satellite-testing-system/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_pwr_ex.c

1475 lines
45 KiB
C

/**
******************************************************************************
* @file stm32l4xx_hal_pwr_ex.c
* @author MCD Application Team
* @brief Extended PWR HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + Extended Initialization and de-initialization functions
* + Extended Peripheral Control functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_hal.h"
/** @addtogroup STM32L4xx_HAL_Driver
* @{
*/
/** @defgroup PWREx PWREx
* @brief PWR Extended HAL module driver
* @{
*/
#ifdef HAL_PWR_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#if defined (STM32L412xx) || defined (STM32L422xx) || defined (STM32L431xx) || defined (STM32L432xx) || defined (STM32L433xx) || defined (STM32L442xx) || defined (STM32L443xx)
#define PWR_PORTH_AVAILABLE_PINS ((uint32_t)0x0000000B) /* PH0/PH1/PH3 */
#elif defined (STM32L451xx) || defined (STM32L452xx) || defined (STM32L462xx)
#define PWR_PORTH_AVAILABLE_PINS ((uint32_t)0x0000000B) /* PH0/PH1/PH3 */
#elif defined (STM32L471xx) || defined (STM32L475xx) || defined (STM32L476xx) || defined (STM32L485xx) || defined (STM32L486xx)
#define PWR_PORTH_AVAILABLE_PINS ((uint32_t)0x00000003) /* PH0/PH1 */
#elif defined (STM32L496xx) || defined (STM32L4A6xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) || defined (STM32L4R5xx) || defined (STM32L4R7xx) || defined (STM32L4R9xx) || defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined (STM32L4S9xx)
#define PWR_PORTH_AVAILABLE_PINS ((uint32_t)0x0000FFFF) /* PH0..PH15 */
#endif
#if defined (STM32L496xx) || defined (STM32L4A6xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) || defined (STM32L4R5xx) || defined (STM32L4R7xx) || defined (STM32L4R9xx) || defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined (STM32L4S9xx)
#define PWR_PORTI_AVAILABLE_PINS ((uint32_t)0x00000FFF) /* PI0..PI11 */
#endif
/** @defgroup PWR_Extended_Private_Defines PWR Extended Private Defines
* @{
*/
/** @defgroup PWREx_PVM_Mode_Mask PWR PVM Mode Mask
* @{
*/
#define PVM_MODE_IT ((uint32_t)0x00010000) /*!< Mask for interruption yielded by PVM threshold crossing */
#define PVM_MODE_EVT ((uint32_t)0x00020000) /*!< Mask for event yielded by PVM threshold crossing */
#define PVM_RISING_EDGE ((uint32_t)0x00000001) /*!< Mask for rising edge set as PVM trigger */
#define PVM_FALLING_EDGE ((uint32_t)0x00000002) /*!< Mask for falling edge set as PVM trigger */
/**
* @}
*/
/** @defgroup PWREx_TimeOut_Value PWR Extended Flag Setting Time Out Value
* @{
*/
#define PWR_FLAG_SETTING_DELAY_US 50UL /*!< Time out value for REGLPF and VOSF flags setting */
/**
* @}
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup PWREx_Exported_Functions PWR Extended Exported Functions
* @{
*/
/** @defgroup PWREx_Exported_Functions_Group1 Extended Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Extended Peripheral Initialization and de-initialization functions #####
===============================================================================
[..]
@endverbatim
* @{
*/
/**
* @brief Return Voltage Scaling Range.
* @retval VOS bit field (PWR_REGULATOR_VOLTAGE_SCALE1 or PWR_REGULATOR_VOLTAGE_SCALE2
* or PWR_REGULATOR_VOLTAGE_SCALE1_BOOST when applicable)
*/
uint32_t HAL_PWREx_GetVoltageRange(void)
{
#if defined(PWR_CR5_R1MODE)
if (READ_BIT(PWR->CR1, PWR_CR1_VOS) == PWR_REGULATOR_VOLTAGE_SCALE2)
{
return PWR_REGULATOR_VOLTAGE_SCALE2;
}
else if (READ_BIT(PWR->CR5, PWR_CR5_R1MODE) == PWR_CR5_R1MODE)
{
/* PWR_CR5_R1MODE bit set means that Range 1 Boost is disabled */
return PWR_REGULATOR_VOLTAGE_SCALE1;
}
else
{
return PWR_REGULATOR_VOLTAGE_SCALE1_BOOST;
}
#else
return (PWR->CR1 & PWR_CR1_VOS);
#endif
}
/**
* @brief Configure the main internal regulator output voltage.
* @param VoltageScaling specifies the regulator output voltage to achieve
* a tradeoff between performance and power consumption.
* This parameter can be one of the following values:
@if STM32L4S9xx
* @arg @ref PWR_REGULATOR_VOLTAGE_SCALE1_BOOST when available, Regulator voltage output range 1 boost mode,
* typical output voltage at 1.2 V,
* system frequency up to 120 MHz.
@endif
* @arg @ref PWR_REGULATOR_VOLTAGE_SCALE1 Regulator voltage output range 1 mode,
* typical output voltage at 1.2 V,
* system frequency up to 80 MHz.
* @arg @ref PWR_REGULATOR_VOLTAGE_SCALE2 Regulator voltage output range 2 mode,
* typical output voltage at 1.0 V,
* system frequency up to 26 MHz.
* @note When moving from Range 1 to Range 2, the system frequency must be decreased to
* a value below 26 MHz before calling HAL_PWREx_ControlVoltageScaling() API.
* When moving from Range 2 to Range 1, the system frequency can be increased to
* a value up to 80 MHz after calling HAL_PWREx_ControlVoltageScaling() API. For
* some devices, the system frequency can be increased up to 120 MHz.
* @note When moving from Range 2 to Range 1, the API waits for VOSF flag to be
* cleared before returning the status. If the flag is not cleared within
* 50 microseconds, HAL_TIMEOUT status is reported.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling)
{
uint32_t wait_loop_index;
assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(VoltageScaling));
#if defined(PWR_CR5_R1MODE)
if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE1_BOOST)
{
/* If current range is range 2 */
if (READ_BIT(PWR->CR1, PWR_CR1_VOS) == PWR_REGULATOR_VOLTAGE_SCALE2)
{
/* Make sure Range 1 Boost is enabled */
CLEAR_BIT(PWR->CR5, PWR_CR5_R1MODE);
/* Set Range 1 */
MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE1);
/* Wait until VOSF is cleared */
wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000U) + 1;
while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U))
{
wait_loop_index--;
}
if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF))
{
return HAL_TIMEOUT;
}
}
/* If current range is range 1 normal or boost mode */
else
{
/* Enable Range 1 Boost (no issue if bit already reset) */
CLEAR_BIT(PWR->CR5, PWR_CR5_R1MODE);
}
}
else if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE1)
{
/* If current range is range 2 */
if (READ_BIT(PWR->CR1, PWR_CR1_VOS) == PWR_REGULATOR_VOLTAGE_SCALE2)
{
/* Make sure Range 1 Boost is disabled */
SET_BIT(PWR->CR5, PWR_CR5_R1MODE);
/* Set Range 1 */
MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE1);
/* Wait until VOSF is cleared */
wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000U) + 1;
while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U))
{
wait_loop_index--;
}
if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF))
{
return HAL_TIMEOUT;
}
}
/* If current range is range 1 normal or boost mode */
else
{
/* Disable Range 1 Boost (no issue if bit already set) */
SET_BIT(PWR->CR5, PWR_CR5_R1MODE);
}
}
else
{
/* Set Range 2 */
MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE2);
/* No need to wait for VOSF to be cleared for this transition */
/* PWR_CR5_R1MODE bit setting has no effect in Range 2 */
}
#else
/* If Set Range 1 */
if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE1)
{
if (READ_BIT(PWR->CR1, PWR_CR1_VOS) != PWR_REGULATOR_VOLTAGE_SCALE1)
{
/* Set Range 1 */
MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE1);
/* Wait until VOSF is cleared */
wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000U) + 1U;
while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U))
{
wait_loop_index--;
}
if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF))
{
return HAL_TIMEOUT;
}
}
}
else
{
if (READ_BIT(PWR->CR1, PWR_CR1_VOS) != PWR_REGULATOR_VOLTAGE_SCALE2)
{
/* Set Range 2 */
MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE2);
/* No need to wait for VOSF to be cleared for this transition */
}
}
#endif
return HAL_OK;
}
/**
* @brief Enable battery charging.
* When VDD is present, charge the external battery on VBAT through an internal resistor.
* @param ResistorSelection specifies the resistor impedance.
* This parameter can be one of the following values:
* @arg @ref PWR_BATTERY_CHARGING_RESISTOR_5 5 kOhms resistor
* @arg @ref PWR_BATTERY_CHARGING_RESISTOR_1_5 1.5 kOhms resistor
* @retval None
*/
void HAL_PWREx_EnableBatteryCharging(uint32_t ResistorSelection)
{
assert_param(IS_PWR_BATTERY_RESISTOR_SELECT(ResistorSelection));
/* Specify resistor selection */
MODIFY_REG(PWR->CR4, PWR_CR4_VBRS, ResistorSelection);
/* Enable battery charging */
SET_BIT(PWR->CR4, PWR_CR4_VBE);
}
/**
* @brief Disable battery charging.
* @retval None
*/
void HAL_PWREx_DisableBatteryCharging(void)
{
CLEAR_BIT(PWR->CR4, PWR_CR4_VBE);
}
#if defined(PWR_CR2_USV)
/**
* @brief Enable VDDUSB supply.
* @note Remove VDDUSB electrical and logical isolation, once VDDUSB supply is present.
* @retval None
*/
void HAL_PWREx_EnableVddUSB(void)
{
SET_BIT(PWR->CR2, PWR_CR2_USV);
}
/**
* @brief Disable VDDUSB supply.
* @retval None
*/
void HAL_PWREx_DisableVddUSB(void)
{
CLEAR_BIT(PWR->CR2, PWR_CR2_USV);
}
#endif /* PWR_CR2_USV */
#if defined(PWR_CR2_IOSV)
/**
* @brief Enable VDDIO2 supply.
* @note Remove VDDIO2 electrical and logical isolation, once VDDIO2 supply is present.
* @retval None
*/
void HAL_PWREx_EnableVddIO2(void)
{
SET_BIT(PWR->CR2, PWR_CR2_IOSV);
}
/**
* @brief Disable VDDIO2 supply.
* @retval None
*/
void HAL_PWREx_DisableVddIO2(void)
{
CLEAR_BIT(PWR->CR2, PWR_CR2_IOSV);
}
#endif /* PWR_CR2_IOSV */
/**
* @brief Enable Internal Wake-up Line.
* @retval None
*/
void HAL_PWREx_EnableInternalWakeUpLine(void)
{
SET_BIT(PWR->CR3, PWR_CR3_EIWF);
}
/**
* @brief Disable Internal Wake-up Line.
* @retval None
*/
void HAL_PWREx_DisableInternalWakeUpLine(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_EIWF);
}
/**
* @brief Enable GPIO pull-up state in Standby and Shutdown modes.
* @note Set the relevant PUy bits of PWR_PUCRx register to configure the I/O in
* pull-up state in Standby and Shutdown modes.
* @note This state is effective in Standby and Shutdown modes only if APC bit
* is set through HAL_PWREx_EnablePullUpPullDownConfig() API.
* @note The configuration is lost when exiting the Shutdown mode due to the
* power-on reset, maintained when exiting the Standby mode.
* @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding
* PDy bit of PWR_PDCRx register is cleared unless it is reserved.
* @note Even if a PUy bit to set is reserved, the other PUy bits entered as input
* parameter at the same time are set.
* @param GPIO Specify the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H
* (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral.
* @param GPIONumber Specify the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less
* I/O pins are available) or the logical OR of several of them to set
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
SET_BIT(PWR->PUCRA, (GPIONumber & (~(PWR_GPIO_BIT_14))));
CLEAR_BIT(PWR->PDCRA, (GPIONumber & (~(PWR_GPIO_BIT_13|PWR_GPIO_BIT_15))));
break;
case PWR_GPIO_B:
SET_BIT(PWR->PUCRB, GPIONumber);
CLEAR_BIT(PWR->PDCRB, (GPIONumber & (~(PWR_GPIO_BIT_4))));
break;
case PWR_GPIO_C:
SET_BIT(PWR->PUCRC, GPIONumber);
CLEAR_BIT(PWR->PDCRC, GPIONumber);
break;
#if defined(GPIOD)
case PWR_GPIO_D:
SET_BIT(PWR->PUCRD, GPIONumber);
CLEAR_BIT(PWR->PDCRD, GPIONumber);
break;
#endif
#if defined(GPIOE)
case PWR_GPIO_E:
SET_BIT(PWR->PUCRE, GPIONumber);
CLEAR_BIT(PWR->PDCRE, GPIONumber);
break;
#endif
#if defined(GPIOF)
case PWR_GPIO_F:
SET_BIT(PWR->PUCRF, GPIONumber);
CLEAR_BIT(PWR->PDCRF, GPIONumber);
break;
#endif
#if defined(GPIOG)
case PWR_GPIO_G:
SET_BIT(PWR->PUCRG, GPIONumber);
CLEAR_BIT(PWR->PDCRG, GPIONumber);
break;
#endif
case PWR_GPIO_H:
SET_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
#if defined (STM32L496xx) || defined (STM32L4A6xx)
CLEAR_BIT(PWR->PDCRH, ((GPIONumber & PWR_PORTH_AVAILABLE_PINS) & (~(PWR_GPIO_BIT_3))));
#else
CLEAR_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
#endif
break;
#if defined(GPIOI)
case PWR_GPIO_I:
SET_BIT(PWR->PUCRI, (GPIONumber & PWR_PORTI_AVAILABLE_PINS));
CLEAR_BIT(PWR->PDCRI, (GPIONumber & PWR_PORTI_AVAILABLE_PINS));
break;
#endif
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Disable GPIO pull-up state in Standby mode and Shutdown modes.
* @note Reset the relevant PUy bits of PWR_PUCRx register used to configure the I/O
* in pull-up state in Standby and Shutdown modes.
* @note Even if a PUy bit to reset is reserved, the other PUy bits entered as input
* parameter at the same time are reset.
* @param GPIO Specifies the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H
* (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral.
* @param GPIONumber Specify the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less
* I/O pins are available) or the logical OR of several of them to reset
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
CLEAR_BIT(PWR->PUCRA, (GPIONumber & (~(PWR_GPIO_BIT_14))));
break;
case PWR_GPIO_B:
CLEAR_BIT(PWR->PUCRB, GPIONumber);
break;
case PWR_GPIO_C:
CLEAR_BIT(PWR->PUCRC, GPIONumber);
break;
#if defined(GPIOD)
case PWR_GPIO_D:
CLEAR_BIT(PWR->PUCRD, GPIONumber);
break;
#endif
#if defined(GPIOE)
case PWR_GPIO_E:
CLEAR_BIT(PWR->PUCRE, GPIONumber);
break;
#endif
#if defined(GPIOF)
case PWR_GPIO_F:
CLEAR_BIT(PWR->PUCRF, GPIONumber);
break;
#endif
#if defined(GPIOG)
case PWR_GPIO_G:
CLEAR_BIT(PWR->PUCRG, GPIONumber);
break;
#endif
case PWR_GPIO_H:
CLEAR_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
#if defined(GPIOI)
case PWR_GPIO_I:
CLEAR_BIT(PWR->PUCRI, (GPIONumber & PWR_PORTI_AVAILABLE_PINS));
break;
#endif
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Enable GPIO pull-down state in Standby and Shutdown modes.
* @note Set the relevant PDy bits of PWR_PDCRx register to configure the I/O in
* pull-down state in Standby and Shutdown modes.
* @note This state is effective in Standby and Shutdown modes only if APC bit
* is set through HAL_PWREx_EnablePullUpPullDownConfig() API.
* @note The configuration is lost when exiting the Shutdown mode due to the
* power-on reset, maintained when exiting the Standby mode.
* @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding
* PUy bit of PWR_PUCRx register is cleared unless it is reserved.
* @note Even if a PDy bit to set is reserved, the other PDy bits entered as input
* parameter at the same time are set.
* @param GPIO Specify the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H
* (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral.
* @param GPIONumber Specify the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less
* I/O pins are available) or the logical OR of several of them to set
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
SET_BIT(PWR->PDCRA, (GPIONumber & (~(PWR_GPIO_BIT_13|PWR_GPIO_BIT_15))));
CLEAR_BIT(PWR->PUCRA, (GPIONumber & (~(PWR_GPIO_BIT_14))));
break;
case PWR_GPIO_B:
SET_BIT(PWR->PDCRB, (GPIONumber & (~(PWR_GPIO_BIT_4))));
CLEAR_BIT(PWR->PUCRB, GPIONumber);
break;
case PWR_GPIO_C:
SET_BIT(PWR->PDCRC, GPIONumber);
CLEAR_BIT(PWR->PUCRC, GPIONumber);
break;
#if defined(GPIOD)
case PWR_GPIO_D:
SET_BIT(PWR->PDCRD, GPIONumber);
CLEAR_BIT(PWR->PUCRD, GPIONumber);
break;
#endif
#if defined(GPIOE)
case PWR_GPIO_E:
SET_BIT(PWR->PDCRE, GPIONumber);
CLEAR_BIT(PWR->PUCRE, GPIONumber);
break;
#endif
#if defined(GPIOF)
case PWR_GPIO_F:
SET_BIT(PWR->PDCRF, GPIONumber);
CLEAR_BIT(PWR->PUCRF, GPIONumber);
break;
#endif
#if defined(GPIOG)
case PWR_GPIO_G:
SET_BIT(PWR->PDCRG, GPIONumber);
CLEAR_BIT(PWR->PUCRG, GPIONumber);
break;
#endif
case PWR_GPIO_H:
#if defined (STM32L496xx) || defined (STM32L4A6xx)
SET_BIT(PWR->PDCRH, ((GPIONumber & PWR_PORTH_AVAILABLE_PINS) & (~(PWR_GPIO_BIT_3))));
#else
SET_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
#endif
CLEAR_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
#if defined(GPIOI)
case PWR_GPIO_I:
SET_BIT(PWR->PDCRI, (GPIONumber & PWR_PORTI_AVAILABLE_PINS));
CLEAR_BIT(PWR->PUCRI, (GPIONumber & PWR_PORTI_AVAILABLE_PINS));
break;
#endif
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Disable GPIO pull-down state in Standby and Shutdown modes.
* @note Reset the relevant PDy bits of PWR_PDCRx register used to configure the I/O
* in pull-down state in Standby and Shutdown modes.
* @note Even if a PDy bit to reset is reserved, the other PDy bits entered as input
* parameter at the same time are reset.
* @param GPIO Specifies the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H
* (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral.
* @param GPIONumber Specify the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less
* I/O pins are available) or the logical OR of several of them to reset
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
CLEAR_BIT(PWR->PDCRA, (GPIONumber & (~(PWR_GPIO_BIT_13|PWR_GPIO_BIT_15))));
break;
case PWR_GPIO_B:
CLEAR_BIT(PWR->PDCRB, (GPIONumber & (~(PWR_GPIO_BIT_4))));
break;
case PWR_GPIO_C:
CLEAR_BIT(PWR->PDCRC, GPIONumber);
break;
#if defined(GPIOD)
case PWR_GPIO_D:
CLEAR_BIT(PWR->PDCRD, GPIONumber);
break;
#endif
#if defined(GPIOE)
case PWR_GPIO_E:
CLEAR_BIT(PWR->PDCRE, GPIONumber);
break;
#endif
#if defined(GPIOF)
case PWR_GPIO_F:
CLEAR_BIT(PWR->PDCRF, GPIONumber);
break;
#endif
#if defined(GPIOG)
case PWR_GPIO_G:
CLEAR_BIT(PWR->PDCRG, GPIONumber);
break;
#endif
case PWR_GPIO_H:
#if defined (STM32L496xx) || defined (STM32L4A6xx)
CLEAR_BIT(PWR->PDCRH, ((GPIONumber & PWR_PORTH_AVAILABLE_PINS) & (~(PWR_GPIO_BIT_3))));
#else
CLEAR_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
#endif
break;
#if defined(GPIOI)
case PWR_GPIO_I:
CLEAR_BIT(PWR->PDCRI, (GPIONumber & PWR_PORTI_AVAILABLE_PINS));
break;
#endif
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Enable pull-up and pull-down configuration.
* @note When APC bit is set, the I/O pull-up and pull-down configurations defined in
* PWR_PUCRx and PWR_PDCRx registers are applied in Standby and Shutdown modes.
* @note Pull-up set by PUy bit of PWR_PUCRx register is not activated if the corresponding
* PDy bit of PWR_PDCRx register is also set (pull-down configuration priority is higher).
* HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() API's ensure there
* is no conflict when setting PUy or PDy bit.
* @retval None
*/
void HAL_PWREx_EnablePullUpPullDownConfig(void)
{
SET_BIT(PWR->CR3, PWR_CR3_APC);
}
/**
* @brief Disable pull-up and pull-down configuration.
* @note When APC bit is cleared, the I/O pull-up and pull-down configurations defined in
* PWR_PUCRx and PWR_PDCRx registers are not applied in Standby and Shutdown modes.
* @retval None
*/
void HAL_PWREx_DisablePullUpPullDownConfig(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_APC);
}
/**
* @brief Enable Full SRAM2 content retention in Standby mode.
* @retval None
*/
void HAL_PWREx_EnableSRAM2ContentRetention(void)
{
(void) HAL_PWREx_SetSRAM2ContentRetention(PWR_FULL_SRAM2_RETENTION);
}
/**
* @brief Disable SRAM2 content retention in Standby mode.
* @retval None
*/
void HAL_PWREx_DisableSRAM2ContentRetention(void)
{
(void) HAL_PWREx_SetSRAM2ContentRetention(PWR_NO_SRAM2_RETENTION);
}
/**
* @brief Enable SRAM2 content retention in Standby mode.
* @param SRAM2Size: specifies the SRAM2 size kept in Standby mode
* This parameter can be one of the following values:
* @arg @ref PWR_NO_SRAM2_RETENTION SRAM2 is powered off in Standby mode (SRAM2 content is lost)
* @arg @ref PWR_FULL_SRAM2_RETENTION Full SRAM2 is powered by the low-power regulator in Standby mode
* @arg @ref PWR_4KBYTES_SRAM2_RETENTION Only 4 Kbytes of SRAM2 is powered by the low-power regulator in Standby mode
* @note PWR_4KBYTES_SRAM2_RETENTION parameter is not available on all devices
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_SetSRAM2ContentRetention(uint32_t SRAM2Size)
{
assert_param(IS_PWR_SRAM2_RETENTION(SRAM2Size));
if (SRAM2Size == PWR_NO_SRAM2_RETENTION)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_RRS);
}
else if (SRAM2Size == PWR_FULL_SRAM2_RETENTION)
{
MODIFY_REG(PWR->CR3, PWR_CR3_RRS, PWR_FULL_SRAM2_RETENTION);
}
#if defined(PWR_CR3_RRS_1)
else if (SRAM2Size == PWR_4KBYTES_SRAM2_RETENTION)
{
MODIFY_REG(PWR->CR3, PWR_CR3_RRS, PWR_4KBYTES_SRAM2_RETENTION);
}
#endif /* PWR_CR3_RRS_1 */
else {
return HAL_ERROR;
}
return HAL_OK;
}
#if defined(PWR_CR3_ENULP)
/**
* @brief Enable Ultra Low Power BORL, BORH and PVD for STOP2 and Standby modes.
* @note All the other modes are not affected by this bit.
* @retval None
*/
void HAL_PWREx_EnableBORPVD_ULP(void)
{
SET_BIT(PWR->CR3, PWR_CR3_ENULP);
}
/**
* @brief Disable Ultra Low Power BORL, BORH and PVD for STOP2 and Standby modes.
* @note All the other modes are not affected by this bit
* @retval None
*/
void HAL_PWREx_DisableBORPVD_ULP(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_ENULP);
}
#endif /* PWR_CR3_ENULP */
#if defined(PWR_CR4_EXT_SMPS_ON)
/**
* @brief Enable the CFLDO working @ 0.95V.
* @note When external SMPS is used & CFLDO operating in Range 2, the regulated voltage of the
* internal CFLDO can be reduced to 0.95V.
* @retval None
*/
void HAL_PWREx_EnableExtSMPS_0V95(void)
{
SET_BIT(PWR->CR4, PWR_CR4_EXT_SMPS_ON);
}
/**
* @brief Disable the CFLDO working @ 0.95V
* @note Before SMPS is switched off, the regulated voltage of the
* internal CFLDO shall be set to 1.00V.
* 1.00V. is also default operating Range 2 voltage.
* @retval None
*/
void HAL_PWREx_DisableExtSMPS_0V95(void)
{
CLEAR_BIT(PWR->CR4, PWR_CR4_EXT_SMPS_ON);
}
#endif /* PWR_CR4_EXT_SMPS_ON */
#if defined(PWR_CR1_RRSTP)
/**
* @brief Enable SRAM3 content retention in Stop 2 mode.
* @note When RRSTP bit is set, SRAM3 is powered by the low-power regulator in
* Stop 2 mode and its content is kept.
* @retval None
*/
void HAL_PWREx_EnableSRAM3ContentRetention(void)
{
SET_BIT(PWR->CR1, PWR_CR1_RRSTP);
}
/**
* @brief Disable SRAM3 content retention in Stop 2 mode.
* @note When RRSTP bit is reset, SRAM3 is powered off in Stop 2 mode
* and its content is lost.
* @retval None
*/
void HAL_PWREx_DisableSRAM3ContentRetention(void)
{
CLEAR_BIT(PWR->CR1, PWR_CR1_RRSTP);
}
#endif /* PWR_CR1_RRSTP */
#if defined(PWR_CR3_DSIPDEN)
/**
* @brief Enable pull-down activation on DSI pins.
* @retval None
*/
void HAL_PWREx_EnableDSIPinsPDActivation(void)
{
SET_BIT(PWR->CR3, PWR_CR3_DSIPDEN);
}
/**
* @brief Disable pull-down activation on DSI pins.
* @retval None
*/
void HAL_PWREx_DisableDSIPinsPDActivation(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_DSIPDEN);
}
#endif /* PWR_CR3_DSIPDEN */
#if defined(PWR_CR2_PVME1)
/**
* @brief Enable the Power Voltage Monitoring 1: VDDUSB versus 1.2V.
* @retval None
*/
void HAL_PWREx_EnablePVM1(void)
{
SET_BIT(PWR->CR2, PWR_PVM_1);
}
/**
* @brief Disable the Power Voltage Monitoring 1: VDDUSB versus 1.2V.
* @retval None
*/
void HAL_PWREx_DisablePVM1(void)
{
CLEAR_BIT(PWR->CR2, PWR_PVM_1);
}
#endif /* PWR_CR2_PVME1 */
#if defined(PWR_CR2_PVME2)
/**
* @brief Enable the Power Voltage Monitoring 2: VDDIO2 versus 0.9V.
* @retval None
*/
void HAL_PWREx_EnablePVM2(void)
{
SET_BIT(PWR->CR2, PWR_PVM_2);
}
/**
* @brief Disable the Power Voltage Monitoring 2: VDDIO2 versus 0.9V.
* @retval None
*/
void HAL_PWREx_DisablePVM2(void)
{
CLEAR_BIT(PWR->CR2, PWR_PVM_2);
}
#endif /* PWR_CR2_PVME2 */
/**
* @brief Enable the Power Voltage Monitoring 3: VDDA versus 1.62V.
* @retval None
*/
void HAL_PWREx_EnablePVM3(void)
{
SET_BIT(PWR->CR2, PWR_PVM_3);
}
/**
* @brief Disable the Power Voltage Monitoring 3: VDDA versus 1.62V.
* @retval None
*/
void HAL_PWREx_DisablePVM3(void)
{
CLEAR_BIT(PWR->CR2, PWR_PVM_3);
}
/**
* @brief Enable the Power Voltage Monitoring 4: VDDA versus 2.2V.
* @retval None
*/
void HAL_PWREx_EnablePVM4(void)
{
SET_BIT(PWR->CR2, PWR_PVM_4);
}
/**
* @brief Disable the Power Voltage Monitoring 4: VDDA versus 2.2V.
* @retval None
*/
void HAL_PWREx_DisablePVM4(void)
{
CLEAR_BIT(PWR->CR2, PWR_PVM_4);
}
/**
* @brief Configure the Peripheral Voltage Monitoring (PVM).
* @param sConfigPVM: pointer to a PWR_PVMTypeDef structure that contains the
* PVM configuration information.
* @note The API configures a single PVM according to the information contained
* in the input structure. To configure several PVMs, the API must be singly
* called for each PVM used.
* @note Refer to the electrical characteristics of your device datasheet for
* more details about the voltage thresholds corresponding to each
* detection level and to each monitored supply.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PWREx_ConfigPVM(PWR_PVMTypeDef *sConfigPVM)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_PWR_PVM_TYPE(sConfigPVM->PVMType));
assert_param(IS_PWR_PVM_MODE(sConfigPVM->Mode));
/* Configure EXTI 35 to 38 interrupts if so required:
scan through PVMType to detect which PVMx is set and
configure the corresponding EXTI line accordingly. */
switch (sConfigPVM->PVMType)
{
#if defined(PWR_CR2_PVME1)
case PWR_PVM_1:
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVM1_EXTI_DISABLE_EVENT();
__HAL_PWR_PVM1_EXTI_DISABLE_IT();
__HAL_PWR_PVM1_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVM1_EXTI_DISABLE_RISING_EDGE();
/* Configure interrupt mode */
if((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
{
__HAL_PWR_PVM1_EXTI_ENABLE_IT();
}
/* Configure event mode */
if((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
{
__HAL_PWR_PVM1_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
{
__HAL_PWR_PVM1_EXTI_ENABLE_RISING_EDGE();
}
if((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
{
__HAL_PWR_PVM1_EXTI_ENABLE_FALLING_EDGE();
}
break;
#endif /* PWR_CR2_PVME1 */
#if defined(PWR_CR2_PVME2)
case PWR_PVM_2:
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVM2_EXTI_DISABLE_EVENT();
__HAL_PWR_PVM2_EXTI_DISABLE_IT();
__HAL_PWR_PVM2_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVM2_EXTI_DISABLE_RISING_EDGE();
/* Configure interrupt mode */
if((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
{
__HAL_PWR_PVM2_EXTI_ENABLE_IT();
}
/* Configure event mode */
if((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
{
__HAL_PWR_PVM2_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
{
__HAL_PWR_PVM2_EXTI_ENABLE_RISING_EDGE();
}
if((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
{
__HAL_PWR_PVM2_EXTI_ENABLE_FALLING_EDGE();
}
break;
#endif /* PWR_CR2_PVME2 */
case PWR_PVM_3:
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVM3_EXTI_DISABLE_EVENT();
__HAL_PWR_PVM3_EXTI_DISABLE_IT();
__HAL_PWR_PVM3_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVM3_EXTI_DISABLE_RISING_EDGE();
/* Configure interrupt mode */
if((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
{
__HAL_PWR_PVM3_EXTI_ENABLE_IT();
}
/* Configure event mode */
if((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
{
__HAL_PWR_PVM3_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
{
__HAL_PWR_PVM3_EXTI_ENABLE_RISING_EDGE();
}
if((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
{
__HAL_PWR_PVM3_EXTI_ENABLE_FALLING_EDGE();
}
break;
case PWR_PVM_4:
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVM4_EXTI_DISABLE_EVENT();
__HAL_PWR_PVM4_EXTI_DISABLE_IT();
__HAL_PWR_PVM4_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVM4_EXTI_DISABLE_RISING_EDGE();
/* Configure interrupt mode */
if((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
{
__HAL_PWR_PVM4_EXTI_ENABLE_IT();
}
/* Configure event mode */
if((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
{
__HAL_PWR_PVM4_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
{
__HAL_PWR_PVM4_EXTI_ENABLE_RISING_EDGE();
}
if((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
{
__HAL_PWR_PVM4_EXTI_ENABLE_FALLING_EDGE();
}
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Enter Low-power Run mode
* @note In Low-power Run mode, all I/O pins keep the same state as in Run mode.
* @note When Regulator is set to PWR_LOWPOWERREGULATOR_ON, the user can optionally configure the
* Flash in power-down monde in setting the RUN_PD bit in FLASH_ACR register.
* Additionally, the clock frequency must be reduced below 2 MHz.
* Setting RUN_PD in FLASH_ACR then appropriately reducing the clock frequency must
* be done before calling HAL_PWREx_EnableLowPowerRunMode() API.
* @retval None
*/
void HAL_PWREx_EnableLowPowerRunMode(void)
{
/* Set Regulator parameter */
SET_BIT(PWR->CR1, PWR_CR1_LPR);
}
/**
* @brief Exit Low-power Run mode.
* @note Before HAL_PWREx_DisableLowPowerRunMode() completion, the function checks that
* REGLPF has been properly reset (otherwise, HAL_PWREx_DisableLowPowerRunMode
* returns HAL_TIMEOUT status). The system clock frequency can then be
* increased above 2 MHz.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_DisableLowPowerRunMode(void)
{
uint32_t wait_loop_index;
/* Clear LPR bit */
CLEAR_BIT(PWR->CR1, PWR_CR1_LPR);
/* Wait until REGLPF is reset */
wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000U) + 1U;
while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) && (wait_loop_index != 0U))
{
wait_loop_index--;
}
if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF))
{
return HAL_TIMEOUT;
}
return HAL_OK;
}
/**
* @brief Enter Stop 0 mode.
* @note In Stop 0 mode, main and low voltage regulators are ON.
* @note In Stop 0 mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped; the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability
* (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI
* after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated
* only to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* The BOR is available.
* @note When exiting Stop 0 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @note By keeping the internal regulator ON during Stop 0 mode, the consumption
* is higher although the startup time is reduced.
* @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction
* @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWREx_EnterSTOP0Mode(uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Stop 0 mode with Main Regulator */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_STOP0);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if(STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enter Stop 1 mode.
* @note In Stop 1 mode, only low power voltage regulator is ON.
* @note In Stop 1 mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped; the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability
* (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI
* after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated
* only to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* The BOR is available.
* @note When exiting Stop 1 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @note Due to low power mode, an additional startup delay is incurred when waking up from Stop 1 mode.
* @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction
* @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWREx_EnterSTOP1Mode(uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Stop 1 mode with Low-Power Regulator */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_STOP1);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if(STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enter Stop 2 mode.
* @note In Stop 2 mode, only low power voltage regulator is ON.
* @note In Stop 2 mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped, the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with wakeup capability
* (LCD, LPTIM1, I2C3 and LPUART) can switch on the HSI to receive a frame, and switch off the HSI after
* receiving the frame if it is not a wakeup frame. In this case the HSI clock is propagated only
* to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* SRAM3 content is preserved depending on RRSTP bit setting (not available on all devices).
* The BOR is available.
* The voltage regulator is set in low-power mode but LPR bit must be cleared to enter stop 2 mode.
* Otherwise, Stop 1 mode is entered.
* @note When exiting Stop 2 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction
* @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWREx_EnterSTOP2Mode(uint8_t STOPEntry)
{
/* Check the parameter */
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Set Stop mode 2 */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_STOP2);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if(STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enter Shutdown mode.
* @note In Shutdown mode, the PLL, the HSI, the MSI, the LSI and the HSE oscillators are switched
* off. The voltage regulator is disabled and Vcore domain is powered off.
* SRAM1, SRAM2 and registers contents are lost except for registers in the Backup domain.
* The BOR is not available.
* @note The I/Os can be configured either with a pull-up or pull-down or can be kept in analog state.
* @retval None
*/
void HAL_PWREx_EnterSHUTDOWNMode(void)
{
/* Set Shutdown mode */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_SHUTDOWN);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* This option is used to ensure that store operations are completed */
#if defined ( __CC_ARM)
__force_stores();
#endif
/* Request Wait For Interrupt */
__WFI();
}
/**
* @brief This function handles the PWR PVD/PVMx interrupt request.
* @note This API should be called under the PVD_PVM_IRQHandler().
* @retval None
*/
void HAL_PWREx_PVD_PVM_IRQHandler(void)
{
/* Check PWR exti flag */
if(__HAL_PWR_PVD_EXTI_GET_FLAG() != 0x0U)
{
/* PWR PVD interrupt user callback */
HAL_PWR_PVDCallback();
/* Clear PVD exti pending bit */
__HAL_PWR_PVD_EXTI_CLEAR_FLAG();
}
/* Next, successively check PVMx exti flags */
#if defined(PWR_CR2_PVME1)
if(__HAL_PWR_PVM1_EXTI_GET_FLAG() != 0x0U)
{
/* PWR PVM1 interrupt user callback */
HAL_PWREx_PVM1Callback();
/* Clear PVM1 exti pending bit */
__HAL_PWR_PVM1_EXTI_CLEAR_FLAG();
}
#endif /* PWR_CR2_PVME1 */
#if defined(PWR_CR2_PVME2)
if(__HAL_PWR_PVM2_EXTI_GET_FLAG() != 0x0U)
{
/* PWR PVM2 interrupt user callback */
HAL_PWREx_PVM2Callback();
/* Clear PVM2 exti pending bit */
__HAL_PWR_PVM2_EXTI_CLEAR_FLAG();
}
#endif /* PWR_CR2_PVME2 */
if(__HAL_PWR_PVM3_EXTI_GET_FLAG() != 0x0U)
{
/* PWR PVM3 interrupt user callback */
HAL_PWREx_PVM3Callback();
/* Clear PVM3 exti pending bit */
__HAL_PWR_PVM3_EXTI_CLEAR_FLAG();
}
if(__HAL_PWR_PVM4_EXTI_GET_FLAG() != 0x0U)
{
/* PWR PVM4 interrupt user callback */
HAL_PWREx_PVM4Callback();
/* Clear PVM4 exti pending bit */
__HAL_PWR_PVM4_EXTI_CLEAR_FLAG();
}
}
#if defined(PWR_CR2_PVME1)
/**
* @brief PWR PVM1 interrupt callback
* @retval None
*/
__weak void HAL_PWREx_PVM1Callback(void)
{
/* NOTE : This function should not be modified; when the callback is needed,
HAL_PWREx_PVM1Callback() API can be implemented in the user file
*/
}
#endif /* PWR_CR2_PVME1 */
#if defined(PWR_CR2_PVME2)
/**
* @brief PWR PVM2 interrupt callback
* @retval None
*/
__weak void HAL_PWREx_PVM2Callback(void)
{
/* NOTE : This function should not be modified; when the callback is needed,
HAL_PWREx_PVM2Callback() API can be implemented in the user file
*/
}
#endif /* PWR_CR2_PVME2 */
/**
* @brief PWR PVM3 interrupt callback
* @retval None
*/
__weak void HAL_PWREx_PVM3Callback(void)
{
/* NOTE : This function should not be modified; when the callback is needed,
HAL_PWREx_PVM3Callback() API can be implemented in the user file
*/
}
/**
* @brief PWR PVM4 interrupt callback
* @retval None
*/
__weak void HAL_PWREx_PVM4Callback(void)
{
/* NOTE : This function should not be modified; when the callback is needed,
HAL_PWREx_PVM4Callback() API can be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_PWR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/