http://www.tonyparisi.com/ * @author Takahiro / https://github.com/takahirox * @author Don McCurdy / https://www.donmccurdy.com */ THREE.GLTFLoader = ( function () { function GLTFLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; this.dracoLoader = null; } GLTFLoader.prototype = { constructor: GLTFLoader, crossOrigin: 'Anonymous', load: function ( url, onLoad, onProgress, onError ) { var scope = this; var path = this.path !== undefined ? this.path : THREE.LoaderUtils.extractUrlBase( url ); var loader = new THREE.FileLoader( scope.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( data ) { try { scope.parse( data, path, onLoad, onError ); } catch ( e ) { if ( onError !== undefined ) { onError( e ); } else { throw e; } } }, onProgress, onError ); }, setCrossOrigin: function ( value ) { this.crossOrigin = value; return this; }, setPath: function ( value ) { this.path = value; return this; }, setDRACOLoader: function ( dracoLoader ) { this.dracoLoader = dracoLoader; return this; }, parse: function ( data, path, onLoad, onError ) { var content; var extensions = {}; if ( typeof data === 'string' ) { content = data; } else { var magic = THREE.LoaderUtils.decodeText( new Uint8Array( data, 0, 4 ) ); if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) { try { extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data ); } catch ( error ) { if ( onError ) onError( error ); return; } content = extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content; } else { content = THREE.LoaderUtils.decodeText( new Uint8Array( data ) ); } } var json = JSON.parse( content ); if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) { if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported. Use LegacyGLTFLoader instead.' ) ); return; } if ( json.extensionsUsed ) { if ( json.extensionsUsed.indexOf( EXTENSIONS.KHR_LIGHTS ) >= 0 ) { extensions[ EXTENSIONS.KHR_LIGHTS ] = new GLTFLightsExtension( json ); } if ( json.extensionsUsed.indexOf( EXTENSIONS.KHR_MATERIALS_UNLIT ) >= 0 ) { extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] = new GLTFMaterialsUnlitExtension( json ); } if ( json.extensionsUsed.indexOf( EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ) >= 0 ) { extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ] = new GLTFMaterialsPbrSpecularGlossinessExtension(); } if ( json.extensionsUsed.indexOf( EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ) >= 0 ) { extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] = new GLTFDracoMeshCompressionExtension( this.dracoLoader ); } } console.time( 'GLTFLoader' ); var parser = new GLTFParser( json, extensions, { path: path || this.path || '', crossOrigin: this.crossOrigin, manager: this.manager } ); parser.parse( function ( scene, scenes, cameras, animations, asset ) { console.timeEnd( 'GLTFLoader' ); var glTF = { scene: scene, scenes: scenes, cameras: cameras, animations: animations, asset: asset }; onLoad( glTF ); }, onError ); } }; /* GLTFREGISTRY */ function GLTFRegistry() { var objects = {}; return { get: function ( key ) { return objects[ key ]; }, add: function ( key, object ) { objects[ key ] = object; }, remove: function ( key ) { delete objects[ key ]; }, removeAll: function () { objects = {}; } }; } /*********************************/ /********** EXTENSIONS ***********/ /*********************************/ var EXTENSIONS = { KHR_BINARY_GLTF: 'KHR_binary_glTF', KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression', KHR_LIGHTS: 'KHR_lights', KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness', KHR_MATERIALS_UNLIT: 'KHR_materials_unlit' }; /** * Lights Extension * * Specification: PENDING */ function GLTFLightsExtension( json ) { this.name = EXTENSIONS.KHR_LIGHTS; this.lights = {}; var extension = ( json.extensions && json.extensions[ EXTENSIONS.KHR_LIGHTS ] ) || {}; var lights = extension.lights || {}; for ( var lightId in lights ) { var light = lights[ lightId ]; var lightNode; var color = new THREE.Color().fromArray( light.color ); switch ( light.type ) { case 'directional': lightNode = new THREE.DirectionalLight( color ); lightNode.position.set( 0, 0, 1 ); break; case 'point': lightNode = new THREE.PointLight( color ); break; case 'spot': lightNode = new THREE.SpotLight( color ); lightNode.position.set( 0, 0, 1 ); break; case 'ambient': lightNode = new THREE.AmbientLight( color ); break; } if ( lightNode ) { if ( light.constantAttenuation !== undefined ) { lightNode.intensity = light.constantAttenuation; } if ( light.linearAttenuation !== undefined ) { lightNode.distance = 1 / light.linearAttenuation; } if ( light.quadraticAttenuation !== undefined ) { lightNode.decay = light.quadraticAttenuation; } if ( light.fallOffAngle !== undefined ) { lightNode.angle = light.fallOffAngle; } if ( light.fallOffExponent !== undefined ) { console.warn( 'THREE.GLTFLoader:: light.fallOffExponent not currently supported.' ); } lightNode.name = light.name || ( 'light_' + lightId ); this.lights[ lightId ] = lightNode; } } } /** * Unlit Materials Extension (pending) * * PR: https://github.com/KhronosGroup/glTF/pull/1163 */ function GLTFMaterialsUnlitExtension( json ) { this.name = EXTENSIONS.KHR_MATERIALS_UNLIT; } GLTFMaterialsUnlitExtension.prototype.getMaterialType = function ( material ) { return THREE.MeshBasicMaterial; }; GLTFMaterialsUnlitExtension.prototype.extendParams = function ( materialParams, material, parser ) { var pending = []; materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0; var metallicRoughness = material.pbrMetallicRoughness; if ( metallicRoughness ) { if ( Array.isArray( metallicRoughness.baseColorFactor ) ) { var array = metallicRoughness.baseColorFactor; materialParams.color.fromArray( array ); materialParams.opacity = array[ 3 ]; } if ( metallicRoughness.baseColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture.index ) ); } } return Promise.all( pending ); }; /* BINARY EXTENSION */ var BINARY_EXTENSION_BUFFER_NAME = 'binary_glTF'; var BINARY_EXTENSION_HEADER_MAGIC = 'glTF'; var BINARY_EXTENSION_HEADER_LENGTH = 12; var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 }; function GLTFBinaryExtension( data ) { this.name = EXTENSIONS.KHR_BINARY_GLTF; this.content = null; this.body = null; var headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH ); this.header = { magic: THREE.LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ), version: headerView.getUint32( 4, true ), length: headerView.getUint32( 8, true ) }; if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) { throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' ); } else if ( this.header.version < 2.0 ) { throw new Error( 'THREE.GLTFLoader: Legacy binary file detected. Use LegacyGLTFLoader instead.' ); } var chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH ); var chunkIndex = 0; while ( chunkIndex < chunkView.byteLength ) { var chunkLength = chunkView.getUint32( chunkIndex, true ); chunkIndex += 4; var chunkType = chunkView.getUint32( chunkIndex, true ); chunkIndex += 4; if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) { var contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength ); this.content = THREE.LoaderUtils.decodeText( contentArray ); } else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) { var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex; this.body = data.slice( byteOffset, byteOffset + chunkLength ); } // Clients must ignore chunks with unknown types. chunkIndex += chunkLength; } if ( this.content === null ) { throw new Error( 'THREE.GLTFLoader: JSON content not found.' ); } } /** * DRACO Mesh Compression Extension * * Specification: https://github.com/KhronosGroup/glTF/pull/874 */ function GLTFDracoMeshCompressionExtension ( dracoLoader ) { if ( ! dracoLoader ) { throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' ); } this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION; this.dracoLoader = dracoLoader; } GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function ( primitive, parser ) { var dracoLoader = this.dracoLoader; var bufferViewIndex = primitive.extensions[ this.name ].bufferView; var gltfAttributeMap = primitive.extensions[ this.name ].attributes; var threeAttributeMap = {}; for ( var attributeName in gltfAttributeMap ) { if ( !( attributeName in ATTRIBUTES ) ) continue; threeAttributeMap[ ATTRIBUTES[ attributeName ] ] = gltfAttributeMap[ attributeName ]; } return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) { return new Promise( function ( resolve ) { dracoLoader.decodeDracoFile( bufferView, resolve, threeAttributeMap ); } ); } ); }; /** * Specular-Glossiness Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness */ function GLTFMaterialsPbrSpecularGlossinessExtension() { return { name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS, specularGlossinessParams: [ 'color', 'map', 'lightMap', 'lightMapIntensity', 'aoMap', 'aoMapIntensity', 'emissive', 'emissiveIntensity', 'emissiveMap', 'bumpMap', 'bumpScale', 'normalMap', 'displacementMap', 'displacementScale', 'displacementBias', 'specularMap', 'specular', 'glossinessMap', 'glossiness', 'alphaMap', 'envMap', 'envMapIntensity', 'refractionRatio', ], getMaterialType: function () { return THREE.ShaderMaterial; }, extendParams: function ( params, material, parser ) { var pbrSpecularGlossiness = material.extensions[ this.name ]; var shader = THREE.ShaderLib[ 'standard' ]; var uniforms = THREE.UniformsUtils.clone( shader.uniforms ); var specularMapParsFragmentChunk = [ '#ifdef USE_SPECULARMAP', ' uniform sampler2D specularMap;', '#endif' ].join( '\n' ); var glossinessMapParsFragmentChunk = [ '#ifdef USE_GLOSSINESSMAP', ' uniform sampler2D glossinessMap;', '#endif' ].join( '\n' ); var specularMapFragmentChunk = [ 'vec3 specularFactor = specular;', '#ifdef USE_SPECULARMAP', ' vec4 texelSpecular = texture2D( specularMap, vUv );', ' texelSpecular = sRGBToLinear( texelSpecular );', ' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture', ' specularFactor *= texelSpecular.rgb;', '#endif' ].join( '\n' ); var glossinessMapFragmentChunk = [ 'float glossinessFactor = glossiness;', '#ifdef USE_GLOSSINESSMAP', ' vec4 texelGlossiness = texture2D( glossinessMap, vUv );', ' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture', ' glossinessFactor *= texelGlossiness.a;', '#endif' ].join( '\n' ); var lightPhysicalFragmentChunk = [ 'PhysicalMaterial material;', 'material.diffuseColor = diffuseColor.rgb;', 'material.specularRoughness = clamp( 1.0 - glossinessFactor, 0.04, 1.0 );', 'material.specularColor = specularFactor.rgb;', ].join( '\n' ); var fragmentShader = shader.fragmentShader .replace( '#include ', '' ) .replace( 'uniform float roughness;', 'uniform vec3 specular;' ) .replace( 'uniform float metalness;', 'uniform float glossiness;' ) .replace( '#include ', specularMapParsFragmentChunk ) .replace( '#include ', glossinessMapParsFragmentChunk ) .replace( '#include ', specularMapFragmentChunk ) .replace( '#include ', glossinessMapFragmentChunk ) .replace( '#include ', lightPhysicalFragmentChunk ); delete uniforms.roughness; delete uniforms.metalness; delete uniforms.roughnessMap; delete uniforms.metalnessMap; uniforms.specular = { value: new THREE.Color().setHex( 0x111111 ) }; uniforms.glossiness = { value: 0.5 }; uniforms.specularMap = { value: null }; uniforms.glossinessMap = { value: null }; params.vertexShader = shader.vertexShader; params.fragmentShader = fragmentShader; params.uniforms = uniforms; params.defines = { 'STANDARD': '' }; params.color = new THREE.Color( 1.0, 1.0, 1.0 ); params.opacity = 1.0; var pending = []; if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) { var array = pbrSpecularGlossiness.diffuseFactor; params.color.fromArray( array ); params.opacity = array[ 3 ]; } if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) { pending.push( parser.assignTexture( params, 'map', pbrSpecularGlossiness.diffuseTexture.index ) ); } params.emissive = new THREE.Color( 0.0, 0.0, 0.0 ); params.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0; params.specular = new THREE.Color( 1.0, 1.0, 1.0 ); if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) { params.specular.fromArray( pbrSpecularGlossiness.specularFactor ); } if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) { var specGlossIndex = pbrSpecularGlossiness.specularGlossinessTexture.index; pending.push( parser.assignTexture( params, 'glossinessMap', specGlossIndex ) ); pending.push( parser.assignTexture( params, 'specularMap', specGlossIndex ) ); } return Promise.all( pending ); }, createMaterial: function ( params ) { // setup material properties based on MeshStandardMaterial for Specular-Glossiness var material = new THREE.ShaderMaterial( { defines: params.defines, vertexShader: params.vertexShader, fragmentShader: params.fragmentShader, uniforms: params.uniforms, fog: true, lights: true, opacity: params.opacity, transparent: params.transparent } ); material.isGLTFSpecularGlossinessMaterial = true; material.color = params.color; material.map = params.map === undefined ? null : params.map; material.lightMap = null; material.lightMapIntensity = 1.0; material.aoMap = params.aoMap === undefined ? null : params.aoMap; material.aoMapIntensity = 1.0; material.emissive = params.emissive; material.emissiveIntensity = 1.0; material.emissiveMap = params.emissiveMap === undefined ? null : params.emissiveMap; material.bumpMap = params.bumpMap === undefined ? null : params.bumpMap; material.bumpScale = 1; material.normalMap = params.normalMap === undefined ? null : params.normalMap; if ( params.normalScale ) material.normalScale = params.normalScale; material.displacementMap = null; material.displacementScale = 1; material.displacementBias = 0; material.specularMap = params.specularMap === undefined ? null : params.specularMap; material.specular = params.specular; material.glossinessMap = params.glossinessMap === undefined ? null : params.glossinessMap; material.glossiness = params.glossiness; material.alphaMap = null; material.envMap = params.envMap === undefined ? null : params.envMap; material.envMapIntensity = 1.0; material.refractionRatio = 0.98; material.extensions.derivatives = true; return material; }, /** * Clones a GLTFSpecularGlossinessMaterial instance. The ShaderMaterial.copy() method can * copy only properties it knows about or inherits, and misses many properties that would * normally be defined by MeshStandardMaterial. * * This method allows GLTFSpecularGlossinessMaterials to be cloned in the process of * loading a glTF model, but cloning later (e.g. by the user) would require these changes * AND also updating `.onBeforeRender` on the parent mesh. * * @param {THREE.ShaderMaterial} source * @return {THREE.ShaderMaterial} */ cloneMaterial: function ( source ) { var target = source.clone(); target.isGLTFSpecularGlossinessMaterial = true; var params = this.specularGlossinessParams; for ( var i = 0, il = params.length; i < il; i ++ ) { target[ params[ i ] ] = source[ params[ i ] ]; } return target; }, // Here's based on refreshUniformsCommon() and refreshUniformsStandard() in WebGLRenderer. refreshUniforms: function ( renderer, scene, camera, geometry, material, group ) { if ( material.isGLTFSpecularGlossinessMaterial !== true ) { return; } var uniforms = material.uniforms; var defines = material.defines; uniforms.opacity.value = material.opacity; uniforms.diffuse.value.copy( material.color ); uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); uniforms.map.value = material.map; uniforms.specularMap.value = material.specularMap; uniforms.alphaMap.value = material.alphaMap; uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. normal map // 4. bump map // 5. alpha map // 6. emissive map var uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.specularMap ) { uvScaleMap = material.specularMap; } else if ( material.displacementMap ) { uvScaleMap = material.displacementMap; } else if ( material.normalMap ) { uvScaleMap = material.normalMap; } else if ( material.bumpMap ) { uvScaleMap = material.bumpMap; } else if ( material.glossinessMap ) { uvScaleMap = material.glossinessMap; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } else if ( material.emissiveMap ) { uvScaleMap = material.emissiveMap; } if ( uvScaleMap !== undefined ) { // backwards compatibility if ( uvScaleMap.isWebGLRenderTarget ) { uvScaleMap = uvScaleMap.texture; } var offset; var repeat; if ( uvScaleMap.matrix !== undefined ) { // > r88. if ( uvScaleMap.matrixAutoUpdate === true ) { offset = uvScaleMap.offset; repeat = uvScaleMap.repeat; var rotation = uvScaleMap.rotation; var center = uvScaleMap.center; uvScaleMap.matrix.setUvTransform( offset.x, offset.y, repeat.x, repeat.y, rotation, center.x, center.y ); } uniforms.uvTransform.value.copy( uvScaleMap.matrix ); } else { // <= r87. Remove when reasonable. offset = uvScaleMap.offset; repeat = uvScaleMap.repeat; uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y ); } } uniforms.envMap.value = material.envMap; uniforms.envMapIntensity.value = material.envMapIntensity; uniforms.flipEnvMap.value = ( material.envMap && material.envMap.isCubeTexture ) ? - 1 : 1; uniforms.refractionRatio.value = material.refractionRatio; uniforms.specular.value.copy( material.specular ); uniforms.glossiness.value = material.glossiness; uniforms.glossinessMap.value = material.glossinessMap; uniforms.emissiveMap.value = material.emissiveMap; uniforms.bumpMap.value = material.bumpMap; uniforms.normalMap.value = material.normalMap; uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; if ( uniforms.glossinessMap.value !== null && defines.USE_GLOSSINESSMAP === undefined ) { defines.USE_GLOSSINESSMAP = ''; // set USE_ROUGHNESSMAP to enable vUv defines.USE_ROUGHNESSMAP = ''; } if ( uniforms.glossinessMap.value === null && defines.USE_GLOSSINESSMAP !== undefined ) { delete defines.USE_GLOSSINESSMAP; delete defines.USE_ROUGHNESSMAP; } } }; } /*********************************/ /********** INTERPOLATION ********/ /*********************************/ // Spline Interpolation // Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation function GLTFCubicSplineInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); }; GLTFCubicSplineInterpolant.prototype = Object.create( THREE.Interpolant.prototype ); GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant; GLTFCubicSplineInterpolant.prototype.interpolate_ = function ( i1, t0, t, t1 ) { var result = this.resultBuffer; var values = this.sampleValues; var stride = this.valueSize; var stride2 = stride * 2; var stride3 = stride * 3; var td = t1 - t0; var p = ( t - t0 ) / td; var pp = p * p; var ppp = pp * p; var offset1 = i1 * stride3; var offset0 = offset1 - stride3; var s0 = 2 * ppp - 3 * pp + 1; var s1 = ppp - 2 * pp + p; var s2 = - 2 * ppp + 3 * pp; var s3 = ppp - pp; // Layout of keyframe output values for CUBICSPLINE animations: // [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ] for ( var i = 0; i !== stride; i ++ ) { var p0 = values[ offset0 + i + stride ]; // splineVertex_k var m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k) var p1 = values[ offset1 + i + stride ]; // splineVertex_k+1 var m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k) result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1; } return result; }; /*********************************/ /********** INTERNALS ************/ /*********************************/ /* CONSTANTS */ var WEBGL_CONSTANTS = { FLOAT: 5126, //FLOAT_MAT2: 35674, FLOAT_MAT3: 35675, FLOAT_MAT4: 35676, FLOAT_VEC2: 35664, FLOAT_VEC3: 35665, FLOAT_VEC4: 35666, LINEAR: 9729, REPEAT: 10497, SAMPLER_2D: 35678, POINTS: 0, LINES: 1, LINE_LOOP: 2, LINE_STRIP: 3, TRIANGLES: 4, TRIANGLE_STRIP: 5, TRIANGLE_FAN: 6, UNSIGNED_BYTE: 5121, UNSIGNED_SHORT: 5123 }; var WEBGL_TYPE = { 5126: Number, //35674: THREE.Matrix2, 35675: THREE.Matrix3, 35676: THREE.Matrix4, 35664: THREE.Vector2, 35665: THREE.Vector3, 35666: THREE.Vector4, 35678: THREE.Texture }; var WEBGL_COMPONENT_TYPES = { 5120: Int8Array, 5121: Uint8Array, 5122: Int16Array, 5123: Uint16Array, 5125: Uint32Array, 5126: Float32Array }; var WEBGL_FILTERS = { 9728: THREE.NearestFilter, 9729: THREE.LinearFilter, 9984: THREE.NearestMipMapNearestFilter, 9985: THREE.LinearMipMapNearestFilter, 9986: THREE.NearestMipMapLinearFilter, 9987: THREE.LinearMipMapLinearFilter }; var WEBGL_WRAPPINGS = { 33071: THREE.ClampToEdgeWrapping, 33648: THREE.MirroredRepeatWrapping, 10497: THREE.RepeatWrapping }; var WEBGL_TEXTURE_FORMATS = { 6406: THREE.AlphaFormat, 6407: THREE.RGBFormat, 6408: THREE.RGBAFormat, 6409: THREE.LuminanceFormat, 6410: THREE.LuminanceAlphaFormat }; var WEBGL_TEXTURE_DATATYPES = { 5121: THREE.UnsignedByteType, 32819: THREE.UnsignedShort4444Type, 32820: THREE.UnsignedShort5551Type, 33635: THREE.UnsignedShort565Type }; var WEBGL_SIDES = { 1028: THREE.BackSide, // Culling front 1029: THREE.FrontSide // Culling back //1032: THREE.NoSide // Culling front and back, what to do? }; var WEBGL_DEPTH_FUNCS = { 512: THREE.NeverDepth, 513: THREE.LessDepth, 514: THREE.EqualDepth, 515: THREE.LessEqualDepth, 516: THREE.GreaterEqualDepth, 517: THREE.NotEqualDepth, 518: THREE.GreaterEqualDepth, 519: THREE.AlwaysDepth }; var WEBGL_BLEND_EQUATIONS = { 32774: THREE.AddEquation, 32778: THREE.SubtractEquation, 32779: THREE.ReverseSubtractEquation }; var WEBGL_BLEND_FUNCS = { 0: THREE.ZeroFactor, 1: THREE.OneFactor, 768: THREE.SrcColorFactor, 769: THREE.OneMinusSrcColorFactor, 770: THREE.SrcAlphaFactor, 771: THREE.OneMinusSrcAlphaFactor, 772: THREE.DstAlphaFactor, 773: THREE.OneMinusDstAlphaFactor, 774: THREE.DstColorFactor, 775: THREE.OneMinusDstColorFactor, 776: THREE.SrcAlphaSaturateFactor // The followings are not supported by Three.js yet //32769: CONSTANT_COLOR, //32770: ONE_MINUS_CONSTANT_COLOR, //32771: CONSTANT_ALPHA, //32772: ONE_MINUS_CONSTANT_COLOR }; var WEBGL_TYPE_SIZES = { 'SCALAR': 1, 'VEC2': 2, 'VEC3': 3, 'VEC4': 4, 'MAT2': 4, 'MAT3': 9, 'MAT4': 16 }; var ATTRIBUTES = { POSITION: 'position', NORMAL: 'normal', TEXCOORD_0: 'uv', TEXCOORD0: 'uv', // deprecated TEXCOORD: 'uv', // deprecated TEXCOORD_1: 'uv2', COLOR_0: 'color', COLOR0: 'color', // deprecated COLOR: 'color', // deprecated WEIGHTS_0: 'skinWeight', WEIGHT: 'skinWeight', // deprecated JOINTS_0: 'skinIndex', JOINT: 'skinIndex' // deprecated } var PATH_PROPERTIES = { scale: 'scale', translation: 'position', rotation: 'quaternion', weights: 'morphTargetInfluences' }; var INTERPOLATION = { CUBICSPLINE: THREE.InterpolateSmooth, // We use custom interpolation GLTFCubicSplineInterpolation for CUBICSPLINE. // KeyframeTrack.optimize() can't handle glTF Cubic Spline output values layout, // using THREE.InterpolateSmooth for KeyframeTrack instantiation to prevent optimization. // See KeyframeTrack.optimize() for the detail. LINEAR: THREE.InterpolateLinear, STEP: THREE.InterpolateDiscrete }; var STATES_ENABLES = { 2884: 'CULL_FACE', 2929: 'DEPTH_TEST', 3042: 'BLEND', 3089: 'SCISSOR_TEST', 32823: 'POLYGON_OFFSET_FILL', 32926: 'SAMPLE_ALPHA_TO_COVERAGE' }; var ALPHA_MODES = { OPAQUE: 'OPAQUE', MASK: 'MASK', BLEND: 'BLEND' }; /* UTILITY FUNCTIONS */ function resolveURL( url, path ) { // Invalid URL if ( typeof url !== 'string' || url === '' ) return ''; // Absolute URL http://,https://,// if ( /^(https?:)?\/\//i.test( url ) ) return url; // Data URI if ( /^data:.*,.*$/i.test( url ) ) return url; // Blob URL if ( /^blob:.*$/i.test( url ) ) return url; // Relative URL return path + url; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material */ function createDefaultMaterial() { return new THREE.MeshStandardMaterial( { color: 0xFFFFFF, emissive: 0x000000, metalness: 1, roughness: 1, transparent: false, depthTest: true, side: THREE.FrontSide } ); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets * * @param {THREE.Mesh} mesh * @param {GLTF.Mesh} meshDef * @param {GLTF.Primitive} primitiveDef * @param {Array} accessors */ function addMorphTargets( mesh, meshDef, primitiveDef, accessors ) { var geometry = mesh.geometry; var material = mesh.material; var targets = primitiveDef.targets; var morphAttributes = geometry.morphAttributes; morphAttributes.position = []; morphAttributes.normal = []; material.morphTargets = true; for ( var i = 0, il = targets.length; i < il; i ++ ) { var target = targets[ i ]; var attributeName = 'morphTarget' + i; var positionAttribute, normalAttribute; if ( target.POSITION !== undefined ) { // Three.js morph formula is // position // + weight0 * ( morphTarget0 - position ) // + weight1 * ( morphTarget1 - position ) // ... // while the glTF one is // position // + weight0 * morphTarget0 // + weight1 * morphTarget1 // ... // then adding position to morphTarget. // So morphTarget value will depend on mesh's position, then cloning attribute // for the case if attribute is shared among two or more meshes. positionAttribute = cloneBufferAttribute( accessors[ target.POSITION ] ); var position = geometry.attributes.position; for ( var j = 0, jl = positionAttribute.count; j < jl; j ++ ) { positionAttribute.setXYZ( j, positionAttribute.getX( j ) + position.getX( j ), positionAttribute.getY( j ) + position.getY( j ), positionAttribute.getZ( j ) + position.getZ( j ) ); } } else if ( geometry.attributes.position ) { // Copying the original position not to affect the final position. // See the formula above. positionAttribute = cloneBufferAttribute( geometry.attributes.position ); } if ( positionAttribute !== undefined ) { positionAttribute.name = attributeName; morphAttributes.position.push( positionAttribute ); } if ( target.NORMAL !== undefined ) { material.morphNormals = true; // see target.POSITION's comment normalAttribute = cloneBufferAttribute( accessors[ target.NORMAL ] ); var normal = geometry.attributes.normal; for ( var j = 0, jl = normalAttribute.count; j < jl; j ++ ) { normalAttribute.setXYZ( j, normalAttribute.getX( j ) + normal.getX( j ), normalAttribute.getY( j ) + normal.getY( j ), normalAttribute.getZ( j ) + normal.getZ( j ) ); } } else if ( geometry.attributes.normal !== undefined ) { normalAttribute = cloneBufferAttribute( geometry.attributes.normal ); } if ( normalAttribute !== undefined ) { normalAttribute.name = attributeName; morphAttributes.normal.push( normalAttribute ); } } mesh.updateMorphTargets(); if ( meshDef.weights !== undefined ) { for ( var i = 0, il = meshDef.weights.length; i < il; i ++ ) { mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ]; } } // .extras has user-defined data, so check that .extras.targetNames is an array. if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) { for ( var i = 0, il = meshDef.extras.targetNames.length; i < il; i ++ ) { mesh.morphTargetDictionary[ meshDef.extras.targetNames[ i ] ] = i; } } } function isPrimitiveEqual( a, b ) { if ( a.indices !== b.indices ) { return false; } var attribA = a.attributes || {}; var attribB = b.attributes || {}; var keysA = Object.keys( attribA ); var keysB = Object.keys( attribB ); if ( keysA.length !== keysB.length ) { return false; } for ( var i = 0, il = keysA.length; i < il; i ++ ) { var key = keysA[ i ]; if ( attribA[ key ] !== attribB[ key ] ) { return false; } } return true; } function getCachedGeometry( cache, newPrimitive ) { for ( var i = 0, il = cache.length; i < il; i ++ ) { var cached = cache[ i ]; if ( isPrimitiveEqual( cached.primitive, newPrimitive ) ) { return cached.promise; } } return null; } function cloneBufferAttribute( attribute ) { if ( attribute.isInterleavedBufferAttribute ) { var count = attribute.count; var itemSize = attribute.itemSize; var array = attribute.array.slice( 0, count * itemSize ); for ( var i = 0; i < count; ++ i ) { array[ i ] = attribute.getX( i ); if ( itemSize >= 2 ) array[ i + 1 ] = attribute.getY( i ); if ( itemSize >= 3 ) array[ i + 2 ] = attribute.getZ( i ); if ( itemSize >= 4 ) array[ i + 3 ] = attribute.getW( i ); } return new THREE.BufferAttribute( array, itemSize, attribute.normalized ); } return attribute.clone(); } /* GLTF PARSER */ function GLTFParser( json, extensions, options ) { this.json = json || {}; this.extensions = extensions || {}; this.options = options || {}; // loader object cache this.cache = new GLTFRegistry(); // BufferGeometry caching this.primitiveCache = []; this.textureLoader = new THREE.TextureLoader( this.options.manager ); this.textureLoader.setCrossOrigin( this.options.crossOrigin ); this.fileLoader = new THREE.FileLoader( this.options.manager ); this.fileLoader.setResponseType( 'arraybuffer' ); } GLTFParser.prototype.parse = function ( onLoad, onError ) { var json = this.json; // Clear the loader cache this.cache.removeAll(); // Mark the special nodes/meshes in json for efficient parse this.markDefs(); // Fire the callback on complete this.getMultiDependencies( [ 'scene', 'animation', 'camera' ] ).then( function ( dependencies ) { var scenes = dependencies.scenes || []; var scene = scenes[ json.scene || 0 ]; var animations = dependencies.animations || []; var asset = json.asset; var cameras = dependencies.cameras || []; onLoad( scene, scenes, cameras, animations, asset ); } ).catch( onError ); }; /** * Marks the special nodes/meshes in json for efficient parse. */ GLTFParser.prototype.markDefs = function () { var nodeDefs = this.json.nodes || []; var skinDefs = this.json.skins || []; var meshDefs = this.json.meshes || []; var meshReferences = {}; var meshUses = {}; // Nothing in the node definition indicates whether it is a Bone or an // Object3D. Use the skins' joint references to mark bones. for ( var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) { var joints = skinDefs[ skinIndex ].joints; for ( var i = 0, il = joints.length; i < il; i ++ ) { nodeDefs[ joints[ i ] ].isBone = true; } } // Meshes can (and should) be reused by multiple nodes in a glTF asset. To // avoid having more than one THREE.Mesh with the same name, count // references and rename instances below. // // Example: CesiumMilkTruck sample model reuses "Wheel" meshes. for ( var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) { var nodeDef = nodeDefs[ nodeIndex ]; if ( nodeDef.mesh !== undefined ) { if ( meshReferences[ nodeDef.mesh ] === undefined ) { meshReferences[ nodeDef.mesh ] = meshUses[ nodeDef.mesh ] = 0; } meshReferences[ nodeDef.mesh ] ++; // Nothing in the mesh definition indicates whether it is // a SkinnedMesh or Mesh. Use the node's mesh reference // to mark SkinnedMesh if node has skin. if ( nodeDef.skin !== undefined ) { meshDefs[ nodeDef.mesh ].isSkinnedMesh = true; } } } this.json.meshReferences = meshReferences; this.json.meshUses = meshUses; }; /** * Requests the specified dependency asynchronously, with caching. * @param {string} type * @param {number} index * @return {Promise} */ GLTFParser.prototype.getDependency = function ( type, index ) { var cacheKey = type + ':' + index; var dependency = this.cache.get( cacheKey ); if ( ! dependency ) { var fnName = 'load' + type.charAt( 0 ).toUpperCase() + type.slice( 1 ); dependency = this[ fnName ]( index ); this.cache.add( cacheKey, dependency ); } return dependency; }; /** * Requests all dependencies of the specified type asynchronously, with caching. * @param {string} type * @return {Promise>} */ GLTFParser.prototype.getDependencies = function ( type ) { var dependencies = this.cache.get( type ); if ( ! dependencies ) { var parser = this; var defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || []; dependencies = Promise.all( defs.map( function ( def, index ) { return parser.getDependency( type, index ); } ) ); this.cache.add( type, dependencies ); } return dependencies; }; /** * Requests all multiple dependencies of the specified types asynchronously, with caching. * @param {Array} types * @return {Promise>>} */ GLTFParser.prototype.getMultiDependencies = function ( types ) { var results = {}; var pendings = []; for ( var i = 0, il = types.length; i < il; i ++ ) { var type = types[ i ]; var value = this.getDependencies( type ); value = value.then( function ( key, value ) { results[ key ] = value; }.bind( this, type + ( type === 'mesh' ? 'es' : 's' ) ) ); pendings.push( value ); } return Promise.all( pendings ).then( function () { return results; } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferIndex * @return {Promise} */ GLTFParser.prototype.loadBuffer = function ( bufferIndex ) { var bufferDef = this.json.buffers[ bufferIndex ]; var loader = this.fileLoader; if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) { throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' ); } // If present, GLB container is required to be the first buffer. if ( bufferDef.uri === undefined && bufferIndex === 0 ) { return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body ); } var options = this.options; return new Promise( function ( resolve, reject ) { loader.load( resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () { reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) ); } ); } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferViewIndex * @return {Promise} */ GLTFParser.prototype.loadBufferView = function ( bufferViewIndex ) { var bufferViewDef = this.json.bufferViews[ bufferViewIndex ]; return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) { var byteLength = bufferViewDef.byteLength || 0; var byteOffset = bufferViewDef.byteOffset || 0; return buffer.slice( byteOffset, byteOffset + byteLength ); } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors * @param {number} accessorIndex * @return {Promise} */ GLTFParser.prototype.loadAccessor = function ( accessorIndex ) { var parser = this; var json = this.json; var accessorDef = this.json.accessors[ accessorIndex ]; if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) { // Ignore empty accessors, which may be used to declare runtime // information about attributes coming from another source (e.g. Draco // compression extension). return null; } var pendingBufferViews = []; if ( accessorDef.bufferView !== undefined ) { pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) ); } else { pendingBufferViews.push( null ); } if ( accessorDef.sparse !== undefined ) { pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) ); pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) ); } return Promise.all( pendingBufferViews ).then( function ( bufferViews ) { var bufferView = bufferViews[ 0 ]; var itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ]; var TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ]; // For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12. var elementBytes = TypedArray.BYTES_PER_ELEMENT; var itemBytes = elementBytes * itemSize; var byteOffset = accessorDef.byteOffset || 0; var byteStride = json.bufferViews[ accessorDef.bufferView ].byteStride; var normalized = accessorDef.normalized === true; var array, bufferAttribute; // The buffer is not interleaved if the stride is the item size in bytes. if ( byteStride && byteStride !== itemBytes ) { var ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType; var ib = parser.cache.get( ibCacheKey ); if ( ! ib ) { // Use the full buffer if it's interleaved. array = new TypedArray( bufferView ); // Integer parameters to IB/IBA are in array elements, not bytes. ib = new THREE.InterleavedBuffer( array, byteStride / elementBytes ); parser.cache.add( ibCacheKey, ib ); } bufferAttribute = new THREE.InterleavedBufferAttribute( ib, itemSize, byteOffset / elementBytes, normalized ); } else { if ( bufferView === null ) { array = new TypedArray( accessorDef.count * itemSize ); } else { array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize ); } bufferAttribute = new THREE.BufferAttribute( array, itemSize, normalized ); } // https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors if ( accessorDef.sparse !== undefined ) { var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR; var TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ]; var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0; var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0; var sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices ); var sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize ); if ( bufferView !== null ) { // Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes. bufferAttribute.setArray( bufferAttribute.array.slice() ); } for ( var i = 0, il = sparseIndices.length; i < il; i ++ ) { var index = sparseIndices[ i ]; bufferAttribute.setX( index, sparseValues[ i * itemSize ] ); if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] ); if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] ); if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] ); if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' ); } } return bufferAttribute; } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures * @param {number} textureIndex * @return {Promise} */ GLTFParser.prototype.loadTexture = function ( textureIndex ) { var parser = this; var json = this.json; var options = this.options; var textureLoader = this.textureLoader; var URL = window.URL || window.webkitURL; var textureDef = json.textures[ textureIndex ]; var source = json.images[ textureDef.source ]; var sourceURI = source.uri; var isObjectURL = false; if ( source.bufferView !== undefined ) { // Load binary image data from bufferView, if provided. sourceURI = parser.getDependency( 'bufferView', source.bufferView ).then( function ( bufferView ) { isObjectURL = true; var blob = new Blob( [ bufferView ], { type: source.mimeType } ); sourceURI = URL.createObjectURL( blob ); return sourceURI; } ); } return Promise.resolve( sourceURI ).then( function ( sourceURI ) { // Load Texture resource. var loader = THREE.Loader.Handlers.get( sourceURI ) || textureLoader; return new Promise( function ( resolve, reject ) { loader.load( resolveURL( sourceURI, options.path ), resolve, undefined, reject ); } ); } ).then( function ( texture ) { // Clean up resources and configure Texture. if ( isObjectURL === true ) { URL.revokeObjectURL( sourceURI ); } texture.flipY = false; if ( textureDef.name !== undefined ) texture.name = textureDef.name; texture.format = textureDef.format !== undefined ? WEBGL_TEXTURE_FORMATS[ textureDef.format ] : THREE.RGBAFormat; if ( textureDef.internalFormat !== undefined && texture.format !== WEBGL_TEXTURE_FORMATS[ textureDef.internalFormat ] ) { console.warn( 'THREE.GLTFLoader: Three.js does not support texture internalFormat which is different from texture format. ' + 'internalFormat will be forced to be the same value as format.' ); } texture.type = textureDef.type !== undefined ? WEBGL_TEXTURE_DATATYPES[ textureDef.type ] : THREE.UnsignedByteType; var samplers = json.samplers || {}; var sampler = samplers[ textureDef.sampler ] || {}; texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || THREE.LinearFilter; texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || THREE.LinearMipMapLinearFilter; texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || THREE.RepeatWrapping; texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || THREE.RepeatWrapping; return texture; } ); }; /** * Asynchronously assigns a texture to the given material parameters. * @param {Object} materialParams * @param {string} textureName * @param {number} textureIndex * @return {Promise} */ GLTFParser.prototype.assignTexture = function ( materialParams, textureName, textureIndex ) { return this.getDependency( 'texture', textureIndex ).then( function ( texture ) { materialParams[ textureName ] = texture; } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials * @param {number} materialIndex * @return {Promise} */ GLTFParser.prototype.loadMaterial = function ( materialIndex ) { var parser = this; var json = this.json; var extensions = this.extensions; var materialDef = this.json.materials[ materialIndex ]; var materialType; var materialParams = {}; var materialExtensions = materialDef.extensions || {}; var pending = []; if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ] ) { var sgExtension = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ]; materialType = sgExtension.getMaterialType( materialDef ); pending.push( sgExtension.extendParams( materialParams, materialDef, parser ) ); } else if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) { var kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ]; materialType = kmuExtension.getMaterialType( materialDef ); pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) ); } else if ( materialDef.pbrMetallicRoughness !== undefined ) { // Specification: // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material materialType = THREE.MeshStandardMaterial; var metallicRoughness = materialDef.pbrMetallicRoughness; materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0; if ( Array.isArray( metallicRoughness.baseColorFactor ) ) { var array = metallicRoughness.baseColorFactor; materialParams.color.fromArray( array ); materialParams.opacity = array[ 3 ]; } if ( metallicRoughness.baseColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture.index ) ); } materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0; materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0; if ( metallicRoughness.metallicRoughnessTexture !== undefined ) { var textureIndex = metallicRoughness.metallicRoughnessTexture.index; pending.push( parser.assignTexture( materialParams, 'metalnessMap', textureIndex ) ); pending.push( parser.assignTexture( materialParams, 'roughnessMap', textureIndex ) ); } } else { materialType = THREE.MeshPhongMaterial; } if ( materialDef.doubleSided === true ) { materialParams.side = THREE.DoubleSide; } var alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE; if ( alphaMode === ALPHA_MODES.BLEND ) { materialParams.transparent = true; } else { materialParams.transparent = false; if ( alphaMode === ALPHA_MODES.MASK ) { materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5; } } if ( materialDef.normalTexture !== undefined && materialType !== THREE.MeshBasicMaterial) { pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture.index ) ); materialParams.normalScale = new THREE.Vector2( 1, 1 ); if ( materialDef.normalTexture.scale !== undefined ) { materialParams.normalScale.set( materialDef.normalTexture.scale, materialDef.normalTexture.scale ); } } if ( materialDef.occlusionTexture !== undefined && materialType !== THREE.MeshBasicMaterial) { pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture.index ) ); if ( materialDef.occlusionTexture.strength !== undefined ) { materialParams.aoMapIntensity = materialDef.occlusionTexture.strength; } } if ( materialDef.emissiveFactor !== undefined && materialType !== THREE.MeshBasicMaterial) { materialParams.emissive = new THREE.Color().fromArray( materialDef.emissiveFactor ); } if ( materialDef.emissiveTexture !== undefined && materialType !== THREE.MeshBasicMaterial) { pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture.index ) ); } return Promise.all( pending ).then( function () { var material; if ( materialType === THREE.ShaderMaterial ) { material = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].createMaterial( materialParams ); } else { material = new materialType( materialParams ); } if ( materialDef.name !== undefined ) material.name = materialDef.name; // Normal map textures use OpenGL conventions: // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#materialnormaltexture if ( material.normalScale ) { material.normalScale.x = - material.normalScale.x; } // emissiveTexture and baseColorTexture use sRGB encoding. if ( material.map ) material.map.encoding = THREE.sRGBEncoding; if ( material.emissiveMap ) material.emissiveMap.encoding = THREE.sRGBEncoding; if ( materialDef.extras ) material.userData = materialDef.extras; return material; } ); }; /** * @param {THREE.BufferGeometry} geometry * @param {GLTF.Primitive} primitiveDef * @param {Array} accessors */ function addPrimitiveAttributes ( geometry, primitiveDef, accessors ) { var attributes = primitiveDef.attributes; for ( var gltfAttributeName in attributes ) { var threeAttributeName = ATTRIBUTES[ gltfAttributeName ]; var bufferAttribute = accessors[ attributes[ gltfAttributeName ] ]; // Skip attributes already provided by e.g. Draco extension. if ( !threeAttributeName ) continue; if ( threeAttributeName in geometry.attributes ) continue; geometry.addAttribute( threeAttributeName, bufferAttribute ); } if ( primitiveDef.indices !== undefined && !geometry.index ) { geometry.setIndex( accessors[ primitiveDef.indices ] ); } } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry * @param {Array} primitives * @return {Promise>} */ GLTFParser.prototype.loadGeometries = function ( primitives ) { var parser = this; var extensions = this.extensions; var cache = this.primitiveCache; return this.getDependencies( 'accessor' ).then( function ( accessors ) { var geometries = []; var pending = []; for ( var i = 0, il = primitives.length; i < il; i ++ ) { var primitive = primitives[ i ]; // See if we've already created this geometry var cached = getCachedGeometry( cache, primitive ); var geometry; if ( cached ) { // Use the cached geometry if it exists pending.push( cached.then( function ( geometry ) { geometries.push( geometry ); } ) ); } else if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) { // Use DRACO geometry if available var geometryPromise = extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] .decodePrimitive( primitive, parser ) .then( function ( geometry ) { addPrimitiveAttributes( geometry, primitive, accessors ); geometries.push( geometry ); return geometry; } ); cache.push( { primitive: primitive, promise: geometryPromise } ); pending.push( geometryPromise ); } else { // Otherwise create a new geometry geometry = new THREE.BufferGeometry(); addPrimitiveAttributes( geometry, primitive, accessors ); // Cache this geometry cache.push( { primitive: primitive, promise: Promise.resolve( geometry ) } ); geometries.push( geometry ); } } return Promise.all( pending ).then( function () { return geometries; } ); } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes * @param {number} meshIndex * @return {Promise} */ GLTFParser.prototype.loadMesh = function ( meshIndex ) { var scope = this; var json = this.json; var extensions = this.extensions; var meshDef = this.json.meshes[ meshIndex ]; return this.getMultiDependencies( [ 'accessor', 'material' ] ).then( function ( dependencies ) { var group = new THREE.Group(); var primitives = meshDef.primitives; return scope.loadGeometries( primitives ).then( function ( geometries ) { for ( var i = 0, il = primitives.length; i < il; i ++ ) { var primitive = primitives[ i ]; var geometry = geometries[ i ]; var material = primitive.material === undefined ? createDefaultMaterial() : dependencies.materials[ primitive.material ]; if ( material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined ) { console.log( 'THREE.GLTFLoader: Duplicating UVs to support aoMap.' ); geometry.addAttribute( 'uv2', new THREE.BufferAttribute( geometry.attributes.uv.array, 2 ) ); } // If the material will be modified later on, clone it now. var useVertexColors = geometry.attributes.color !== undefined; var useFlatShading = geometry.attributes.normal === undefined; var useSkinning = meshDef.isSkinnedMesh === true; var useMorphTargets = primitive.targets !== undefined; if ( useVertexColors || useFlatShading || useSkinning || useMorphTargets ) { if ( material.isGLTFSpecularGlossinessMaterial ) { var specGlossExtension = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ]; material = specGlossExtension.cloneMaterial( material ); } else { material = material.clone(); } } if ( useVertexColors ) { material.vertexColors = THREE.VertexColors; material.needsUpdate = true; } if ( useFlatShading ) { material.flatShading = true; } var mesh; if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN || primitive.mode === undefined ) { if ( useSkinning ) { mesh = new THREE.SkinnedMesh( geometry, material ); material.skinning = true; } else { mesh = new THREE.Mesh( geometry, material ); } if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) { mesh.drawMode = THREE.TriangleStripDrawMode; } else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) { mesh.drawMode = THREE.TriangleFanDrawMode; } } else if ( primitive.mode === WEBGL_CONSTANTS.LINES || primitive.mode === WEBGL_CONSTANTS.LINE_STRIP || primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) { var cacheKey = 'LineBasicMaterial:' + material.uuid; var lineMaterial = scope.cache.get( cacheKey ); if ( ! lineMaterial ) { lineMaterial = new THREE.LineBasicMaterial(); THREE.Material.prototype.copy.call( lineMaterial, material ); lineMaterial.color.copy( material.color ); lineMaterial.lights = false; // LineBasicMaterial doesn't support lights yet scope.cache.add( cacheKey, lineMaterial ); } material = lineMaterial; if ( primitive.mode === WEBGL_CONSTANTS.LINES ) { mesh = new THREE.LineSegments( geometry, material ); } else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) { mesh = new THREE.Line( geometry, material ); } else { mesh = new THREE.LineLoop( geometry, material ); } } else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) { var cacheKey = 'PointsMaterial:' + material.uuid; var pointsMaterial = scope.cache.get( cacheKey ); if ( ! pointsMaterial ) { pointsMaterial = new THREE.PointsMaterial(); THREE.Material.prototype.copy.call( pointsMaterial, material ); pointsMaterial.color.copy( material.color ); pointsMaterial.map = material.map; pointsMaterial.lights = false; // PointsMaterial doesn't support lights yet scope.cache.add( cacheKey, pointsMaterial ); } material = pointsMaterial; mesh = new THREE.Points( geometry, material ); } else { throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode ); } mesh.name = meshDef.name || ( 'mesh_' + meshIndex ); if ( useMorphTargets ) { addMorphTargets( mesh, meshDef, primitive, dependencies.accessors ); } if ( meshDef.extras !== undefined ) mesh.userData = meshDef.extras; if ( primitive.extras !== undefined ) mesh.geometry.userData = primitive.extras; // for Specular-Glossiness. if ( material.isGLTFSpecularGlossinessMaterial === true ) { mesh.onBeforeRender = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].refreshUniforms; } if ( primitives.length > 1 ) { mesh.name += '_' + i; group.add( mesh ); } else { return mesh; } } return group; } ); } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras * @param {number} cameraIndex * @return {Promise} */ GLTFParser.prototype.loadCamera = function ( cameraIndex ) { var camera; var cameraDef = this.json.cameras[ cameraIndex ]; var params = cameraDef[ cameraDef.type ]; if ( ! params ) { console.warn( 'THREE.GLTFLoader: Missing camera parameters.' ); return; } if ( cameraDef.type === 'perspective' ) { var aspectRatio = params.aspectRatio || 1; var xfov = params.yfov * aspectRatio; camera = new THREE.PerspectiveCamera( THREE.Math.radToDeg( xfov ), aspectRatio, params.znear || 1, params.zfar || 2e6 ); } else if ( cameraDef.type === 'orthographic' ) { camera = new THREE.OrthographicCamera( params.xmag / - 2, params.xmag / 2, params.ymag / 2, params.ymag / - 2, params.znear, params.zfar ); } if ( cameraDef.name !== undefined ) camera.name = cameraDef.name; if ( cameraDef.extras ) camera.userData = cameraDef.extras; return Promise.resolve( camera ); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins * @param {number} skinIndex * @return {Promise} */ GLTFParser.prototype.loadSkin = function ( skinIndex ) { var skinDef = this.json.skins[ skinIndex ]; var skinEntry = { joints: skinDef.joints }; if ( skinDef.inverseBindMatrices === undefined ) { return Promise.resolve( skinEntry ); } return this.getDependency( 'accessor', skinDef.inverseBindMatrices ).then( function ( accessor ) { skinEntry.inverseBindMatrices = accessor; return skinEntry; } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations * @param {number} animationIndex * @return {Promise} */ GLTFParser.prototype.loadAnimation = function ( animationIndex ) { var json = this.json; var animationDef = this.json.animations[ animationIndex ]; return this.getMultiDependencies( [ 'accessor', 'node' ] ).then( function ( dependencies ) { var tracks = []; for ( var i = 0, il = animationDef.channels.length; i < il; i ++ ) { var channel = animationDef.channels[ i ]; var sampler = animationDef.samplers[ channel.sampler ]; if ( sampler ) { var target = channel.target; var name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated. var input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input; var output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output; var inputAccessor = dependencies.accessors[ input ]; var outputAccessor = dependencies.accessors[ output ]; var node = dependencies.nodes[ name ]; if ( node ) { node.updateMatrix(); node.matrixAutoUpdate = true; var TypedKeyframeTrack; switch ( PATH_PROPERTIES[ target.path ] ) { case PATH_PROPERTIES.weights: TypedKeyframeTrack = THREE.NumberKeyframeTrack; break; case PATH_PROPERTIES.rotation: TypedKeyframeTrack = THREE.QuaternionKeyframeTrack; break; case PATH_PROPERTIES.position: case PATH_PROPERTIES.scale: default: TypedKeyframeTrack = THREE.VectorKeyframeTrack; break; } var targetName = node.name ? node.name : node.uuid; var interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : THREE.InterpolateLinear; var targetNames = []; if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) { // node should be THREE.Group here but // PATH_PROPERTIES.weights(morphTargetInfluences) should be // the property of a mesh object under node. // So finding targets here. node.traverse( function ( object ) { if ( object.isMesh === true && object.material.morphTargets === true ) { targetNames.push( object.name ? object.name : object.uuid ); } } ); } else { targetNames.push( targetName ); } // KeyframeTrack.optimize() will modify given 'times' and 'values' // buffers before creating a truncated copy to keep. Because buffers may // be reused by other tracks, make copies here. for ( var j = 0, jl = targetNames.length; j < jl; j ++ ) { var track = new TypedKeyframeTrack( targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ], THREE.AnimationUtils.arraySlice( inputAccessor.array, 0 ), THREE.AnimationUtils.arraySlice( outputAccessor.array, 0 ), interpolation ); // Here is the trick to enable custom interpolation. // Overrides .createInterpolant in a factory method which creates custom interpolation. if ( sampler.interpolation === 'CUBICSPLINE' ) { track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) { // A CUBICSPLINE keyframe in glTF has three output values for each input value, // representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize() // must be divided by three to get the interpolant's sampleSize argument. return new GLTFCubicSplineInterpolant( this.times, this.values, this.getValueSize() / 3, result ); }; // Workaround, provide an alternate way to know if the interpolant type is cubis spline to track. // track.getInterpolation() doesn't return valid value for custom interpolant. track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true; } tracks.push( track ); } } } } var name = animationDef.name !== undefined ? animationDef.name : 'animation_' + animationIndex; return new THREE.AnimationClip( name, undefined, tracks ); } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy * @param {number} nodeIndex * @return {Promise} */ GLTFParser.prototype.loadNode = function ( nodeIndex ) { var json = this.json; var extensions = this.extensions; var meshReferences = this.json.meshReferences; var meshUses = this.json.meshUses; var nodeDef = this.json.nodes[ nodeIndex ]; return this.getMultiDependencies( [ 'mesh', 'skin', 'camera' ] ).then( function ( dependencies ) { var node; if ( nodeDef.isBone === true ) { node = new THREE.Bone(); } else if ( nodeDef.mesh !== undefined ) { var mesh = dependencies.meshes[ nodeDef.mesh ]; node = mesh.clone(); // for Specular-Glossiness if ( mesh.isGroup === true ) { for ( var i = 0, il = mesh.children.length; i < il; i ++ ) { var child = mesh.children[ i ]; if ( child.material && child.material.isGLTFSpecularGlossinessMaterial === true ) { node.children[ i ].onBeforeRender = child.onBeforeRender; } } } else { if ( mesh.material && mesh.material.isGLTFSpecularGlossinessMaterial === true ) { node.onBeforeRender = mesh.onBeforeRender; } } if ( meshReferences[ nodeDef.mesh ] > 1 ) { node.name += '_instance_' + meshUses[ nodeDef.mesh ] ++; } } else if ( nodeDef.camera !== undefined ) { node = dependencies.cameras[ nodeDef.camera ]; } else if ( nodeDef.extensions && nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS ] && nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS ].light !== undefined ) { var lights = extensions[ EXTENSIONS.KHR_LIGHTS ].lights; node = lights[ nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS ].light ]; } else { node = new THREE.Object3D(); } if ( nodeDef.name !== undefined ) { node.name = THREE.PropertyBinding.sanitizeNodeName( nodeDef.name ); } if ( nodeDef.extras ) node.userData = nodeDef.extras; if ( nodeDef.matrix !== undefined ) { var matrix = new THREE.Matrix4(); matrix.fromArray( nodeDef.matrix ); node.applyMatrix( matrix ); } else { if ( nodeDef.translation !== undefined ) { node.position.fromArray( nodeDef.translation ); } if ( nodeDef.rotation !== undefined ) { node.quaternion.fromArray( nodeDef.rotation ); } if ( nodeDef.scale !== undefined ) { node.scale.fromArray( nodeDef.scale ); } } return node; } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes * @param {number} sceneIndex * @return {Promise} */ GLTFParser.prototype.loadScene = function () { // scene node hierachy builder function buildNodeHierachy( nodeId, parentObject, json, allNodes, skins ) { var node = allNodes[ nodeId ]; var nodeDef = json.nodes[ nodeId ]; // build skeleton here as well if ( nodeDef.skin !== undefined ) { var meshes = node.isGroup === true ? node.children : [ node ]; for ( var i = 0, il = meshes.length; i < il; i ++ ) { var mesh = meshes[ i ]; var skinEntry = skins[ nodeDef.skin ]; var bones = []; var boneInverses = []; for ( var j = 0, jl = skinEntry.joints.length; j < jl; j ++ ) { var jointId = skinEntry.joints[ j ]; var jointNode = allNodes[ jointId ]; if ( jointNode ) { bones.push( jointNode ); var mat = new THREE.Matrix4(); if ( skinEntry.inverseBindMatrices !== undefined ) { mat.fromArray( skinEntry.inverseBindMatrices.array, j * 16 ); } boneInverses.push( mat ); } else { console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', jointId ); } } mesh.bind( new THREE.Skeleton( bones, boneInverses ), mesh.matrixWorld ); } } // build node hierachy parentObject.add( node ); if ( nodeDef.children ) { var children = nodeDef.children; for ( var i = 0, il = children.length; i < il; i ++ ) { var child = children[ i ]; buildNodeHierachy( child, node, json, allNodes, skins ); } } } return function loadScene( sceneIndex ) { var json = this.json; var extensions = this.extensions; var sceneDef = this.json.scenes[ sceneIndex ]; return this.getMultiDependencies( [ 'node', 'skin' ] ).then( function ( dependencies ) { var scene = new THREE.Scene(); if ( sceneDef.name !== undefined ) scene.name = sceneDef.name; if ( sceneDef.extras ) scene.userData = sceneDef.extras; var nodeIds = sceneDef.nodes || []; for ( var i = 0, il = nodeIds.length; i < il; i ++ ) { buildNodeHierachy( nodeIds[ i ], scene, json, dependencies.nodes, dependencies.skins ); } // Ambient lighting, if present, is always attached to the scene root. if ( sceneDef.extensions && sceneDef.extensions[ EXTENSIONS.KHR_LIGHTS ] && sceneDef.extensions[ EXTENSIONS.KHR_LIGHTS ].light !== undefined ) { var lights = extensions[ EXTENSIONS.KHR_LIGHTS ].lights; scene.add( lights[ sceneDef.extensions[ EXTENSIONS.KHR_LIGHTS ].light ] ); } return scene; } ); }; }(); return GLTFLoader; } )();