mirror of
https://github.com/peter-tanner/satellite-testing-system.git
synced 2024-11-30 20:40:17 +08:00
1939 lines
68 KiB
C
1939 lines
68 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32l4xx_hal_rcc.c
|
|
* @author MCD Application Team
|
|
* @brief RCC HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the Reset and Clock Control (RCC) peripheral:
|
|
* + Initialization and de-initialization functions
|
|
* + Peripheral Control functions
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### RCC specific features #####
|
|
==============================================================================
|
|
[..]
|
|
After reset the device is running from Multiple Speed Internal oscillator
|
|
(4 MHz) with Flash 0 wait state. Flash prefetch buffer, D-Cache
|
|
and I-Cache are disabled, and all peripherals are off except internal
|
|
SRAM, Flash and JTAG.
|
|
|
|
(+) There is no prescaler on High speed (AHBs) and Low speed (APBs) busses:
|
|
all peripherals mapped on these busses are running at MSI speed.
|
|
(+) The clock for all peripherals is switched off, except the SRAM and FLASH.
|
|
(+) All GPIOs are in analog mode, except the JTAG pins which
|
|
are assigned to be used for debug purpose.
|
|
|
|
[..]
|
|
Once the device started from reset, the user application has to:
|
|
(+) Configure the clock source to be used to drive the System clock
|
|
(if the application needs higher frequency/performance)
|
|
(+) Configure the System clock frequency and Flash settings
|
|
(+) Configure the AHB and APB busses prescalers
|
|
(+) Enable the clock for the peripheral(s) to be used
|
|
(+) Configure the clock source(s) for peripherals which clocks are not
|
|
derived from the System clock (SAIx, RTC, ADC, USB OTG FS/SDMMC1/RNG)
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2017 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file in
|
|
* the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32l4xx_hal.h"
|
|
|
|
/** @addtogroup STM32L4xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup RCC RCC
|
|
* @brief RCC HAL module driver
|
|
* @{
|
|
*/
|
|
|
|
#ifdef HAL_RCC_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/** @defgroup RCC_Private_Constants RCC Private Constants
|
|
* @{
|
|
*/
|
|
#define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT
|
|
#define HSI_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
|
|
#define MSI_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
|
|
#if defined(RCC_CSR_LSIPREDIV)
|
|
#define LSI_TIMEOUT_VALUE 17U /* 17 ms (16 ms starting time + 1) */
|
|
#else
|
|
#define LSI_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
|
|
#endif /* RCC_CSR_LSIPREDIV */
|
|
#define HSI48_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
|
|
#define PLL_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
|
|
#define CLOCKSWITCH_TIMEOUT_VALUE 5000U /* 5 s */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/** @defgroup RCC_Private_Macros RCC Private Macros
|
|
* @{
|
|
*/
|
|
#define __MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
|
|
#define MCO1_GPIO_PORT GPIOA
|
|
#define MCO1_PIN GPIO_PIN_8
|
|
|
|
#define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \
|
|
(MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (__HAL_RCC_PLLSOURCE__)))
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private variables ---------------------------------------------------------*/
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/** @defgroup RCC_Private_Functions RCC Private Functions
|
|
* @{
|
|
*/
|
|
static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange);
|
|
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \
|
|
defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
|
|
static uint32_t RCC_GetSysClockFreqFromPLLSource(void);
|
|
#endif
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Exported functions --------------------------------------------------------*/
|
|
|
|
/** @defgroup RCC_Exported_Functions RCC Exported Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
* @brief Initialization and Configuration functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and de-initialization functions #####
|
|
===============================================================================
|
|
[..]
|
|
This section provides functions allowing to configure the internal and external oscillators
|
|
(HSE, HSI, LSE, MSI, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1
|
|
and APB2).
|
|
|
|
[..] Internal/external clock and PLL configuration
|
|
(+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through
|
|
the PLL as System clock source.
|
|
|
|
(+) MSI (Multiple Speed Internal): Its frequency is software trimmable from 100KHZ to 48MHZ.
|
|
It can be used to generate the clock for the USB OTG FS (48 MHz).
|
|
The number of flash wait states is automatically adjusted when MSI range is updated with
|
|
HAL_RCC_OscConfig() and the MSI is used as System clock source.
|
|
|
|
(+) LSI (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC
|
|
clock source.
|
|
|
|
(+) HSE (high-speed external): 4 to 48 MHz crystal oscillator used directly or
|
|
through the PLL as System clock source. Can be used also optionally as RTC clock source.
|
|
|
|
(+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source.
|
|
|
|
(+) PLL (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
|
|
(++) The first output is used to generate the high speed system clock (up to 80MHz).
|
|
(++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
|
|
the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz).
|
|
(++) The third output is used to generate an accurate clock to achieve
|
|
high-quality audio performance on SAI interface.
|
|
|
|
(+) PLLSAI1 (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
|
|
(++) The first output is used to generate SAR ADC1 clock.
|
|
(++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
|
|
the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz).
|
|
(++) The third output is used to generate an accurate clock to achieve
|
|
high-quality audio performance on SAI interface.
|
|
|
|
(+) PLLSAI2 (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
|
|
(++) The first output is used to generate an accurate clock to achieve
|
|
high-quality audio performance on SAI interface.
|
|
(++) The second output is used to generate either SAR ADC2 clock if ADC2 is present
|
|
or LCD clock if LTDC is present.
|
|
(++) The third output is used to generate DSI clock if DSI is present.
|
|
|
|
(+) CSS (Clock security system): once enabled, if a HSE clock failure occurs
|
|
(HSE used directly or through PLL as System clock source), the System clock
|
|
is automatically switched to HSI and an interrupt is generated if enabled.
|
|
The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt)
|
|
exception vector.
|
|
|
|
(+) MCO (microcontroller clock output): used to output MSI, LSI, HSI, LSE, HSE or
|
|
main PLL clock (through a configurable prescaler) on PA8 pin.
|
|
|
|
[..] System, AHB and APB busses clocks configuration
|
|
(+) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI,
|
|
HSE and main PLL.
|
|
The AHB clock (HCLK) is derived from System clock through configurable
|
|
prescaler and used to clock the CPU, memory and peripherals mapped
|
|
on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
|
|
from AHB clock through configurable prescalers and used to clock
|
|
the peripherals mapped on these busses. You can use
|
|
"HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
|
|
|
|
-@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
|
|
|
|
(+@) SAI: the SAI clock can be derived either from a specific PLL (PLLSAI1) or (PLLSAI2) or
|
|
from an external clock mapped on the SAI_CKIN pin.
|
|
You have to use HAL_RCCEx_PeriphCLKConfig() function to configure this clock.
|
|
(+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
|
|
divided by 2 to 31.
|
|
You have to use __HAL_RCC_RTC_ENABLE() and HAL_RCCEx_PeriphCLKConfig() function
|
|
to configure this clock.
|
|
(+@) USB OTG FS, SDMMC1 and RNG: USB OTG FS requires a frequency equal to 48 MHz
|
|
to work correctly, while the SDMMC1 and RNG peripherals require a frequency
|
|
equal or lower than to 48 MHz. This clock is derived of the main PLL or PLLSAI1
|
|
through PLLQ divider. You have to enable the peripheral clock and use
|
|
HAL_RCCEx_PeriphCLKConfig() function to configure this clock.
|
|
(+@) IWDG clock which is always the LSI clock.
|
|
|
|
|
|
(+) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 80 MHz.
|
|
The clock source frequency should be adapted depending on the device voltage range
|
|
as listed in the Reference Manual "Clock source frequency versus voltage scaling" chapter.
|
|
|
|
@endverbatim
|
|
|
|
Table 1. HCLK clock frequency for other STM32L4 devices
|
|
+-------------------------------------------------------+
|
|
| Latency | HCLK clock frequency (MHz) |
|
|
| |-------------------------------------|
|
|
| | voltage range 1 | voltage range 2 |
|
|
| | 1.2 V | 1.0 V |
|
|
|-----------------|------------------|------------------|
|
|
|0WS(1 CPU cycles)| 0 < HCLK <= 16 | 0 < HCLK <= 6 |
|
|
|-----------------|------------------|------------------|
|
|
|1WS(2 CPU cycles)| 16 < HCLK <= 32 | 6 < HCLK <= 12 |
|
|
|-----------------|------------------|------------------|
|
|
|2WS(3 CPU cycles)| 32 < HCLK <= 48 | 12 < HCLK <= 18 |
|
|
|-----------------|------------------|------------------|
|
|
|3WS(4 CPU cycles)| 48 < HCLK <= 64 | 18 < HCLK <= 26 |
|
|
|-----------------|------------------|------------------|
|
|
|4WS(5 CPU cycles)| 64 < HCLK <= 80 | 18 < HCLK <= 26 |
|
|
+-------------------------------------------------------+
|
|
|
|
Table 2. HCLK clock frequency for STM32L4+ devices
|
|
+--------------------------------------------------------+
|
|
| Latency | HCLK clock frequency (MHz) |
|
|
| |--------------------------------------|
|
|
| | voltage range 1 | voltage range 2 |
|
|
| | 1.2 V | 1.0 V |
|
|
|-----------------|-------------------|------------------|
|
|
|0WS(1 CPU cycles)| 0 < HCLK <= 20 | 0 < HCLK <= 8 |
|
|
|-----------------|-------------------|------------------|
|
|
|1WS(2 CPU cycles)| 20 < HCLK <= 40 | 8 < HCLK <= 16 |
|
|
|-----------------|-------------------|------------------|
|
|
|2WS(3 CPU cycles)| 40 < HCLK <= 60 | 16 < HCLK <= 26 |
|
|
|-----------------|-------------------|------------------|
|
|
|3WS(4 CPU cycles)| 60 < HCLK <= 80 | 16 < HCLK <= 26 |
|
|
|-----------------|-------------------|------------------|
|
|
|4WS(5 CPU cycles)| 80 < HCLK <= 100 | 16 < HCLK <= 26 |
|
|
|-----------------|-------------------|------------------|
|
|
|5WS(6 CPU cycles)| 100 < HCLK <= 120 | 16 < HCLK <= 26 |
|
|
+--------------------------------------------------------+
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Reset the RCC clock configuration to the default reset state.
|
|
* @note The default reset state of the clock configuration is given below:
|
|
* - MSI ON and used as system clock source
|
|
* - HSE, HSI, PLL, PLLSAI1 and PLLSAI2 OFF
|
|
* - AHB, APB1 and APB2 prescalers set to 1.
|
|
* - CSS, MCO1 OFF
|
|
* - All interrupts disabled
|
|
* - All interrupt and reset flags cleared
|
|
* @note This function does not modify the configuration of the
|
|
* - Peripheral clock sources
|
|
* - LSI, LSE and RTC clocks (Backup domain)
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_DeInit(void)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Reset to default System clock */
|
|
/* Set MSION bit */
|
|
SET_BIT(RCC->CR, RCC_CR_MSION);
|
|
|
|
/* Insure MSIRDY bit is set before writing default MSIRANGE value */
|
|
/* Get start tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till MSI is ready */
|
|
while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Set MSIRANGE default value */
|
|
MODIFY_REG(RCC->CR, RCC_CR_MSIRANGE, RCC_MSIRANGE_6);
|
|
|
|
/* Reset CFGR register (MSI is selected as system clock source) */
|
|
CLEAR_REG(RCC->CFGR);
|
|
|
|
/* Update the SystemCoreClock global variable for MSI as system clock source */
|
|
SystemCoreClock = MSI_VALUE;
|
|
|
|
/* Configure the source of time base considering new system clock settings */
|
|
if(HAL_InitTick(uwTickPrio) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Insure MSI selected as system clock source */
|
|
/* Get start tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till system clock source is ready */
|
|
while(READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != RCC_CFGR_SWS_MSI)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Reset HSION, HSIKERON, HSIASFS, HSEON, HSECSSON, PLLON, PLLSAIxON bits */
|
|
#if defined(RCC_PLLSAI2_SUPPORT)
|
|
|
|
CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON | RCC_CR_PLLSAI1ON | RCC_CR_PLLSAI2ON);
|
|
|
|
#elif defined(RCC_PLLSAI1_SUPPORT)
|
|
|
|
CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON | RCC_CR_PLLSAI1ON);
|
|
|
|
#else
|
|
|
|
CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON);
|
|
|
|
#endif /* RCC_PLLSAI2_SUPPORT */
|
|
|
|
/* Insure PLLRDY, PLLSAI1RDY and PLLSAI2RDY (if present) are reset */
|
|
/* Get start tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
#if defined(RCC_PLLSAI2_SUPPORT)
|
|
|
|
while(READ_BIT(RCC->CR, RCC_CR_PLLRDY | RCC_CR_PLLSAI1RDY | RCC_CR_PLLSAI2RDY) != 0U)
|
|
|
|
#elif defined(RCC_PLLSAI1_SUPPORT)
|
|
|
|
while(READ_BIT(RCC->CR, RCC_CR_PLLRDY | RCC_CR_PLLSAI1RDY) != 0U)
|
|
|
|
#else
|
|
|
|
while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
|
|
|
|
#endif
|
|
{
|
|
if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Reset PLLCFGR register */
|
|
CLEAR_REG(RCC->PLLCFGR);
|
|
SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN_4 );
|
|
|
|
#if defined(RCC_PLLSAI1_SUPPORT)
|
|
|
|
/* Reset PLLSAI1CFGR register */
|
|
CLEAR_REG(RCC->PLLSAI1CFGR);
|
|
SET_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N_4 );
|
|
|
|
#endif /* RCC_PLLSAI1_SUPPORT */
|
|
|
|
#if defined(RCC_PLLSAI2_SUPPORT)
|
|
|
|
/* Reset PLLSAI2CFGR register */
|
|
CLEAR_REG(RCC->PLLSAI2CFGR);
|
|
SET_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2N_4 );
|
|
|
|
#endif /* RCC_PLLSAI2_SUPPORT */
|
|
|
|
/* Reset HSEBYP bit */
|
|
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
|
|
|
|
/* Disable all interrupts */
|
|
CLEAR_REG(RCC->CIER);
|
|
|
|
/* Clear all interrupt flags */
|
|
WRITE_REG(RCC->CICR, 0xFFFFFFFFU);
|
|
|
|
/* Clear all reset flags */
|
|
SET_BIT(RCC->CSR, RCC_CSR_RMVF);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the RCC Oscillators according to the specified parameters in the
|
|
* RCC_OscInitTypeDef.
|
|
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
|
|
* contains the configuration information for the RCC Oscillators.
|
|
* @note The PLL is not disabled when used as system clock.
|
|
* @note The PLL source is not updated when used as PLLSAI(s) clock source.
|
|
* @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
|
|
* supported by this macro. User should request a transition to LSE Off
|
|
* first and then LSE On or LSE Bypass.
|
|
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
|
|
* supported by this macro. User should request a transition to HSE Off
|
|
* first and then HSE On or HSE Bypass.
|
|
* @note If HSE failed to start, HSE should be disabled before recalling
|
|
HAL_RCC_OscConfig().
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
{
|
|
uint32_t tickstart;
|
|
HAL_StatusTypeDef status;
|
|
uint32_t sysclk_source, pll_config;
|
|
|
|
/* Check Null pointer */
|
|
if(RCC_OscInitStruct == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
|
|
|
|
sysclk_source = __HAL_RCC_GET_SYSCLK_SOURCE();
|
|
pll_config = __HAL_RCC_GET_PLL_OSCSOURCE();
|
|
|
|
/*----------------------------- MSI Configuration --------------------------*/
|
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState));
|
|
assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
|
|
assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange));
|
|
|
|
/* Check if MSI is used as system clock or as PLL source when PLL is selected as system clock */
|
|
if((sysclk_source == RCC_CFGR_SWS_MSI) ||
|
|
((sysclk_source == RCC_CFGR_SWS_PLL) && (pll_config == RCC_PLLSOURCE_MSI)))
|
|
{
|
|
if((READ_BIT(RCC->CR, RCC_CR_MSIRDY) != 0U) && (RCC_OscInitStruct->MSIState == RCC_MSI_OFF))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Otherwise, just the calibration and MSI range change are allowed */
|
|
else
|
|
{
|
|
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)
|
|
must be correctly programmed according to the frequency of the CPU clock
|
|
(HCLK) and the supply voltage of the device. */
|
|
if(RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE())
|
|
{
|
|
/* First increase number of wait states update if necessary */
|
|
if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Selects the Multiple Speed oscillator (MSI) clock range .*/
|
|
__HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
|
|
/* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
|
|
__HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
|
|
}
|
|
else
|
|
{
|
|
/* Else, keep current flash latency while decreasing applies */
|
|
/* Selects the Multiple Speed oscillator (MSI) clock range .*/
|
|
__HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
|
|
/* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
|
|
__HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
|
|
|
|
/* Decrease number of wait states update if necessary */
|
|
/* Only possible when MSI is the System clock source */
|
|
if(sysclk_source == RCC_CFGR_SWS_MSI)
|
|
{
|
|
if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update the SystemCoreClock global variable */
|
|
SystemCoreClock = HAL_RCC_GetSysClockFreq() >> (AHBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos] & 0x1FU);
|
|
|
|
/* Configure the source of time base considering new system clocks settings*/
|
|
status = HAL_InitTick(uwTickPrio);
|
|
if(status != HAL_OK)
|
|
{
|
|
return status;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Check the MSI State */
|
|
if(RCC_OscInitStruct->MSIState != RCC_MSI_OFF)
|
|
{
|
|
/* Enable the Internal High Speed oscillator (MSI). */
|
|
__HAL_RCC_MSI_ENABLE();
|
|
|
|
/* Get timeout */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till MSI is ready */
|
|
while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* Selects the Multiple Speed oscillator (MSI) clock range .*/
|
|
__HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
|
|
/* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
|
|
__HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal High Speed oscillator (MSI). */
|
|
__HAL_RCC_MSI_DISABLE();
|
|
|
|
/* Get timeout */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till MSI is ready */
|
|
while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) != 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*------------------------------- HSE Configuration ------------------------*/
|
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
|
|
|
|
/* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
|
|
if((sysclk_source == RCC_CFGR_SWS_HSE) ||
|
|
((sysclk_source == RCC_CFGR_SWS_PLL) && (pll_config == RCC_PLLSOURCE_HSE)))
|
|
{
|
|
if((READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Set the new HSE configuration ---------------------------------------*/
|
|
__HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
|
|
|
|
/* Check the HSE State */
|
|
if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSE is ready */
|
|
while(READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSE is disabled */
|
|
while(READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*----------------------------- HSI Configuration --------------------------*/
|
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
|
|
assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
|
|
|
|
/* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
|
|
if((sysclk_source == RCC_CFGR_SWS_HSI) ||
|
|
((sysclk_source == RCC_CFGR_SWS_PLL) && (pll_config == RCC_PLLSOURCE_HSI)))
|
|
{
|
|
/* When HSI is used as system clock it will not be disabled */
|
|
if((READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
/* Otherwise, just the calibration is allowed */
|
|
else
|
|
{
|
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Check the HSI State */
|
|
if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
|
|
{
|
|
/* Enable the Internal High Speed oscillator (HSI). */
|
|
__HAL_RCC_HSI_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI is ready */
|
|
while(READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal High Speed oscillator (HSI). */
|
|
__HAL_RCC_HSI_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI is disabled */
|
|
while(READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*------------------------------ LSI Configuration -------------------------*/
|
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
|
|
|
|
/* Check the LSI State */
|
|
if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
|
|
{
|
|
#if defined(RCC_CSR_LSIPREDIV)
|
|
uint32_t csr_temp = RCC->CSR;
|
|
|
|
/* Check LSI division factor */
|
|
assert_param(IS_RCC_LSIDIV(RCC_OscInitStruct->LSIDiv));
|
|
|
|
if (RCC_OscInitStruct->LSIDiv != (csr_temp & RCC_CSR_LSIPREDIV))
|
|
{
|
|
if (((csr_temp & RCC_CSR_LSIRDY) == RCC_CSR_LSIRDY) && \
|
|
((csr_temp & RCC_CSR_LSION) != RCC_CSR_LSION))
|
|
{
|
|
/* If LSIRDY is set while LSION is not enabled,
|
|
LSIPREDIV can't be updated */
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Turn off LSI before changing RCC_CSR_LSIPREDIV */
|
|
if ((csr_temp & RCC_CSR_LSION) == RCC_CSR_LSION)
|
|
{
|
|
__HAL_RCC_LSI_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI is disabled */
|
|
while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set LSI division factor */
|
|
MODIFY_REG(RCC->CSR, RCC_CSR_LSIPREDIV, RCC_OscInitStruct->LSIDiv);
|
|
}
|
|
#endif /* RCC_CSR_LSIPREDIV */
|
|
|
|
/* Enable the Internal Low Speed oscillator (LSI). */
|
|
__HAL_RCC_LSI_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI is ready */
|
|
while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal Low Speed oscillator (LSI). */
|
|
__HAL_RCC_LSI_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSI is disabled */
|
|
while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*------------------------------ LSE Configuration -------------------------*/
|
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
|
|
{
|
|
FlagStatus pwrclkchanged = RESET;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
|
|
|
|
/* Update LSE configuration in Backup Domain control register */
|
|
/* Requires to enable write access to Backup Domain of necessary */
|
|
if(HAL_IS_BIT_CLR(RCC->APB1ENR1, RCC_APB1ENR1_PWREN))
|
|
{
|
|
__HAL_RCC_PWR_CLK_ENABLE();
|
|
pwrclkchanged = SET;
|
|
}
|
|
|
|
if(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
|
|
{
|
|
/* Enable write access to Backup domain */
|
|
SET_BIT(PWR->CR1, PWR_CR1_DBP);
|
|
|
|
/* Wait for Backup domain Write protection disable */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
|
|
{
|
|
if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set the new LSE configuration -----------------------------------------*/
|
|
#if defined(RCC_BDCR_LSESYSDIS)
|
|
if((RCC_OscInitStruct->LSEState & RCC_BDCR_LSEON) != 0U)
|
|
{
|
|
/* Set LSESYSDIS bit according to LSE propagation option (enabled or disabled) */
|
|
MODIFY_REG(RCC->BDCR, RCC_BDCR_LSESYSDIS, (RCC_OscInitStruct->LSEState & RCC_BDCR_LSESYSDIS));
|
|
|
|
if((RCC_OscInitStruct->LSEState & RCC_BDCR_LSEBYP) != 0U)
|
|
{
|
|
/* LSE oscillator bypass enable */
|
|
SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP);
|
|
SET_BIT(RCC->BDCR, RCC_BDCR_LSEON);
|
|
}
|
|
else
|
|
{
|
|
/* LSE oscillator enable */
|
|
SET_BIT(RCC->BDCR, RCC_BDCR_LSEON);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON);
|
|
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP);
|
|
}
|
|
#else
|
|
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
|
|
#endif /* RCC_BDCR_LSESYSDIS */
|
|
|
|
/* Check the LSE State */
|
|
if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSE is ready */
|
|
while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till LSE is disabled */
|
|
while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
#if defined(RCC_BDCR_LSESYSDIS)
|
|
/* By default, stop disabling LSE propagation */
|
|
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSESYSDIS);
|
|
#endif /* RCC_BDCR_LSESYSDIS */
|
|
}
|
|
|
|
/* Restore clock configuration if changed */
|
|
if(pwrclkchanged == SET)
|
|
{
|
|
__HAL_RCC_PWR_CLK_DISABLE();
|
|
}
|
|
}
|
|
#if defined(RCC_HSI48_SUPPORT)
|
|
/*------------------------------ HSI48 Configuration -----------------------*/
|
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
|
|
|
|
/* Check the LSI State */
|
|
if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
|
|
{
|
|
/* Enable the Internal Low Speed oscillator (HSI48). */
|
|
__HAL_RCC_HSI48_ENABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI48 is ready */
|
|
while(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) == 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal Low Speed oscillator (HSI48). */
|
|
__HAL_RCC_HSI48_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till HSI48 is disabled */
|
|
while(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) != 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* RCC_HSI48_SUPPORT */
|
|
/*-------------------------------- PLL Configuration -----------------------*/
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
|
|
|
|
if(RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE)
|
|
{
|
|
/* PLL On ? */
|
|
if(RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
|
|
assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
|
|
assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
|
|
#if defined(RCC_PLLP_SUPPORT)
|
|
assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
|
|
#endif /* RCC_PLLP_SUPPORT */
|
|
assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
|
|
assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR));
|
|
|
|
/* Do nothing if PLL configuration is the unchanged */
|
|
pll_config = RCC->PLLCFGR;
|
|
if((READ_BIT(pll_config, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) ||
|
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLM) != ((RCC_OscInitStruct->PLL.PLLM - 1U) << RCC_PLLCFGR_PLLM_Pos)) ||
|
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLN) != (RCC_OscInitStruct->PLL.PLLN << RCC_PLLCFGR_PLLN_Pos)) ||
|
|
#if defined(RCC_PLLP_SUPPORT)
|
|
#if defined(RCC_PLLP_DIV_2_31_SUPPORT)
|
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLPDIV) != (RCC_OscInitStruct->PLL.PLLP << RCC_PLLCFGR_PLLPDIV_Pos)) ||
|
|
#else
|
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLP) != ((RCC_OscInitStruct->PLL.PLLP == RCC_PLLP_DIV7) ? 0U : 1U)) ||
|
|
#endif
|
|
#endif
|
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLQ) != ((((RCC_OscInitStruct->PLL.PLLQ) >> 1U) - 1U) << RCC_PLLCFGR_PLLQ_Pos)) ||
|
|
(READ_BIT(pll_config, RCC_PLLCFGR_PLLR) != ((((RCC_OscInitStruct->PLL.PLLR) >> 1U) - 1U) << RCC_PLLCFGR_PLLR_Pos)))
|
|
{
|
|
/* Check if the PLL is used as system clock or not */
|
|
if(sysclk_source != RCC_CFGR_SWS_PLL)
|
|
{
|
|
#if defined(RCC_PLLSAI1_SUPPORT) || defined(RCC_PLLSAI2_SUPPORT)
|
|
/* Check if main PLL can be updated */
|
|
/* Not possible if the source is shared by other enabled PLLSAIx */
|
|
if((READ_BIT(RCC->CR, RCC_CR_PLLSAI1ON) != 0U)
|
|
#if defined(RCC_PLLSAI2_SUPPORT)
|
|
|| (READ_BIT(RCC->CR, RCC_CR_PLLSAI2ON) != 0U)
|
|
#endif
|
|
)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
#endif /* RCC_PLLSAI1_SUPPORT || RCC_PLLSAI2_SUPPORT */
|
|
{
|
|
/* Disable the main PLL. */
|
|
__HAL_RCC_PLL_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is ready */
|
|
while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Configure the main PLL clock source, multiplication and division factors. */
|
|
#if defined(RCC_PLLP_SUPPORT)
|
|
__HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
|
|
RCC_OscInitStruct->PLL.PLLM,
|
|
RCC_OscInitStruct->PLL.PLLN,
|
|
RCC_OscInitStruct->PLL.PLLP,
|
|
RCC_OscInitStruct->PLL.PLLQ,
|
|
RCC_OscInitStruct->PLL.PLLR);
|
|
#else
|
|
__HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
|
|
RCC_OscInitStruct->PLL.PLLM,
|
|
RCC_OscInitStruct->PLL.PLLN,
|
|
RCC_OscInitStruct->PLL.PLLQ,
|
|
RCC_OscInitStruct->PLL.PLLR);
|
|
#endif
|
|
|
|
/* Enable the main PLL. */
|
|
__HAL_RCC_PLL_ENABLE();
|
|
|
|
/* Enable PLL System Clock output. */
|
|
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is ready */
|
|
while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* PLL is already used as System core clock */
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* PLL configuration is unchanged */
|
|
/* Re-enable PLL if it was disabled (ie. low power mode) */
|
|
if(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
|
|
{
|
|
/* Enable the main PLL. */
|
|
__HAL_RCC_PLL_ENABLE();
|
|
|
|
/* Enable PLL System Clock output. */
|
|
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is ready */
|
|
while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Check that PLL is not used as system clock or not */
|
|
if(sysclk_source != RCC_CFGR_SWS_PLL)
|
|
{
|
|
/* Disable the main PLL. */
|
|
__HAL_RCC_PLL_DISABLE();
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till PLL is disabled */
|
|
while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* Unselect main PLL clock source and disable main PLL outputs to save power */
|
|
#if defined(RCC_PLLSAI2_SUPPORT)
|
|
RCC->PLLCFGR &= ~(RCC_PLLCFGR_PLLSRC | RCC_PLL_SYSCLK | RCC_PLL_48M1CLK | RCC_PLL_SAI3CLK);
|
|
#elif defined(RCC_PLLSAI1_SUPPORT)
|
|
RCC->PLLCFGR &= ~(RCC_PLLCFGR_PLLSRC | RCC_PLL_SYSCLK | RCC_PLL_48M1CLK | RCC_PLL_SAI2CLK);
|
|
#else
|
|
RCC->PLLCFGR &= ~(RCC_PLLCFGR_PLLSRC | RCC_PLL_SYSCLK | RCC_PLL_48M1CLK);
|
|
#endif /* RCC_PLLSAI2_SUPPORT */
|
|
}
|
|
else
|
|
{
|
|
/* PLL is already used as System core clock */
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the CPU, AHB and APB busses clocks according to the specified
|
|
* parameters in the RCC_ClkInitStruct.
|
|
* @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
|
|
* contains the configuration information for the RCC peripheral.
|
|
* @param FLatency FLASH Latency
|
|
* This parameter can be one of the following values:
|
|
* @arg FLASH_LATENCY_0 FLASH 0 Latency cycle
|
|
* @arg FLASH_LATENCY_1 FLASH 1 Latency cycle
|
|
* @arg FLASH_LATENCY_2 FLASH 2 Latency cycles
|
|
* @arg FLASH_LATENCY_3 FLASH 3 Latency cycles
|
|
* @arg FLASH_LATENCY_4 FLASH 4 Latency cycles
|
|
@if STM32L4S9xx
|
|
* @arg FLASH_LATENCY_5 FLASH 5 Latency cycles
|
|
* @arg FLASH_LATENCY_6 FLASH 6 Latency cycles
|
|
* @arg FLASH_LATENCY_7 FLASH 7 Latency cycles
|
|
* @arg FLASH_LATENCY_8 FLASH 8 Latency cycles
|
|
* @arg FLASH_LATENCY_9 FLASH 9 Latency cycles
|
|
* @arg FLASH_LATENCY_10 FLASH 10 Latency cycles
|
|
* @arg FLASH_LATENCY_11 FLASH 11 Latency cycles
|
|
* @arg FLASH_LATENCY_12 FLASH 12 Latency cycles
|
|
* @arg FLASH_LATENCY_13 FLASH 13 Latency cycles
|
|
* @arg FLASH_LATENCY_14 FLASH 14 Latency cycles
|
|
* @arg FLASH_LATENCY_15 FLASH 15 Latency cycles
|
|
@endif
|
|
*
|
|
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
|
|
* and updated by HAL_RCC_GetHCLKFreq() function called within this function
|
|
*
|
|
* @note The MSI is used by default as system clock source after
|
|
* startup from Reset, wake-up from STANDBY mode. After restart from Reset,
|
|
* the MSI frequency is set to its default value 4 MHz.
|
|
*
|
|
* @note The HSI can be selected as system clock source after
|
|
* from STOP modes or in case of failure of the HSE used directly or indirectly
|
|
* as system clock (if the Clock Security System CSS is enabled).
|
|
*
|
|
* @note A switch from one clock source to another occurs only if the target
|
|
* clock source is ready (clock stable after startup delay or PLL locked).
|
|
* If a clock source which is not yet ready is selected, the switch will
|
|
* occur when the clock source is ready.
|
|
*
|
|
* @note You can use HAL_RCC_GetClockConfig() function to know which clock is
|
|
* currently used as system clock source.
|
|
*
|
|
* @note Depending on the device voltage range, the software has to set correctly
|
|
* HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency
|
|
* (for more details refer to section above "Initialization/de-initialization functions")
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
|
|
{
|
|
uint32_t tickstart;
|
|
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \
|
|
defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
|
|
uint32_t hpre = RCC_SYSCLK_DIV1;
|
|
#endif
|
|
HAL_StatusTypeDef status;
|
|
|
|
/* Check Null pointer */
|
|
if(RCC_ClkInitStruct == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
|
|
assert_param(IS_FLASH_LATENCY(FLatency));
|
|
|
|
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)
|
|
must be correctly programmed according to the frequency of the CPU clock
|
|
(HCLK) and the supply voltage of the device. */
|
|
|
|
/* Increasing the number of wait states because of higher CPU frequency */
|
|
if(FLatency > __HAL_FLASH_GET_LATENCY())
|
|
{
|
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
__HAL_FLASH_SET_LATENCY(FLatency);
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by reading the FLASH_ACR register */
|
|
if(__HAL_FLASH_GET_LATENCY() != FLatency)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/*----------------- HCLK Configuration prior to SYSCLK----------------------*/
|
|
/* Apply higher HCLK prescaler request here to ensure CPU clock is not of of spec when SYSCLK is increased */
|
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
|
|
{
|
|
assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
|
|
|
|
if(RCC_ClkInitStruct->AHBCLKDivider > READ_BIT(RCC->CFGR, RCC_CFGR_HPRE))
|
|
{
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
|
|
}
|
|
}
|
|
|
|
/*------------------------- SYSCLK Configuration ---------------------------*/
|
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
|
|
{
|
|
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
|
|
|
|
/* PLL is selected as System Clock Source */
|
|
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
|
|
{
|
|
/* Check the PLL ready flag */
|
|
if(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \
|
|
defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
|
|
/* Undershoot management when selection PLL as SYSCLK source and frequency above 80Mhz */
|
|
/* Compute target PLL output frequency */
|
|
if(RCC_GetSysClockFreqFromPLLSource() > 80000000U)
|
|
{
|
|
/* If lowest HCLK prescaler, apply intermediate step with HCLK prescaler 2 necessary before to go over 80Mhz */
|
|
if(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) == RCC_SYSCLK_DIV1)
|
|
{
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV2);
|
|
hpre = RCC_SYSCLK_DIV2;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
/* HSE is selected as System Clock Source */
|
|
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
|
|
{
|
|
/* Check the HSE ready flag */
|
|
if(READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* MSI is selected as System Clock Source */
|
|
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI)
|
|
{
|
|
/* Check the MSI ready flag */
|
|
if(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* HSI is selected as System Clock Source */
|
|
else
|
|
{
|
|
/* Check the HSI ready flag */
|
|
if(READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \
|
|
defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
|
|
/* Overshoot management when going down from PLL as SYSCLK source and frequency above 80Mhz */
|
|
if(HAL_RCC_GetSysClockFreq() > 80000000U)
|
|
{
|
|
/* If lowest HCLK prescaler, apply intermediate step with HCLK prescaler 2 necessary before to go under 80Mhz */
|
|
if(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) == RCC_SYSCLK_DIV1)
|
|
{
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV2);
|
|
hpre = RCC_SYSCLK_DIV2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
|
|
|
|
/* Get Start Tick*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
while(__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos))
|
|
{
|
|
if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \
|
|
defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
|
|
/* Is intermediate HCLK prescaler 2 applied internally, resume with HCLK prescaler 1 */
|
|
if(hpre == RCC_SYSCLK_DIV2)
|
|
{
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV1);
|
|
}
|
|
#endif
|
|
|
|
/*----------------- HCLK Configuration after SYSCLK-------------------------*/
|
|
/* Apply lower HCLK prescaler request here to ensure CPU clock is not of of spec when SYSCLK is set */
|
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
|
|
{
|
|
if(RCC_ClkInitStruct->AHBCLKDivider < READ_BIT(RCC->CFGR, RCC_CFGR_HPRE))
|
|
{
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
|
|
}
|
|
}
|
|
|
|
/* Allow decreasing of the number of wait states (because of lower CPU frequency expected) */
|
|
if(FLatency < __HAL_FLASH_GET_LATENCY())
|
|
{
|
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
__HAL_FLASH_SET_LATENCY(FLatency);
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by reading the FLASH_ACR register */
|
|
if(__HAL_FLASH_GET_LATENCY() != FLatency)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/*-------------------------- PCLK1 Configuration ---------------------------*/
|
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
|
|
{
|
|
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
|
|
}
|
|
|
|
/*-------------------------- PCLK2 Configuration ---------------------------*/
|
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
|
|
{
|
|
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3U));
|
|
}
|
|
|
|
/* Update the SystemCoreClock global variable */
|
|
SystemCoreClock = HAL_RCC_GetSysClockFreq() >> (AHBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos] & 0x1FU);
|
|
|
|
/* Configure the source of time base considering new system clocks settings*/
|
|
status = HAL_InitTick(uwTickPrio);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
|
|
* @brief RCC clocks control functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral Control functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to:
|
|
|
|
(+) Output clock to MCO pin.
|
|
(+) Retrieve current clock frequencies.
|
|
(+) Enable the Clock Security System.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Select the clock source to output on MCO pin(PA8).
|
|
* @note PA8 should be configured in alternate function mode.
|
|
* @param RCC_MCOx specifies the output direction for the clock source.
|
|
* For STM32L4xx family this parameter can have only one value:
|
|
* @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
|
|
* @param RCC_MCOSource specifies the clock source to output.
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO
|
|
* @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_MSI MSI clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_PLLCLK main PLL clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source
|
|
* @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source
|
|
@if STM32L443xx
|
|
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48
|
|
@endif
|
|
* @param RCC_MCODiv specifies the MCO prescaler.
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref RCC_MCODIV_1 no division applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock
|
|
* @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_MCOConfig( uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
|
|
{
|
|
GPIO_InitTypeDef GPIO_InitStruct;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_MCO(RCC_MCOx));
|
|
assert_param(IS_RCC_MCODIV(RCC_MCODiv));
|
|
assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
|
|
|
|
/* Prevent unused argument(s) compilation warning if no assert_param check */
|
|
UNUSED(RCC_MCOx);
|
|
|
|
/* MCO Clock Enable */
|
|
__MCO1_CLK_ENABLE();
|
|
|
|
/* Configure the MCO1 pin in alternate function mode */
|
|
GPIO_InitStruct.Pin = MCO1_PIN;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
|
|
HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);
|
|
|
|
/* Mask MCOSEL[] and MCOPRE[] bits then set MCO1 clock source and prescaler */
|
|
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), (RCC_MCOSource | RCC_MCODiv ));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the SYSCLK frequency.
|
|
*
|
|
* @note The system frequency computed by this function is not the real
|
|
* frequency in the chip. It is calculated based on the predefined
|
|
* constant and the selected clock source:
|
|
* @note If SYSCLK source is MSI, function returns values based on MSI
|
|
* Value as defined by the MSI range.
|
|
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
|
|
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
|
|
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**),
|
|
* HSI_VALUE(*) or MSI Value multiplied/divided by the PLL factors.
|
|
* @note (*) HSI_VALUE is a constant defined in stm32l4xx_hal_conf.h file (default value
|
|
* 16 MHz) but the real value may vary depending on the variations
|
|
* in voltage and temperature.
|
|
* @note (**) HSE_VALUE is a constant defined in stm32l4xx_hal_conf.h file (default value
|
|
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
|
|
* frequency of the crystal used. Otherwise, this function may
|
|
* have wrong result.
|
|
*
|
|
* @note The result of this function could be not correct when using fractional
|
|
* value for HSE crystal.
|
|
*
|
|
* @note This function can be used by the user application to compute the
|
|
* baudrate for the communication peripherals or configure other parameters.
|
|
*
|
|
* @note Each time SYSCLK changes, this function must be called to update the
|
|
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
*
|
|
*
|
|
* @retval SYSCLK frequency
|
|
*/
|
|
uint32_t HAL_RCC_GetSysClockFreq(void)
|
|
{
|
|
uint32_t msirange = 0U, sysclockfreq = 0U;
|
|
uint32_t pllvco, pllsource, pllr, pllm; /* no init needed */
|
|
uint32_t sysclk_source, pll_oscsource;
|
|
|
|
sysclk_source = __HAL_RCC_GET_SYSCLK_SOURCE();
|
|
pll_oscsource = __HAL_RCC_GET_PLL_OSCSOURCE();
|
|
|
|
if((sysclk_source == RCC_CFGR_SWS_MSI) ||
|
|
((sysclk_source == RCC_CFGR_SWS_PLL) && (pll_oscsource == RCC_PLLSOURCE_MSI)))
|
|
{
|
|
/* MSI or PLL with MSI source used as system clock source */
|
|
|
|
/* Get SYSCLK source */
|
|
if(READ_BIT(RCC->CR, RCC_CR_MSIRGSEL) == 0U)
|
|
{ /* MSISRANGE from RCC_CSR applies */
|
|
msirange = READ_BIT(RCC->CSR, RCC_CSR_MSISRANGE) >> RCC_CSR_MSISRANGE_Pos;
|
|
}
|
|
else
|
|
{ /* MSIRANGE from RCC_CR applies */
|
|
msirange = READ_BIT(RCC->CR, RCC_CR_MSIRANGE) >> RCC_CR_MSIRANGE_Pos;
|
|
}
|
|
/*MSI frequency range in HZ*/
|
|
msirange = MSIRangeTable[msirange];
|
|
|
|
if(sysclk_source == RCC_CFGR_SWS_MSI)
|
|
{
|
|
/* MSI used as system clock source */
|
|
sysclockfreq = msirange;
|
|
}
|
|
}
|
|
else if(sysclk_source == RCC_CFGR_SWS_HSI)
|
|
{
|
|
/* HSI used as system clock source */
|
|
sysclockfreq = HSI_VALUE;
|
|
}
|
|
else if(sysclk_source == RCC_CFGR_SWS_HSE)
|
|
{
|
|
/* HSE used as system clock source */
|
|
sysclockfreq = HSE_VALUE;
|
|
}
|
|
else
|
|
{
|
|
/* unexpected case: sysclockfreq at 0 */
|
|
}
|
|
|
|
if(sysclk_source == RCC_CFGR_SWS_PLL)
|
|
{
|
|
/* PLL used as system clock source */
|
|
|
|
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE) * PLLN / PLLM
|
|
SYSCLK = PLL_VCO / PLLR
|
|
*/
|
|
pllsource = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC);
|
|
|
|
switch (pllsource)
|
|
{
|
|
case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
|
|
pllvco = HSI_VALUE;
|
|
break;
|
|
|
|
case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
|
|
pllvco = HSE_VALUE;
|
|
break;
|
|
|
|
case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
|
|
default:
|
|
pllvco = msirange;
|
|
break;
|
|
}
|
|
pllm = (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U ;
|
|
pllvco = (pllvco * (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)) / pllm;
|
|
pllr = ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U ) * 2U;
|
|
sysclockfreq = pllvco / pllr;
|
|
}
|
|
|
|
return sysclockfreq;
|
|
}
|
|
|
|
/**
|
|
* @brief Return the HCLK frequency.
|
|
* @note Each time HCLK changes, this function must be called to update the
|
|
* right HCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
*
|
|
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency.
|
|
* @retval HCLK frequency in Hz
|
|
*/
|
|
uint32_t HAL_RCC_GetHCLKFreq(void)
|
|
{
|
|
return SystemCoreClock;
|
|
}
|
|
|
|
/**
|
|
* @brief Return the PCLK1 frequency.
|
|
* @note Each time PCLK1 changes, this function must be called to update the
|
|
* right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
|
|
* @retval PCLK1 frequency in Hz
|
|
*/
|
|
uint32_t HAL_RCC_GetPCLK1Freq(void)
|
|
{
|
|
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
|
|
return (HAL_RCC_GetHCLKFreq() >> (APBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_Pos] & 0x1FU));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the PCLK2 frequency.
|
|
* @note Each time PCLK2 changes, this function must be called to update the
|
|
* right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
|
|
* @retval PCLK2 frequency in Hz
|
|
*/
|
|
uint32_t HAL_RCC_GetPCLK2Freq(void)
|
|
{
|
|
/* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
|
|
return (HAL_RCC_GetHCLKFreq()>> (APBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_Pos] & 0x1FU));
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the RCC_OscInitStruct according to the internal
|
|
* RCC configuration registers.
|
|
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
|
|
* will be configured.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(RCC_OscInitStruct != (void *)NULL);
|
|
|
|
/* Set all possible values for the Oscillator type parameter ---------------*/
|
|
#if defined(RCC_HSI48_SUPPORT)
|
|
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \
|
|
RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48;
|
|
#else
|
|
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \
|
|
RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
|
|
#endif /* RCC_HSI48_SUPPORT */
|
|
|
|
/* Get the HSE configuration -----------------------------------------------*/
|
|
if(READ_BIT(RCC->CR, RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
|
|
}
|
|
else if(READ_BIT(RCC->CR, RCC_CR_HSEON) == RCC_CR_HSEON)
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
|
|
}
|
|
|
|
/* Get the MSI configuration -----------------------------------------------*/
|
|
if(READ_BIT(RCC->CR, RCC_CR_MSION) == RCC_CR_MSION)
|
|
{
|
|
RCC_OscInitStruct->MSIState = RCC_MSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->MSIState = RCC_MSI_OFF;
|
|
}
|
|
|
|
RCC_OscInitStruct->MSICalibrationValue = READ_BIT(RCC->ICSCR, RCC_ICSCR_MSITRIM) >> RCC_ICSCR_MSITRIM_Pos;
|
|
RCC_OscInitStruct->MSIClockRange = READ_BIT(RCC->CR, RCC_CR_MSIRANGE);
|
|
|
|
/* Get the HSI configuration -----------------------------------------------*/
|
|
if(READ_BIT(RCC->CR, RCC_CR_HSION) == RCC_CR_HSION)
|
|
{
|
|
RCC_OscInitStruct->HSIState = RCC_HSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
|
|
}
|
|
|
|
RCC_OscInitStruct->HSICalibrationValue = READ_BIT(RCC->ICSCR, RCC_ICSCR_HSITRIM) >> RCC_ICSCR_HSITRIM_Pos;
|
|
|
|
/* Get the LSE configuration -----------------------------------------------*/
|
|
if(READ_BIT(RCC->BDCR, RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
|
|
{
|
|
#if defined(RCC_BDCR_LSESYSDIS)
|
|
if((RCC->BDCR & RCC_BDCR_LSESYSDIS) == RCC_BDCR_LSESYSDIS)
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS_RTC_ONLY;
|
|
}
|
|
else
|
|
#endif /* RCC_BDCR_LSESYSDIS */
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
|
|
}
|
|
}
|
|
else if(READ_BIT(RCC->BDCR, RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
|
|
{
|
|
#if defined(RCC_BDCR_LSESYSDIS)
|
|
if((RCC->BDCR & RCC_BDCR_LSESYSDIS) == RCC_BDCR_LSESYSDIS)
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_ON_RTC_ONLY;
|
|
}
|
|
else
|
|
#endif /* RCC_BDCR_LSESYSDIS */
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_ON;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
|
|
}
|
|
|
|
/* Get the LSI configuration -----------------------------------------------*/
|
|
if(READ_BIT(RCC->CSR, RCC_CSR_LSION) == RCC_CSR_LSION)
|
|
{
|
|
RCC_OscInitStruct->LSIState = RCC_LSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
|
|
}
|
|
#if defined(RCC_CSR_LSIPREDIV)
|
|
|
|
/* Get the LSI configuration -----------------------------------------------*/
|
|
if((RCC->CSR & RCC_CSR_LSIPREDIV) == RCC_CSR_LSIPREDIV)
|
|
{
|
|
RCC_OscInitStruct->LSIDiv = RCC_LSI_DIV128;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->LSIDiv = RCC_LSI_DIV1;
|
|
}
|
|
#endif /* RCC_CSR_LSIPREDIV */
|
|
|
|
#if defined(RCC_HSI48_SUPPORT)
|
|
/* Get the HSI48 configuration ---------------------------------------------*/
|
|
if(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48ON) == RCC_CRRCR_HSI48ON)
|
|
{
|
|
RCC_OscInitStruct->HSI48State = RCC_HSI48_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF;
|
|
}
|
|
#else
|
|
RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF;
|
|
#endif /* RCC_HSI48_SUPPORT */
|
|
|
|
/* Get the PLL configuration -----------------------------------------------*/
|
|
if(READ_BIT(RCC->CR, RCC_CR_PLLON) == RCC_CR_PLLON)
|
|
{
|
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
|
|
}
|
|
RCC_OscInitStruct->PLL.PLLSource = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC);
|
|
RCC_OscInitStruct->PLL.PLLM = (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U;
|
|
RCC_OscInitStruct->PLL.PLLN = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos;
|
|
RCC_OscInitStruct->PLL.PLLQ = (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ) >> RCC_PLLCFGR_PLLQ_Pos) + 1U) << 1U);
|
|
RCC_OscInitStruct->PLL.PLLR = (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U) << 1U);
|
|
#if defined(RCC_PLLP_SUPPORT)
|
|
#if defined(RCC_PLLP_DIV_2_31_SUPPORT)
|
|
RCC_OscInitStruct->PLL.PLLP = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPDIV) >> RCC_PLLCFGR_PLLPDIV_Pos;
|
|
#else
|
|
if(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLP) != 0U)
|
|
{
|
|
RCC_OscInitStruct->PLL.PLLP = RCC_PLLP_DIV17;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->PLL.PLLP = RCC_PLLP_DIV7;
|
|
}
|
|
#endif /* RCC_PLLP_DIV_2_31_SUPPORT */
|
|
#endif /* RCC_PLLP_SUPPORT */
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the RCC_ClkInitStruct according to the internal
|
|
* RCC configuration registers.
|
|
* @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
|
|
* will be configured.
|
|
* @param pFLatency Pointer on the Flash Latency.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(RCC_ClkInitStruct != (void *)NULL);
|
|
assert_param(pFLatency != (void *)NULL);
|
|
|
|
/* Set all possible values for the Clock type parameter --------------------*/
|
|
RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
|
|
|
|
/* Get the SYSCLK configuration --------------------------------------------*/
|
|
RCC_ClkInitStruct->SYSCLKSource = READ_BIT(RCC->CFGR, RCC_CFGR_SW);
|
|
|
|
/* Get the HCLK configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->AHBCLKDivider = READ_BIT(RCC->CFGR, RCC_CFGR_HPRE);
|
|
|
|
/* Get the APB1 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB1CLKDivider = READ_BIT(RCC->CFGR, RCC_CFGR_PPRE1);
|
|
|
|
/* Get the APB2 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB2CLKDivider = (READ_BIT(RCC->CFGR, RCC_CFGR_PPRE2) >> 3U);
|
|
|
|
/* Get the Flash Wait State (Latency) configuration ------------------------*/
|
|
*pFLatency = __HAL_FLASH_GET_LATENCY();
|
|
}
|
|
|
|
/**
|
|
* @brief Enable the Clock Security System.
|
|
* @note If a failure is detected on the HSE oscillator clock, this oscillator
|
|
* is automatically disabled and an interrupt is generated to inform the
|
|
* software about the failure (Clock Security System Interrupt, CSSI),
|
|
* allowing the MCU to perform rescue operations. The CSSI is linked to
|
|
* the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.
|
|
* @note The Clock Security System can only be cleared by reset.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_EnableCSS(void)
|
|
{
|
|
SET_BIT(RCC->CR, RCC_CR_CSSON) ;
|
|
}
|
|
|
|
/**
|
|
* @brief Handle the RCC Clock Security System interrupt request.
|
|
* @note This API should be called under the NMI_Handler().
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_NMI_IRQHandler(void)
|
|
{
|
|
/* Check RCC CSSF interrupt flag */
|
|
if(__HAL_RCC_GET_IT(RCC_IT_CSS))
|
|
{
|
|
/* RCC Clock Security System interrupt user callback */
|
|
HAL_RCC_CSSCallback();
|
|
|
|
/* Clear RCC CSS pending bit */
|
|
__HAL_RCC_CLEAR_IT(RCC_IT_CSS);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief RCC Clock Security System interrupt callback.
|
|
* @retval none
|
|
*/
|
|
__weak void HAL_RCC_CSSCallback(void)
|
|
{
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_RCC_CSSCallback should be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Get and clear reset flags
|
|
* @param None
|
|
* @note Once reset flags are retrieved, this API is clearing them in order
|
|
* to isolate next reset reason.
|
|
* @retval can be a combination of @ref RCC_Reset_Flag
|
|
*/
|
|
uint32_t HAL_RCC_GetResetSource(void)
|
|
{
|
|
uint32_t reset;
|
|
|
|
/* Get all reset flags */
|
|
reset = RCC->CSR & RCC_RESET_FLAG_ALL;
|
|
|
|
/* Clear Reset flags */
|
|
RCC->CSR |= RCC_CSR_RMVF;
|
|
|
|
return reset;
|
|
}
|
|
|
|
/** * @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/** @addtogroup RCC_Private_Functions
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief Update number of Flash wait states in line with MSI range and current
|
|
voltage range.
|
|
* @param msirange MSI range value from RCC_MSIRANGE_0 to RCC_MSIRANGE_11
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange)
|
|
{
|
|
uint32_t vos;
|
|
uint32_t latency = FLASH_LATENCY_0; /* default value 0WS */
|
|
|
|
if(__HAL_RCC_PWR_IS_CLK_ENABLED())
|
|
{
|
|
vos = HAL_PWREx_GetVoltageRange();
|
|
}
|
|
else
|
|
{
|
|
__HAL_RCC_PWR_CLK_ENABLE();
|
|
vos = HAL_PWREx_GetVoltageRange();
|
|
__HAL_RCC_PWR_CLK_DISABLE();
|
|
}
|
|
|
|
if(vos == PWR_REGULATOR_VOLTAGE_SCALE1)
|
|
{
|
|
if(msirange > RCC_MSIRANGE_8)
|
|
{
|
|
/* MSI > 16Mhz */
|
|
if(msirange > RCC_MSIRANGE_10)
|
|
{
|
|
/* MSI 48Mhz */
|
|
latency = FLASH_LATENCY_2; /* 2WS */
|
|
}
|
|
else
|
|
{
|
|
/* MSI 24Mhz or 32Mhz */
|
|
latency = FLASH_LATENCY_1; /* 1WS */
|
|
}
|
|
}
|
|
/* else MSI <= 16Mhz default FLASH_LATENCY_0 0WS */
|
|
}
|
|
else
|
|
{
|
|
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \
|
|
defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
|
|
if(msirange >= RCC_MSIRANGE_8)
|
|
{
|
|
/* MSI >= 16Mhz */
|
|
latency = FLASH_LATENCY_2; /* 2WS */
|
|
}
|
|
else
|
|
{
|
|
if(msirange == RCC_MSIRANGE_7)
|
|
{
|
|
/* MSI 8Mhz */
|
|
latency = FLASH_LATENCY_1; /* 1WS */
|
|
}
|
|
/* else MSI < 8Mhz default FLASH_LATENCY_0 0WS */
|
|
}
|
|
#else
|
|
if(msirange > RCC_MSIRANGE_8)
|
|
{
|
|
/* MSI > 16Mhz */
|
|
latency = FLASH_LATENCY_3; /* 3WS */
|
|
}
|
|
else
|
|
{
|
|
if(msirange == RCC_MSIRANGE_8)
|
|
{
|
|
/* MSI 16Mhz */
|
|
latency = FLASH_LATENCY_2; /* 2WS */
|
|
}
|
|
else if(msirange == RCC_MSIRANGE_7)
|
|
{
|
|
/* MSI 8Mhz */
|
|
latency = FLASH_LATENCY_1; /* 1WS */
|
|
}
|
|
/* else MSI < 8Mhz default FLASH_LATENCY_0 0WS */
|
|
}
|
|
#endif
|
|
}
|
|
|
|
__HAL_FLASH_SET_LATENCY(latency);
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by reading the FLASH_ACR register */
|
|
if(__HAL_FLASH_GET_LATENCY() != latency)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \
|
|
defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
|
|
/**
|
|
* @brief Compute SYSCLK frequency based on PLL SYSCLK source.
|
|
* @retval SYSCLK frequency
|
|
*/
|
|
static uint32_t RCC_GetSysClockFreqFromPLLSource(void)
|
|
{
|
|
uint32_t msirange, pllvco, pllsource, pllr, pllm, sysclockfreq; /* no init needed */
|
|
|
|
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE) * PLLN / PLLM
|
|
SYSCLK = PLL_VCO / PLLR
|
|
*/
|
|
pllsource = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC);
|
|
|
|
switch (pllsource)
|
|
{
|
|
case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
|
|
pllvco = HSI_VALUE;
|
|
break;
|
|
|
|
case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
|
|
pllvco = HSE_VALUE;
|
|
break;
|
|
|
|
case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
|
|
/* Get MSI range source */
|
|
if(READ_BIT(RCC->CR, RCC_CR_MSIRGSEL) == 0U)
|
|
{ /* MSISRANGE from RCC_CSR applies */
|
|
msirange = READ_BIT(RCC->CSR, RCC_CSR_MSISRANGE) >> RCC_CSR_MSISRANGE_Pos;
|
|
}
|
|
else
|
|
{ /* MSIRANGE from RCC_CR applies */
|
|
msirange = READ_BIT(RCC->CR, RCC_CR_MSIRANGE) >> RCC_CR_MSIRANGE_Pos;
|
|
}
|
|
/*MSI frequency range in HZ*/
|
|
pllvco = MSIRangeTable[msirange];
|
|
break;
|
|
default:
|
|
/* unexpected */
|
|
pllvco = 0;
|
|
break;
|
|
}
|
|
pllm = (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U ;
|
|
pllvco = (pllvco * (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)) / pllm;
|
|
pllr = ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U ) * 2U;
|
|
sysclockfreq = pllvco / pllr;
|
|
|
|
return sysclockfreq;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_RCC_MODULE_ENABLED */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|