satellite-testing-system/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_tim.c

7895 lines
246 KiB
C

/**
******************************************************************************
* @file stm32l4xx_hal_tim.c
* @author MCD Application Team
* @brief TIM HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Timer (TIM) peripheral:
* + TIM Time Base Initialization
* + TIM Time Base Start
* + TIM Time Base Start Interruption
* + TIM Time Base Start DMA
* + TIM Output Compare/PWM Initialization
* + TIM Output Compare/PWM Channel Configuration
* + TIM Output Compare/PWM Start
* + TIM Output Compare/PWM Start Interruption
* + TIM Output Compare/PWM Start DMA
* + TIM Input Capture Initialization
* + TIM Input Capture Channel Configuration
* + TIM Input Capture Start
* + TIM Input Capture Start Interruption
* + TIM Input Capture Start DMA
* + TIM One Pulse Initialization
* + TIM One Pulse Channel Configuration
* + TIM One Pulse Start
* + TIM Encoder Interface Initialization
* + TIM Encoder Interface Start
* + TIM Encoder Interface Start Interruption
* + TIM Encoder Interface Start DMA
* + Commutation Event configuration with Interruption and DMA
* + TIM OCRef clear configuration
* + TIM External Clock configuration
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### TIMER Generic features #####
==============================================================================
[..] The Timer features include:
(#) 16-bit up, down, up/down auto-reload counter.
(#) 16-bit programmable prescaler allowing dividing (also on the fly) the
counter clock frequency either by any factor between 1 and 65536.
(#) Up to 4 independent channels for:
(++) Input Capture
(++) Output Compare
(++) PWM generation (Edge and Center-aligned Mode)
(++) One-pulse mode output
(#) Synchronization circuit to control the timer with external signals and to interconnect
several timers together.
(#) Supports incremental encoder for positioning purposes
##### How to use this driver #####
==============================================================================
[..]
(#) Initialize the TIM low level resources by implementing the following functions
depending on the selected feature:
(++) Time Base : HAL_TIM_Base_MspInit()
(++) Input Capture : HAL_TIM_IC_MspInit()
(++) Output Compare : HAL_TIM_OC_MspInit()
(++) PWM generation : HAL_TIM_PWM_MspInit()
(++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
(++) Encoder mode output : HAL_TIM_Encoder_MspInit()
(#) Initialize the TIM low level resources :
(##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
(##) TIM pins configuration
(+++) Enable the clock for the TIM GPIOs using the following function:
__HAL_RCC_GPIOx_CLK_ENABLE();
(+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
(#) The external Clock can be configured, if needed (the default clock is the
internal clock from the APBx), using the following function:
HAL_TIM_ConfigClockSource, the clock configuration should be done before
any start function.
(#) Configure the TIM in the desired functioning mode using one of the
Initialization function of this driver:
(++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
(++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
Output Compare signal.
(++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
PWM signal.
(++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
external signal.
(++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
in One Pulse Mode.
(++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
(#) Activate the TIM peripheral using one of the start functions depending from the feature used:
(++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
(++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
(++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
(++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
(++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
(++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
(#) The DMA Burst is managed with the two following functions:
HAL_TIM_DMABurst_WriteStart()
HAL_TIM_DMABurst_ReadStart()
*** Callback registration ***
=============================================
[..]
The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
[..]
Use Function HAL_TIM_RegisterCallback() to register a callback.
HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
the Callback ID and a pointer to the user callback function.
[..]
Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default
weak function.
HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
[..]
These functions allow to register/unregister following callbacks:
(+) Base_MspInitCallback : TIM Base Msp Init Callback.
(+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback.
(+) IC_MspInitCallback : TIM IC Msp Init Callback.
(+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback.
(+) OC_MspInitCallback : TIM OC Msp Init Callback.
(+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback.
(+) PWM_MspInitCallback : TIM PWM Msp Init Callback.
(+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback.
(+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback.
(+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback.
(+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback.
(+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback.
(+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback.
(+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback.
(+) PeriodElapsedCallback : TIM Period Elapsed Callback.
(+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback.
(+) TriggerCallback : TIM Trigger Callback.
(+) TriggerHalfCpltCallback : TIM Trigger half complete Callback.
(+) IC_CaptureCallback : TIM Input Capture Callback.
(+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback.
(+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback.
(+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback.
(+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
(+) ErrorCallback : TIM Error Callback.
(+) CommutationCallback : TIM Commutation Callback.
(+) CommutationHalfCpltCallback : TIM Commutation half complete Callback.
(+) BreakCallback : TIM Break Callback.
(+) Break2Callback : TIM Break2 Callback.
[..]
By default, after the Init and when the state is HAL_TIM_STATE_RESET
all interrupt callbacks are set to the corresponding weak functions:
examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback().
[..]
Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
functionalities in the Init / DeInit only when these callbacks are null
(not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
[..]
Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
Exception done MspInit / MspDeInit that can be registered / unregistered
in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using HAL_TIM_RegisterCallback() before calling DeInit or Init function.
[..]
When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_hal.h"
/** @addtogroup STM32L4xx_HAL_Driver
* @{
*/
/** @defgroup TIM TIM
* @brief TIM HAL module driver
* @{
*/
#ifdef HAL_TIM_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup TIM_Private_Functions
* @{
*/
static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
uint32_t TIM_ICFilter);
static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
uint32_t TIM_ICFilter);
static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
uint32_t TIM_ICFilter);
static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
const TIM_SlaveConfigTypeDef *sSlaveConfig);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup TIM_Exported_Functions TIM Exported Functions
* @{
*/
/** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
* @brief Time Base functions
*
@verbatim
==============================================================================
##### Time Base functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM base.
(+) De-initialize the TIM base.
(+) Start the Time Base.
(+) Stop the Time Base.
(+) Start the Time Base and enable interrupt.
(+) Stop the Time Base and disable interrupt.
(+) Start the Time Base and enable DMA transfer.
(+) Stop the Time Base and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Time base Unit according to the specified
* parameters in the TIM_HandleTypeDef and initialize the associated handle.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
{
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy weak callbacks */
TIM_ResetCallback(htim);
if (htim->Base_MspInitCallback == NULL)
{
htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->Base_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC */
HAL_TIM_Base_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Set the Time Base configuration */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Initialize the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
/* Initialize the TIM channels state */
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM Base peripheral
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->Base_MspDeInitCallback == NULL)
{
htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
}
/* DeInit the low level hardware */
htim->Base_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_TIM_Base_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
/* Change the TIM channels state */
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM Base MSP.
* @param htim TIM Base handle
* @retval None
*/
__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_Base_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Base MSP.
* @param htim TIM Base handle
* @retval None
*/
__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_Base_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Base generation.
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
/* Check the TIM state */
if (htim->State != HAL_TIM_STATE_READY)
{
return HAL_ERROR;
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Base generation.
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Base generation in interrupt mode.
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
/* Check the TIM state */
if (htim->State != HAL_TIM_STATE_READY)
{
return HAL_ERROR;
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Enable the TIM Update interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Base generation in interrupt mode.
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
/* Disable the TIM Update interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Base generation in DMA mode.
* @param htim TIM Base handle
* @param pData The source Buffer address.
* @param Length The length of data to be transferred from memory to peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
/* Set the TIM state */
if (htim->State == HAL_TIM_STATE_BUSY)
{
return HAL_BUSY;
}
else if (htim->State == HAL_TIM_STATE_READY)
{
if ((pData == NULL) || (Length == 0U))
{
return HAL_ERROR;
}
else
{
htim->State = HAL_TIM_STATE_BUSY;
}
}
else
{
return HAL_ERROR;
}
/* Set the DMA Period elapsed callbacks */
htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Update DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Base generation in DMA mode.
* @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
/* Disable the TIM Update DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
* @brief TIM Output Compare functions
*
@verbatim
==============================================================================
##### TIM Output Compare functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM Output Compare.
(+) De-initialize the TIM Output Compare.
(+) Start the TIM Output Compare.
(+) Stop the TIM Output Compare.
(+) Start the TIM Output Compare and enable interrupt.
(+) Stop the TIM Output Compare and disable interrupt.
(+) Start the TIM Output Compare and enable DMA transfer.
(+) Stop the TIM Output Compare and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Output Compare according to the specified
* parameters in the TIM_HandleTypeDef and initializes the associated handle.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
* @param htim TIM Output Compare handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim)
{
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy weak callbacks */
TIM_ResetCallback(htim);
if (htim->OC_MspInitCallback == NULL)
{
htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->OC_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_OC_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Init the base time for the Output Compare */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Initialize the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
/* Initialize the TIM channels state */
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM peripheral
* @param htim TIM Output Compare handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->OC_MspDeInitCallback == NULL)
{
htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
}
/* DeInit the low level hardware */
htim->OC_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
HAL_TIM_OC_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
/* Change the TIM channels state */
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM Output Compare MSP.
* @param htim TIM Output Compare handle
* @retval None
*/
__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OC_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Output Compare MSP.
* @param htim TIM Output Compare handle
* @retval None
*/
__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OC_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Output Compare signal generation.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @arg TIM_CHANNEL_5: TIM Channel 5 selected
* @arg TIM_CHANNEL_6: TIM Channel 6 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
/* Check the TIM channel state */
if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
{
return HAL_ERROR;
}
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Output Compare signal generation.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @arg TIM_CHANNEL_5: TIM Channel 5 selected
* @arg TIM_CHANNEL_6: TIM Channel 6 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
/* Disable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Output Compare signal generation in interrupt mode.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Check the TIM channel state */
if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
{
return HAL_ERROR;
}
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Enable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Enable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Enable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
}
/* Return function status */
return status;
}
/**
* @brief Stops the TIM Output Compare signal generation in interrupt mode.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Disable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
}
/* Return function status */
return status;
}
/**
* @brief Starts the TIM Output Compare signal generation in DMA mode.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @param pData The source Buffer address.
* @param Length The length of data to be transferred from memory to TIM peripheral
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Set the TIM channel state */
if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
{
return HAL_BUSY;
}
else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
{
if ((pData == NULL) || (Length == 0U))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else
{
return HAL_ERROR;
}
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Enable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
}
/* Return function status */
return status;
}
/**
* @brief Stops the TIM Output Compare signal generation in DMA mode.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Disable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
}
/* Return function status */
return status;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
* @brief TIM PWM functions
*
@verbatim
==============================================================================
##### TIM PWM functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM PWM.
(+) De-initialize the TIM PWM.
(+) Start the TIM PWM.
(+) Stop the TIM PWM.
(+) Start the TIM PWM and enable interrupt.
(+) Stop the TIM PWM and disable interrupt.
(+) Start the TIM PWM and enable DMA transfer.
(+) Stop the TIM PWM and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM PWM Time Base according to the specified
* parameters in the TIM_HandleTypeDef and initializes the associated handle.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
* @param htim TIM PWM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
{
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy weak callbacks */
TIM_ResetCallback(htim);
if (htim->PWM_MspInitCallback == NULL)
{
htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->PWM_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_PWM_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Init the base time for the PWM */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Initialize the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
/* Initialize the TIM channels state */
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM peripheral
* @param htim TIM PWM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->PWM_MspDeInitCallback == NULL)
{
htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
}
/* DeInit the low level hardware */
htim->PWM_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
HAL_TIM_PWM_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
/* Change the TIM channels state */
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM PWM MSP.
* @param htim TIM PWM handle
* @retval None
*/
__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_PWM_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM PWM MSP.
* @param htim TIM PWM handle
* @retval None
*/
__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_PWM_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the PWM signal generation.
* @param htim TIM handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @arg TIM_CHANNEL_5: TIM Channel 5 selected
* @arg TIM_CHANNEL_6: TIM Channel 6 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
/* Check the TIM channel state */
if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
{
return HAL_ERROR;
}
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the PWM signal generation.
* @param htim TIM PWM handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @arg TIM_CHANNEL_5: TIM Channel 5 selected
* @arg TIM_CHANNEL_6: TIM Channel 6 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
/* Disable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the PWM signal generation in interrupt mode.
* @param htim TIM PWM handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Check the TIM channel state */
if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
{
return HAL_ERROR;
}
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Enable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Enable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
}
/* Return function status */
return status;
}
/**
* @brief Stops the PWM signal generation in interrupt mode.
* @param htim TIM PWM handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Disable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
}
/* Return function status */
return status;
}
/**
* @brief Starts the TIM PWM signal generation in DMA mode.
* @param htim TIM PWM handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @param pData The source Buffer address.
* @param Length The length of data to be transferred from memory to TIM peripheral
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Set the TIM channel state */
if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
{
return HAL_BUSY;
}
else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
{
if ((pData == NULL) || (Length == 0U))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else
{
return HAL_ERROR;
}
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Output Capture/Compare 3 request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
}
/* Return function status */
return status;
}
/**
* @brief Stops the TIM PWM signal generation in DMA mode.
* @param htim TIM PWM handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Disable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
}
/* Return function status */
return status;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
* @brief TIM Input Capture functions
*
@verbatim
==============================================================================
##### TIM Input Capture functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM Input Capture.
(+) De-initialize the TIM Input Capture.
(+) Start the TIM Input Capture.
(+) Stop the TIM Input Capture.
(+) Start the TIM Input Capture and enable interrupt.
(+) Stop the TIM Input Capture and disable interrupt.
(+) Start the TIM Input Capture and enable DMA transfer.
(+) Stop the TIM Input Capture and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Input Capture Time base according to the specified
* parameters in the TIM_HandleTypeDef and initializes the associated handle.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
* @param htim TIM Input Capture handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
{
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy weak callbacks */
TIM_ResetCallback(htim);
if (htim->IC_MspInitCallback == NULL)
{
htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->IC_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_IC_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Init the base time for the input capture */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Initialize the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
/* Initialize the TIM channels state */
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM peripheral
* @param htim TIM Input Capture handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->IC_MspDeInitCallback == NULL)
{
htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
}
/* DeInit the low level hardware */
htim->IC_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
HAL_TIM_IC_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
/* Change the TIM channels state */
TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM Input Capture MSP.
* @param htim TIM Input Capture handle
* @retval None
*/
__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_IC_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Input Capture MSP.
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_IC_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Input Capture measurement.
* @param htim TIM Input Capture handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Check the TIM channel state */
if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Input Capture measurement.
* @param htim TIM Input Capture handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Disable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Input Capture measurement in interrupt mode.
* @param htim TIM Input Capture handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tmpsmcr;
HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Check the TIM channel state */
if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Enable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Enable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Enable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
}
/* Return function status */
return status;
}
/**
* @brief Stops the TIM Input Capture measurement in interrupt mode.
* @param htim TIM Input Capture handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Disable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
}
/* Return function status */
return status;
}
/**
* @brief Starts the TIM Input Capture measurement in DMA mode.
* @param htim TIM Input Capture handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @param pData The destination Buffer address.
* @param Length The length of data to be transferred from TIM peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tmpsmcr;
HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
/* Set the TIM channel state */
if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY)
|| (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY))
{
return HAL_BUSY;
}
else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY)
&& (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY))
{
if ((pData == NULL) || (Length == 0U))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else
{
return HAL_ERROR;
}
/* Enable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
break;
}
default:
status = HAL_ERROR;
break;
}
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return status;
}
/**
* @brief Stops the TIM Input Capture measurement in DMA mode.
* @param htim TIM Input Capture handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
/* Disable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
}
/* Return function status */
return status;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
* @brief TIM One Pulse functions
*
@verbatim
==============================================================================
##### TIM One Pulse functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM One Pulse.
(+) De-initialize the TIM One Pulse.
(+) Start the TIM One Pulse.
(+) Stop the TIM One Pulse.
(+) Start the TIM One Pulse and enable interrupt.
(+) Stop the TIM One Pulse and disable interrupt.
(+) Start the TIM One Pulse and enable DMA transfer.
(+) Stop the TIM One Pulse and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM One Pulse Time Base according to the specified
* parameters in the TIM_HandleTypeDef and initializes the associated handle.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
* @note When the timer instance is initialized in One Pulse mode, timer
* channels 1 and channel 2 are reserved and cannot be used for other
* purpose.
* @param htim TIM One Pulse handle
* @param OnePulseMode Select the One pulse mode.
* This parameter can be one of the following values:
* @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
* @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
{
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_OPM_MODE(OnePulseMode));
assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy weak callbacks */
TIM_ResetCallback(htim);
if (htim->OnePulse_MspInitCallback == NULL)
{
htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->OnePulse_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_OnePulse_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Configure the Time base in the One Pulse Mode */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Reset the OPM Bit */
htim->Instance->CR1 &= ~TIM_CR1_OPM;
/* Configure the OPM Mode */
htim->Instance->CR1 |= OnePulseMode;
/* Initialize the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
/* Initialize the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM One Pulse
* @param htim TIM One Pulse handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->OnePulse_MspDeInitCallback == NULL)
{
htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
}
/* DeInit the low level hardware */
htim->OnePulse_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_TIM_OnePulse_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM One Pulse MSP.
* @param htim TIM One Pulse handle
* @retval None
*/
__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OnePulse_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM One Pulse MSP.
* @param htim TIM One Pulse handle
* @retval None
*/
__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM One Pulse signal generation.
* @note Though OutputChannel parameter is deprecated and ignored by the function
* it has been kept to avoid HAL_TIM API compatibility break.
* @note The pulse output channel is determined when calling
* @ref HAL_TIM_OnePulse_ConfigChannel().
* @param htim TIM One Pulse handle
* @param OutputChannel See note above
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
/* Prevent unused argument(s) compilation warning */
UNUSED(OutputChannel);
/* Check the TIM channels state */
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the Capture compare and the Input Capture channels
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
No need to enable the counter, it's enabled automatically by hardware
(the counter starts in response to a stimulus and generate a pulse */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM One Pulse signal generation.
* @note Though OutputChannel parameter is deprecated and ignored by the function
* it has been kept to avoid HAL_TIM API compatibility break.
* @note The pulse output channel is determined when calling
* @ref HAL_TIM_OnePulse_ConfigChannel().
* @param htim TIM One Pulse handle
* @param OutputChannel See note above
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(OutputChannel);
/* Disable the Capture compare and the Input Capture channels
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM One Pulse signal generation in interrupt mode.
* @note Though OutputChannel parameter is deprecated and ignored by the function
* it has been kept to avoid HAL_TIM API compatibility break.
* @note The pulse output channel is determined when calling
* @ref HAL_TIM_OnePulse_ConfigChannel().
* @param htim TIM One Pulse handle
* @param OutputChannel See note above
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
/* Prevent unused argument(s) compilation warning */
UNUSED(OutputChannel);
/* Check the TIM channels state */
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the Capture compare and the Input Capture channels
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
No need to enable the counter, it's enabled automatically by hardware
(the counter starts in response to a stimulus and generate a pulse */
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Enable the main output */
__HAL_TIM_MOE_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM One Pulse signal generation in interrupt mode.
* @note Though OutputChannel parameter is deprecated and ignored by the function
* it has been kept to avoid HAL_TIM API compatibility break.
* @note The pulse output channel is determined when calling
* @ref HAL_TIM_OnePulse_ConfigChannel().
* @param htim TIM One Pulse handle
* @param OutputChannel See note above
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(OutputChannel);
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
/* Disable the Capture compare and the Input Capture channels
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
{
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
* @brief TIM Encoder functions
*
@verbatim
==============================================================================
##### TIM Encoder functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM Encoder.
(+) De-initialize the TIM Encoder.
(+) Start the TIM Encoder.
(+) Stop the TIM Encoder.
(+) Start the TIM Encoder and enable interrupt.
(+) Stop the TIM Encoder and disable interrupt.
(+) Start the TIM Encoder and enable DMA transfer.
(+) Stop the TIM Encoder and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Encoder Interface and initialize the associated handle.
* @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
* requires a timer reset to avoid unexpected direction
* due to DIR bit readonly in center aligned mode.
* Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
* @note Encoder mode and External clock mode 2 are not compatible and must not be selected together
* Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
* using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
* @note When the timer instance is initialized in Encoder mode, timer
* channels 1 and channel 2 are reserved and cannot be used for other
* purpose.
* @param htim TIM Encoder Interface handle
* @param sConfig TIM Encoder Interface configuration structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig)
{
uint32_t tmpsmcr;
uint32_t tmpccmr1;
uint32_t tmpccer;
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy weak callbacks */
TIM_ResetCallback(htim);
if (htim->Encoder_MspInitCallback == NULL)
{
htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->Encoder_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_Encoder_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Reset the SMS and ECE bits */
htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
/* Configure the Time base in the Encoder Mode */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Get the TIMx SMCR register value */
tmpsmcr = htim->Instance->SMCR;
/* Get the TIMx CCMR1 register value */
tmpccmr1 = htim->Instance->CCMR1;
/* Get the TIMx CCER register value */
tmpccer = htim->Instance->CCER;
/* Set the encoder Mode */
tmpsmcr |= sConfig->EncoderMode;
/* Select the Capture Compare 1 and the Capture Compare 2 as input */
tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
/* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
/* Set the TI1 and the TI2 Polarities */
tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
/* Write to TIMx SMCR */
htim->Instance->SMCR = tmpsmcr;
/* Write to TIMx CCMR1 */
htim->Instance->CCMR1 = tmpccmr1;
/* Write to TIMx CCER */
htim->Instance->CCER = tmpccer;
/* Initialize the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM Encoder interface
* @param htim TIM Encoder Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->Encoder_MspDeInitCallback == NULL)
{
htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
}
/* DeInit the low level hardware */
htim->Encoder_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_TIM_Encoder_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM Encoder Interface MSP.
* @param htim TIM Encoder Interface handle
* @retval None
*/
__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_Encoder_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Encoder Interface MSP.
* @param htim TIM Encoder Interface handle
* @retval None
*/
__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Encoder Interface.
* @param htim TIM Encoder Interface handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
/* Set the TIM channel(s) state */
if (Channel == TIM_CHANNEL_1)
{
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else if (Channel == TIM_CHANNEL_2)
{
if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else
{
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
/* Enable the encoder interface channels */
switch (Channel)
{
case TIM_CHANNEL_1:
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
break;
}
case TIM_CHANNEL_2:
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
break;
}
default :
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
break;
}
}
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Encoder Interface.
* @param htim TIM Encoder Interface handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1 and 2
(in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
switch (Channel)
{
case TIM_CHANNEL_1:
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
break;
}
case TIM_CHANNEL_2:
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
break;
}
default :
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
break;
}
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel(s) state */
if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
{
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Encoder Interface in interrupt mode.
* @param htim TIM Encoder Interface handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
/* Set the TIM channel(s) state */
if (Channel == TIM_CHANNEL_1)
{
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else if (Channel == TIM_CHANNEL_2)
{
if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else
{
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
/* Enable the encoder interface channels */
/* Enable the capture compare Interrupts 1 and/or 2 */
switch (Channel)
{
case TIM_CHANNEL_1:
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
default :
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
}
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Encoder Interface in interrupt mode.
* @param htim TIM Encoder Interface handle
* @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1 and 2
(in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
if (Channel == TIM_CHANNEL_1)
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the capture compare Interrupts 1 */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
}
else if (Channel == TIM_CHANNEL_2)
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
/* Disable the capture compare Interrupts 2 */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
}
else
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
/* Disable the capture compare Interrupts 1 and 2 */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel(s) state */
if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
{
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Encoder Interface in DMA mode.
* @param htim TIM Encoder Interface handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
* @param pData1 The destination Buffer address for IC1.
* @param pData2 The destination Buffer address for IC2.
* @param Length The length of data to be transferred from TIM peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1,
uint32_t *pData2, uint16_t Length)
{
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
/* Set the TIM channel(s) state */
if (Channel == TIM_CHANNEL_1)
{
if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
|| (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
{
return HAL_BUSY;
}
else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
&& (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
{
if ((pData1 == NULL) || (Length == 0U))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else
{
return HAL_ERROR;
}
}
else if (Channel == TIM_CHANNEL_2)
{
if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
|| (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
{
return HAL_BUSY;
}
else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
&& (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
{
if ((pData2 == NULL) || (Length == 0U))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else
{
return HAL_ERROR;
}
}
else
{
if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
|| (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
|| (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
|| (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
{
return HAL_BUSY;
}
else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
&& (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
&& (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
&& (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
{
if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else
{
return HAL_ERROR;
}
}
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Input Capture DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
break;
}
case TIM_CHANNEL_2:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Input Capture DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
break;
}
default:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Input Capture DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
/* Enable the TIM Input Capture DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
break;
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Encoder Interface in DMA mode.
* @param htim TIM Encoder Interface handle
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1 and 2
(in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
if (Channel == TIM_CHANNEL_1)
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the capture compare DMA Request 1 */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
}
else if (Channel == TIM_CHANNEL_2)
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
/* Disable the capture compare DMA Request 2 */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
}
else
{
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
/* Disable the capture compare DMA Request 1 and 2 */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel(s) state */
if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
{
TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
}
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
* @brief TIM IRQ handler management
*
@verbatim
==============================================================================
##### IRQ handler management #####
==============================================================================
[..]
This section provides Timer IRQ handler function.
@endverbatim
* @{
*/
/**
* @brief This function handles TIM interrupts requests.
* @param htim TIM handle
* @retval None
*/
void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
{
uint32_t itsource = htim->Instance->DIER;
uint32_t itflag = htim->Instance->SR;
/* Capture compare 1 event */
if ((itflag & (TIM_FLAG_CC1)) == (TIM_FLAG_CC1))
{
if ((itsource & (TIM_IT_CC1)) == (TIM_IT_CC1))
{
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
/* Input capture event */
if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U)
{
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->IC_CaptureCallback(htim);
#else
HAL_TIM_IC_CaptureCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Output compare event */
else
{
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->OC_DelayElapsedCallback(htim);
htim->PWM_PulseFinishedCallback(htim);
#else
HAL_TIM_OC_DelayElapsedCallback(htim);
HAL_TIM_PWM_PulseFinishedCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
}
}
/* Capture compare 2 event */
if ((itflag & (TIM_FLAG_CC2)) == (TIM_FLAG_CC2))
{
if ((itsource & (TIM_IT_CC2)) == (TIM_IT_CC2))
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
/* Input capture event */
if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
{
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->IC_CaptureCallback(htim);
#else
HAL_TIM_IC_CaptureCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Output compare event */
else
{
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->OC_DelayElapsedCallback(htim);
htim->PWM_PulseFinishedCallback(htim);
#else
HAL_TIM_OC_DelayElapsedCallback(htim);
HAL_TIM_PWM_PulseFinishedCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
}
/* Capture compare 3 event */
if ((itflag & (TIM_FLAG_CC3)) == (TIM_FLAG_CC3))
{
if ((itsource & (TIM_IT_CC3)) == (TIM_IT_CC3))
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
/* Input capture event */
if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
{
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->IC_CaptureCallback(htim);
#else
HAL_TIM_IC_CaptureCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Output compare event */
else
{
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->OC_DelayElapsedCallback(htim);
htim->PWM_PulseFinishedCallback(htim);
#else
HAL_TIM_OC_DelayElapsedCallback(htim);
HAL_TIM_PWM_PulseFinishedCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
}
/* Capture compare 4 event */
if ((itflag & (TIM_FLAG_CC4)) == (TIM_FLAG_CC4))
{
if ((itsource & (TIM_IT_CC4)) == (TIM_IT_CC4))
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
/* Input capture event */
if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
{
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->IC_CaptureCallback(htim);
#else
HAL_TIM_IC_CaptureCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Output compare event */
else
{
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->OC_DelayElapsedCallback(htim);
htim->PWM_PulseFinishedCallback(htim);
#else
HAL_TIM_OC_DelayElapsedCallback(htim);
HAL_TIM_PWM_PulseFinishedCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
}
/* TIM Update event */
if ((itflag & (TIM_FLAG_UPDATE)) == (TIM_FLAG_UPDATE))
{
if ((itsource & (TIM_IT_UPDATE)) == (TIM_IT_UPDATE))
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->PeriodElapsedCallback(htim);
#else
HAL_TIM_PeriodElapsedCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
}
/* TIM Break input event */
if ((itflag & (TIM_FLAG_BREAK)) == (TIM_FLAG_BREAK))
{
if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK))
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->BreakCallback(htim);
#else
HAL_TIMEx_BreakCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
}
/* TIM Break2 input event */
if ((itflag & (TIM_FLAG_BREAK2)) == (TIM_FLAG_BREAK2))
{
if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK))
{
__HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->Break2Callback(htim);
#else
HAL_TIMEx_Break2Callback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
}
/* TIM Trigger detection event */
if ((itflag & (TIM_FLAG_TRIGGER)) == (TIM_FLAG_TRIGGER))
{
if ((itsource & (TIM_IT_TRIGGER)) == (TIM_IT_TRIGGER))
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->TriggerCallback(htim);
#else
HAL_TIM_TriggerCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
}
/* TIM commutation event */
if ((itflag & (TIM_FLAG_COM)) == (TIM_FLAG_COM))
{
if ((itsource & (TIM_IT_COM)) == (TIM_IT_COM))
{
__HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->CommutationCallback(htim);
#else
HAL_TIMEx_CommutCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
}
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
* @brief TIM Peripheral Control functions
*
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
(+) Configure External Clock source.
(+) Configure Complementary channels, break features and dead time.
(+) Configure Master and the Slave synchronization.
(+) Configure the DMA Burst Mode.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Output Compare Channels according to the specified
* parameters in the TIM_OC_InitTypeDef.
* @param htim TIM Output Compare handle
* @param sConfig TIM Output Compare configuration structure
* @param Channel TIM Channels to configure
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @arg TIM_CHANNEL_5: TIM Channel 5 selected
* @arg TIM_CHANNEL_6: TIM Channel 6 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim,
const TIM_OC_InitTypeDef *sConfig,
uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CHANNELS(Channel));
assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
/* Process Locked */
__HAL_LOCK(htim);
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
/* Configure the TIM Channel 1 in Output Compare */
TIM_OC1_SetConfig(htim->Instance, sConfig);
break;
}
case TIM_CHANNEL_2:
{
/* Check the parameters */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
/* Configure the TIM Channel 2 in Output Compare */
TIM_OC2_SetConfig(htim->Instance, sConfig);
break;
}
case TIM_CHANNEL_3:
{
/* Check the parameters */
assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
/* Configure the TIM Channel 3 in Output Compare */
TIM_OC3_SetConfig(htim->Instance, sConfig);
break;
}
case TIM_CHANNEL_4:
{
/* Check the parameters */
assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
/* Configure the TIM Channel 4 in Output Compare */
TIM_OC4_SetConfig(htim->Instance, sConfig);
break;
}
case TIM_CHANNEL_5:
{
/* Check the parameters */
assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
/* Configure the TIM Channel 5 in Output Compare */
TIM_OC5_SetConfig(htim->Instance, sConfig);
break;
}
case TIM_CHANNEL_6:
{
/* Check the parameters */
assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
/* Configure the TIM Channel 6 in Output Compare */
TIM_OC6_SetConfig(htim->Instance, sConfig);
break;
}
default:
status = HAL_ERROR;
break;
}
__HAL_UNLOCK(htim);
return status;
}
/**
* @brief Initializes the TIM Input Capture Channels according to the specified
* parameters in the TIM_IC_InitTypeDef.
* @param htim TIM IC handle
* @param sConfig TIM Input Capture configuration structure
* @param Channel TIM Channel to configure
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
/* Process Locked */
__HAL_LOCK(htim);
if (Channel == TIM_CHANNEL_1)
{
/* TI1 Configuration */
TIM_TI1_SetConfig(htim->Instance,
sConfig->ICPolarity,
sConfig->ICSelection,
sConfig->ICFilter);
/* Reset the IC1PSC Bits */
htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
/* Set the IC1PSC value */
htim->Instance->CCMR1 |= sConfig->ICPrescaler;
}
else if (Channel == TIM_CHANNEL_2)
{
/* TI2 Configuration */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
TIM_TI2_SetConfig(htim->Instance,
sConfig->ICPolarity,
sConfig->ICSelection,
sConfig->ICFilter);
/* Reset the IC2PSC Bits */
htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
/* Set the IC2PSC value */
htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
}
else if (Channel == TIM_CHANNEL_3)
{
/* TI3 Configuration */
assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
TIM_TI3_SetConfig(htim->Instance,
sConfig->ICPolarity,
sConfig->ICSelection,
sConfig->ICFilter);
/* Reset the IC3PSC Bits */
htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
/* Set the IC3PSC value */
htim->Instance->CCMR2 |= sConfig->ICPrescaler;
}
else if (Channel == TIM_CHANNEL_4)
{
/* TI4 Configuration */
assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
TIM_TI4_SetConfig(htim->Instance,
sConfig->ICPolarity,
sConfig->ICSelection,
sConfig->ICFilter);
/* Reset the IC4PSC Bits */
htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
/* Set the IC4PSC value */
htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
}
else
{
status = HAL_ERROR;
}
__HAL_UNLOCK(htim);
return status;
}
/**
* @brief Initializes the TIM PWM channels according to the specified
* parameters in the TIM_OC_InitTypeDef.
* @param htim TIM PWM handle
* @param sConfig TIM PWM configuration structure
* @param Channel TIM Channels to be configured
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @arg TIM_CHANNEL_5: TIM Channel 5 selected
* @arg TIM_CHANNEL_6: TIM Channel 6 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim,
const TIM_OC_InitTypeDef *sConfig,
uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CHANNELS(Channel));
assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
/* Process Locked */
__HAL_LOCK(htim);
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
/* Configure the Channel 1 in PWM mode */
TIM_OC1_SetConfig(htim->Instance, sConfig);
/* Set the Preload enable bit for channel1 */
htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
/* Configure the Output Fast mode */
htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
htim->Instance->CCMR1 |= sConfig->OCFastMode;
break;
}
case TIM_CHANNEL_2:
{
/* Check the parameters */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
/* Configure the Channel 2 in PWM mode */
TIM_OC2_SetConfig(htim->Instance, sConfig);
/* Set the Preload enable bit for channel2 */
htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
/* Configure the Output Fast mode */
htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
break;
}
case TIM_CHANNEL_3:
{
/* Check the parameters */
assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
/* Configure the Channel 3 in PWM mode */
TIM_OC3_SetConfig(htim->Instance, sConfig);
/* Set the Preload enable bit for channel3 */
htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
/* Configure the Output Fast mode */
htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
htim->Instance->CCMR2 |= sConfig->OCFastMode;
break;
}
case TIM_CHANNEL_4:
{
/* Check the parameters */
assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
/* Configure the Channel 4 in PWM mode */
TIM_OC4_SetConfig(htim->Instance, sConfig);
/* Set the Preload enable bit for channel4 */
htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
/* Configure the Output Fast mode */
htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
break;
}
case TIM_CHANNEL_5:
{
/* Check the parameters */
assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
/* Configure the Channel 5 in PWM mode */
TIM_OC5_SetConfig(htim->Instance, sConfig);
/* Set the Preload enable bit for channel5*/
htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE;
/* Configure the Output Fast mode */
htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE;
htim->Instance->CCMR3 |= sConfig->OCFastMode;
break;
}
case TIM_CHANNEL_6:
{
/* Check the parameters */
assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
/* Configure the Channel 6 in PWM mode */
TIM_OC6_SetConfig(htim->Instance, sConfig);
/* Set the Preload enable bit for channel6 */
htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE;
/* Configure the Output Fast mode */
htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE;
htim->Instance->CCMR3 |= sConfig->OCFastMode << 8U;
break;
}
default:
status = HAL_ERROR;
break;
}
__HAL_UNLOCK(htim);
return status;
}
/**
* @brief Initializes the TIM One Pulse Channels according to the specified
* parameters in the TIM_OnePulse_InitTypeDef.
* @param htim TIM One Pulse handle
* @param sConfig TIM One Pulse configuration structure
* @param OutputChannel TIM output channel to configure
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @param InputChannel TIM input Channel to configure
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @note To output a waveform with a minimum delay user can enable the fast
* mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
* output is forced in response to the edge detection on TIx input,
* without taking in account the comparison.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig,
uint32_t OutputChannel, uint32_t InputChannel)
{
HAL_StatusTypeDef status = HAL_OK;
TIM_OC_InitTypeDef temp1;
/* Check the parameters */
assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
if (OutputChannel != InputChannel)
{
/* Process Locked */
__HAL_LOCK(htim);
htim->State = HAL_TIM_STATE_BUSY;
/* Extract the Output compare configuration from sConfig structure */
temp1.OCMode = sConfig->OCMode;
temp1.Pulse = sConfig->Pulse;
temp1.OCPolarity = sConfig->OCPolarity;
temp1.OCNPolarity = sConfig->OCNPolarity;
temp1.OCIdleState = sConfig->OCIdleState;
temp1.OCNIdleState = sConfig->OCNIdleState;
switch (OutputChannel)
{
case TIM_CHANNEL_1:
{
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
TIM_OC1_SetConfig(htim->Instance, &temp1);
break;
}
case TIM_CHANNEL_2:
{
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
TIM_OC2_SetConfig(htim->Instance, &temp1);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
switch (InputChannel)
{
case TIM_CHANNEL_1:
{
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
sConfig->ICSelection, sConfig->ICFilter);
/* Reset the IC1PSC Bits */
htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
/* Select the Trigger source */
htim->Instance->SMCR &= ~TIM_SMCR_TS;
htim->Instance->SMCR |= TIM_TS_TI1FP1;
/* Select the Slave Mode */
htim->Instance->SMCR &= ~TIM_SMCR_SMS;
htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
break;
}
case TIM_CHANNEL_2:
{
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
sConfig->ICSelection, sConfig->ICFilter);
/* Reset the IC2PSC Bits */
htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
/* Select the Trigger source */
htim->Instance->SMCR &= ~TIM_SMCR_TS;
htim->Instance->SMCR |= TIM_TS_TI2FP2;
/* Select the Slave Mode */
htim->Instance->SMCR &= ~TIM_SMCR_SMS;
htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
break;
}
default:
status = HAL_ERROR;
break;
}
}
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
return status;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
* @param htim TIM handle
* @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
* This parameter can be one of the following values:
* @arg TIM_DMABASE_CR1
* @arg TIM_DMABASE_CR2
* @arg TIM_DMABASE_SMCR
* @arg TIM_DMABASE_DIER
* @arg TIM_DMABASE_SR
* @arg TIM_DMABASE_EGR
* @arg TIM_DMABASE_CCMR1
* @arg TIM_DMABASE_CCMR2
* @arg TIM_DMABASE_CCER
* @arg TIM_DMABASE_CNT
* @arg TIM_DMABASE_PSC
* @arg TIM_DMABASE_ARR
* @arg TIM_DMABASE_RCR
* @arg TIM_DMABASE_CCR1
* @arg TIM_DMABASE_CCR2
* @arg TIM_DMABASE_CCR3
* @arg TIM_DMABASE_CCR4
* @arg TIM_DMABASE_BDTR
* @arg TIM_DMABASE_OR1
* @arg TIM_DMABASE_CCMR3
* @arg TIM_DMABASE_CCR5
* @arg TIM_DMABASE_CCR6
* @arg TIM_DMABASE_OR2
* @arg TIM_DMABASE_OR3
* @param BurstRequestSrc TIM DMA Request sources
* This parameter can be one of the following values:
* @arg TIM_DMA_UPDATE: TIM update Interrupt source
* @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
* @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
* @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
* @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
* @arg TIM_DMA_COM: TIM Commutation DMA source
* @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
* @param BurstBuffer The Buffer address.
* @param BurstLength DMA Burst length. This parameter can be one value
* between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
* @note This function should be used only when BurstLength is equal to DMA data transfer length.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t BurstLength)
{
HAL_StatusTypeDef status;
status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
((BurstLength) >> 8U) + 1U);
return status;
}
/**
* @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
* @param htim TIM handle
* @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
* This parameter can be one of the following values:
* @arg TIM_DMABASE_CR1
* @arg TIM_DMABASE_CR2
* @arg TIM_DMABASE_SMCR
* @arg TIM_DMABASE_DIER
* @arg TIM_DMABASE_SR
* @arg TIM_DMABASE_EGR
* @arg TIM_DMABASE_CCMR1
* @arg TIM_DMABASE_CCMR2
* @arg TIM_DMABASE_CCER
* @arg TIM_DMABASE_CNT
* @arg TIM_DMABASE_PSC
* @arg TIM_DMABASE_ARR
* @arg TIM_DMABASE_RCR
* @arg TIM_DMABASE_CCR1
* @arg TIM_DMABASE_CCR2
* @arg TIM_DMABASE_CCR3
* @arg TIM_DMABASE_CCR4
* @arg TIM_DMABASE_BDTR
* @arg TIM_DMABASE_OR1
* @arg TIM_DMABASE_CCMR3
* @arg TIM_DMABASE_CCR5
* @arg TIM_DMABASE_CCR6
* @arg TIM_DMABASE_OR2
* @arg TIM_DMABASE_OR3
* @param BurstRequestSrc TIM DMA Request sources
* This parameter can be one of the following values:
* @arg TIM_DMA_UPDATE: TIM update Interrupt source
* @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
* @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
* @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
* @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
* @arg TIM_DMA_COM: TIM Commutation DMA source
* @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
* @param BurstBuffer The Buffer address.
* @param BurstLength DMA Burst length. This parameter can be one value
* between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
* @param DataLength Data length. This parameter can be one value
* between 1 and 0xFFFF.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
uint32_t BurstLength, uint32_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
assert_param(IS_TIM_DMA_LENGTH(BurstLength));
assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
{
return HAL_BUSY;
}
else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
{
if ((BurstBuffer == NULL) && (BurstLength > 0U))
{
return HAL_ERROR;
}
else
{
htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
}
}
else
{
/* nothing to do */
}
switch (BurstRequestSrc)
{
case TIM_DMA_UPDATE:
{
/* Set the DMA Period elapsed callbacks */
htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer,
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
case TIM_DMA_CC1:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer,
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
case TIM_DMA_CC2:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer,
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
case TIM_DMA_CC3:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer,
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
case TIM_DMA_CC4:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer,
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
case TIM_DMA_COM:
{
/* Set the DMA commutation callbacks */
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer,
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
case TIM_DMA_TRIGGER:
{
/* Set the DMA trigger callbacks */
htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer,
(uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Configure the DMA Burst Mode */
htim->Instance->DCR = (BurstBaseAddress | BurstLength);
/* Enable the TIM DMA Request */
__HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
}
/* Return function status */
return status;
}
/**
* @brief Stops the TIM DMA Burst mode
* @param htim TIM handle
* @param BurstRequestSrc TIM DMA Request sources to disable
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
/* Abort the DMA transfer (at least disable the DMA channel) */
switch (BurstRequestSrc)
{
case TIM_DMA_UPDATE:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
break;
}
case TIM_DMA_CC1:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
break;
}
case TIM_DMA_CC2:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
break;
}
case TIM_DMA_CC3:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
break;
}
case TIM_DMA_CC4:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
break;
}
case TIM_DMA_COM:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
break;
}
case TIM_DMA_TRIGGER:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Disable the TIM Update DMA request */
__HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
/* Change the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
}
/* Return function status */
return status;
}
/**
* @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
* @param htim TIM handle
* @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
* This parameter can be one of the following values:
* @arg TIM_DMABASE_CR1
* @arg TIM_DMABASE_CR2
* @arg TIM_DMABASE_SMCR
* @arg TIM_DMABASE_DIER
* @arg TIM_DMABASE_SR
* @arg TIM_DMABASE_EGR
* @arg TIM_DMABASE_CCMR1
* @arg TIM_DMABASE_CCMR2
* @arg TIM_DMABASE_CCER
* @arg TIM_DMABASE_CNT
* @arg TIM_DMABASE_PSC
* @arg TIM_DMABASE_ARR
* @arg TIM_DMABASE_RCR
* @arg TIM_DMABASE_CCR1
* @arg TIM_DMABASE_CCR2
* @arg TIM_DMABASE_CCR3
* @arg TIM_DMABASE_CCR4
* @arg TIM_DMABASE_BDTR
* @arg TIM_DMABASE_OR1
* @arg TIM_DMABASE_CCMR3
* @arg TIM_DMABASE_CCR5
* @arg TIM_DMABASE_CCR6
* @arg TIM_DMABASE_OR2
* @arg TIM_DMABASE_OR3
* @param BurstRequestSrc TIM DMA Request sources
* This parameter can be one of the following values:
* @arg TIM_DMA_UPDATE: TIM update Interrupt source
* @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
* @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
* @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
* @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
* @arg TIM_DMA_COM: TIM Commutation DMA source
* @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
* @param BurstBuffer The Buffer address.
* @param BurstLength DMA Burst length. This parameter can be one value
* between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
* @note This function should be used only when BurstLength is equal to DMA data transfer length.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength)
{
HAL_StatusTypeDef status;
status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
((BurstLength) >> 8U) + 1U);
return status;
}
/**
* @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
* @param htim TIM handle
* @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
* This parameter can be one of the following values:
* @arg TIM_DMABASE_CR1
* @arg TIM_DMABASE_CR2
* @arg TIM_DMABASE_SMCR
* @arg TIM_DMABASE_DIER
* @arg TIM_DMABASE_SR
* @arg TIM_DMABASE_EGR
* @arg TIM_DMABASE_CCMR1
* @arg TIM_DMABASE_CCMR2
* @arg TIM_DMABASE_CCER
* @arg TIM_DMABASE_CNT
* @arg TIM_DMABASE_PSC
* @arg TIM_DMABASE_ARR
* @arg TIM_DMABASE_RCR
* @arg TIM_DMABASE_CCR1
* @arg TIM_DMABASE_CCR2
* @arg TIM_DMABASE_CCR3
* @arg TIM_DMABASE_CCR4
* @arg TIM_DMABASE_BDTR
* @arg TIM_DMABASE_OR1
* @arg TIM_DMABASE_CCMR3
* @arg TIM_DMABASE_CCR5
* @arg TIM_DMABASE_CCR6
* @arg TIM_DMABASE_OR2
* @arg TIM_DMABASE_OR3
* @param BurstRequestSrc TIM DMA Request sources
* This parameter can be one of the following values:
* @arg TIM_DMA_UPDATE: TIM update Interrupt source
* @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
* @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
* @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
* @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
* @arg TIM_DMA_COM: TIM Commutation DMA source
* @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
* @param BurstBuffer The Buffer address.
* @param BurstLength DMA Burst length. This parameter can be one value
* between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
* @param DataLength Data length. This parameter can be one value
* between 1 and 0xFFFF.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
uint32_t BurstRequestSrc, uint32_t *BurstBuffer,
uint32_t BurstLength, uint32_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
assert_param(IS_TIM_DMA_LENGTH(BurstLength));
assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
{
return HAL_BUSY;
}
else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
{
if ((BurstBuffer == NULL) && (BurstLength > 0U))
{
return HAL_ERROR;
}
else
{
htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
}
}
else
{
/* nothing to do */
}
switch (BurstRequestSrc)
{
case TIM_DMA_UPDATE:
{
/* Set the DMA Period elapsed callbacks */
htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
case TIM_DMA_CC1:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
case TIM_DMA_CC2:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
case TIM_DMA_CC3:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
case TIM_DMA_CC4:
{
/* Set the DMA capture callbacks */
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
case TIM_DMA_COM:
{
/* Set the DMA commutation callbacks */
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
case TIM_DMA_TRIGGER:
{
/* Set the DMA trigger callbacks */
htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
DataLength) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Configure the DMA Burst Mode */
htim->Instance->DCR = (BurstBaseAddress | BurstLength);
/* Enable the TIM DMA Request */
__HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
}
/* Return function status */
return status;
}
/**
* @brief Stop the DMA burst reading
* @param htim TIM handle
* @param BurstRequestSrc TIM DMA Request sources to disable.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
/* Abort the DMA transfer (at least disable the DMA channel) */
switch (BurstRequestSrc)
{
case TIM_DMA_UPDATE:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
break;
}
case TIM_DMA_CC1:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
break;
}
case TIM_DMA_CC2:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
break;
}
case TIM_DMA_CC3:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
break;
}
case TIM_DMA_CC4:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
break;
}
case TIM_DMA_COM:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
break;
}
case TIM_DMA_TRIGGER:
{
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
/* Disable the TIM Update DMA request */
__HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
/* Change the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
}
/* Return function status */
return status;
}
/**
* @brief Generate a software event
* @param htim TIM handle
* @param EventSource specifies the event source.
* This parameter can be one of the following values:
* @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
* @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
* @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
* @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
* @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
* @arg TIM_EVENTSOURCE_COM: Timer COM event source
* @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
* @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
* @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source
* @note Basic timers can only generate an update event.
* @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
* @note TIM_EVENTSOURCE_BREAK and TIM_EVENTSOURCE_BREAK2 are relevant
* only for timer instances supporting break input(s).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
assert_param(IS_TIM_EVENT_SOURCE(EventSource));
/* Process Locked */
__HAL_LOCK(htim);
/* Change the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Set the event sources */
htim->Instance->EGR = EventSource;
/* Change the TIM state */
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Configures the OCRef clear feature
* @param htim TIM handle
* @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
* contains the OCREF clear feature and parameters for the TIM peripheral.
* @param Channel specifies the TIM Channel
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1
* @arg TIM_CHANNEL_2: TIM Channel 2
* @arg TIM_CHANNEL_3: TIM Channel 3
* @arg TIM_CHANNEL_4: TIM Channel 4
* @arg TIM_CHANNEL_5: TIM Channel 5
* @arg TIM_CHANNEL_6: TIM Channel 6
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim,
const TIM_ClearInputConfigTypeDef *sClearInputConfig,
uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
/* Process Locked */
__HAL_LOCK(htim);
htim->State = HAL_TIM_STATE_BUSY;
switch (sClearInputConfig->ClearInputSource)
{
case TIM_CLEARINPUTSOURCE_NONE:
{
/* Clear the OCREF clear selection bit and the the ETR Bits */
CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
break;
}
case TIM_CLEARINPUTSOURCE_OCREFCLR:
{
/* Clear the OCREF clear selection bit */
CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
break;
}
case TIM_CLEARINPUTSOURCE_ETR:
{
/* Check the parameters */
assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
/* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1)
{
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
return HAL_ERROR;
}
TIM_ETR_SetConfig(htim->Instance,
sClearInputConfig->ClearInputPrescaler,
sClearInputConfig->ClearInputPolarity,
sClearInputConfig->ClearInputFilter);
/* Set the OCREF clear selection bit */
SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
break;
}
default:
status = HAL_ERROR;
break;
}
if (status == HAL_OK)
{
switch (Channel)
{
case TIM_CHANNEL_1:
{
if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
{
/* Enable the OCREF clear feature for Channel 1 */
SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
}
else
{
/* Disable the OCREF clear feature for Channel 1 */
CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
}
break;
}
case TIM_CHANNEL_2:
{
if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
{
/* Enable the OCREF clear feature for Channel 2 */
SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
}
else
{
/* Disable the OCREF clear feature for Channel 2 */
CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
}
break;
}
case TIM_CHANNEL_3:
{
if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
{
/* Enable the OCREF clear feature for Channel 3 */
SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
}
else
{
/* Disable the OCREF clear feature for Channel 3 */
CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
}
break;
}
case TIM_CHANNEL_4:
{
if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
{
/* Enable the OCREF clear feature for Channel 4 */
SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
}
else
{
/* Disable the OCREF clear feature for Channel 4 */
CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
}
break;
}
case TIM_CHANNEL_5:
{
if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
{
/* Enable the OCREF clear feature for Channel 5 */
SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
}
else
{
/* Disable the OCREF clear feature for Channel 5 */
CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
}
break;
}
case TIM_CHANNEL_6:
{
if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
{
/* Enable the OCREF clear feature for Channel 6 */
SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
}
else
{
/* Disable the OCREF clear feature for Channel 6 */
CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
}
break;
}
default:
break;
}
}
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
return status;
}
/**
* @brief Configures the clock source to be used
* @param htim TIM handle
* @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
* contains the clock source information for the TIM peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tmpsmcr;
/* Process Locked */
__HAL_LOCK(htim);
htim->State = HAL_TIM_STATE_BUSY;
/* Check the parameters */
assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
/* Reset the SMS, TS, ECE, ETPS and ETRF bits */
tmpsmcr = htim->Instance->SMCR;
tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
htim->Instance->SMCR = tmpsmcr;
switch (sClockSourceConfig->ClockSource)
{
case TIM_CLOCKSOURCE_INTERNAL:
{
assert_param(IS_TIM_INSTANCE(htim->Instance));
break;
}
case TIM_CLOCKSOURCE_ETRMODE1:
{
/* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
/* Check ETR input conditioning related parameters */
assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
/* Configure the ETR Clock source */
TIM_ETR_SetConfig(htim->Instance,
sClockSourceConfig->ClockPrescaler,
sClockSourceConfig->ClockPolarity,
sClockSourceConfig->ClockFilter);
/* Select the External clock mode1 and the ETRF trigger */
tmpsmcr = htim->Instance->SMCR;
tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
/* Write to TIMx SMCR */
htim->Instance->SMCR = tmpsmcr;
break;
}
case TIM_CLOCKSOURCE_ETRMODE2:
{
/* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
/* Check ETR input conditioning related parameters */
assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
/* Configure the ETR Clock source */
TIM_ETR_SetConfig(htim->Instance,
sClockSourceConfig->ClockPrescaler,
sClockSourceConfig->ClockPolarity,
sClockSourceConfig->ClockFilter);
/* Enable the External clock mode2 */
htim->Instance->SMCR |= TIM_SMCR_ECE;
break;
}
case TIM_CLOCKSOURCE_TI1:
{
/* Check whether or not the timer instance supports external clock mode 1 */
assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
/* Check TI1 input conditioning related parameters */
assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
TIM_TI1_ConfigInputStage(htim->Instance,
sClockSourceConfig->ClockPolarity,
sClockSourceConfig->ClockFilter);
TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
break;
}
case TIM_CLOCKSOURCE_TI2:
{
/* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
/* Check TI2 input conditioning related parameters */
assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
TIM_TI2_ConfigInputStage(htim->Instance,
sClockSourceConfig->ClockPolarity,
sClockSourceConfig->ClockFilter);
TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
break;
}
case TIM_CLOCKSOURCE_TI1ED:
{
/* Check whether or not the timer instance supports external clock mode 1 */
assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
/* Check TI1 input conditioning related parameters */
assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
TIM_TI1_ConfigInputStage(htim->Instance,
sClockSourceConfig->ClockPolarity,
sClockSourceConfig->ClockFilter);
TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
break;
}
case TIM_CLOCKSOURCE_ITR0:
case TIM_CLOCKSOURCE_ITR1:
case TIM_CLOCKSOURCE_ITR2:
case TIM_CLOCKSOURCE_ITR3:
{
/* Check whether or not the timer instance supports internal trigger input */
assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
break;
}
default:
status = HAL_ERROR;
break;
}
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
return status;
}
/**
* @brief Selects the signal connected to the TI1 input: direct from CH1_input
* or a XOR combination between CH1_input, CH2_input & CH3_input
* @param htim TIM handle.
* @param TI1_Selection Indicate whether or not channel 1 is connected to the
* output of a XOR gate.
* This parameter can be one of the following values:
* @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
* @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
* pins are connected to the TI1 input (XOR combination)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
{
uint32_t tmpcr2;
/* Check the parameters */
assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
/* Get the TIMx CR2 register value */
tmpcr2 = htim->Instance->CR2;
/* Reset the TI1 selection */
tmpcr2 &= ~TIM_CR2_TI1S;
/* Set the TI1 selection */
tmpcr2 |= TI1_Selection;
/* Write to TIMxCR2 */
htim->Instance->CR2 = tmpcr2;
return HAL_OK;
}
/**
* @brief Configures the TIM in Slave mode
* @param htim TIM handle.
* @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
* contains the selected trigger (internal trigger input, filtered
* timer input or external trigger input) and the Slave mode
* (Disable, Reset, Gated, Trigger, External clock mode 1).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig)
{
/* Check the parameters */
assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
__HAL_LOCK(htim);
htim->State = HAL_TIM_STATE_BUSY;
if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
{
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
return HAL_ERROR;
}
/* Disable Trigger Interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
/* Disable Trigger DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configures the TIM in Slave mode in interrupt mode
* @param htim TIM handle.
* @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
* contains the selected trigger (internal trigger input, filtered
* timer input or external trigger input) and the Slave mode
* (Disable, Reset, Gated, Trigger, External clock mode 1).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim,
const TIM_SlaveConfigTypeDef *sSlaveConfig)
{
/* Check the parameters */
assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
__HAL_LOCK(htim);
htim->State = HAL_TIM_STATE_BUSY;
if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
{
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
return HAL_ERROR;
}
/* Enable Trigger Interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
/* Disable Trigger DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Read the captured value from Capture Compare unit
* @param htim TIM handle.
* @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval Captured value
*/
uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpreg = 0U;
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
/* Return the capture 1 value */
tmpreg = htim->Instance->CCR1;
break;
}
case TIM_CHANNEL_2:
{
/* Check the parameters */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
/* Return the capture 2 value */
tmpreg = htim->Instance->CCR2;
break;
}
case TIM_CHANNEL_3:
{
/* Check the parameters */
assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
/* Return the capture 3 value */
tmpreg = htim->Instance->CCR3;
break;
}
case TIM_CHANNEL_4:
{
/* Check the parameters */
assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
/* Return the capture 4 value */
tmpreg = htim->Instance->CCR4;
break;
}
default:
break;
}
return tmpreg;
}
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
* @brief TIM Callbacks functions
*
@verbatim
==============================================================================
##### TIM Callbacks functions #####
==============================================================================
[..]
This section provides TIM callback functions:
(+) TIM Period elapsed callback
(+) TIM Output Compare callback
(+) TIM Input capture callback
(+) TIM Trigger callback
(+) TIM Error callback
@endverbatim
* @{
*/
/**
* @brief Period elapsed callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
*/
}
/**
* @brief Period elapsed half complete callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief Output Compare callback in non-blocking mode
* @param htim TIM OC handle
* @retval None
*/
__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
*/
}
/**
* @brief Input Capture callback in non-blocking mode
* @param htim TIM IC handle
* @retval None
*/
__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_IC_CaptureCallback could be implemented in the user file
*/
}
/**
* @brief Input Capture half complete callback in non-blocking mode
* @param htim TIM IC handle
* @retval None
*/
__weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief PWM Pulse finished callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
*/
}
/**
* @brief PWM Pulse finished half complete callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief Hall Trigger detection callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_TriggerCallback could be implemented in the user file
*/
}
/**
* @brief Hall Trigger detection half complete callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief Timer error callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_ErrorCallback could be implemented in the user file
*/
}
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User TIM callback to be used instead of the weak predefined callback
* @param htim tim handle
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
* @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
* @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
* @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
* @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
* @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
* @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
* @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
* @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
* @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
* @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
* @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
* @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
* @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
* @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
* @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
* @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
* @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
* @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
* @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
* @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
* @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
* @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
* @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
* @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
* @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
* @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
* @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
* @param pCallback pointer to the callback function
* @retval status
*/
HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID,
pTIM_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
return HAL_ERROR;
}
if (htim->State == HAL_TIM_STATE_READY)
{
switch (CallbackID)
{
case HAL_TIM_BASE_MSPINIT_CB_ID :
htim->Base_MspInitCallback = pCallback;
break;
case HAL_TIM_BASE_MSPDEINIT_CB_ID :
htim->Base_MspDeInitCallback = pCallback;
break;
case HAL_TIM_IC_MSPINIT_CB_ID :
htim->IC_MspInitCallback = pCallback;
break;
case HAL_TIM_IC_MSPDEINIT_CB_ID :
htim->IC_MspDeInitCallback = pCallback;
break;
case HAL_TIM_OC_MSPINIT_CB_ID :
htim->OC_MspInitCallback = pCallback;
break;
case HAL_TIM_OC_MSPDEINIT_CB_ID :
htim->OC_MspDeInitCallback = pCallback;
break;
case HAL_TIM_PWM_MSPINIT_CB_ID :
htim->PWM_MspInitCallback = pCallback;
break;
case HAL_TIM_PWM_MSPDEINIT_CB_ID :
htim->PWM_MspDeInitCallback = pCallback;
break;
case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
htim->OnePulse_MspInitCallback = pCallback;
break;
case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
htim->OnePulse_MspDeInitCallback = pCallback;
break;
case HAL_TIM_ENCODER_MSPINIT_CB_ID :
htim->Encoder_MspInitCallback = pCallback;
break;
case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
htim->Encoder_MspDeInitCallback = pCallback;
break;
case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
htim->HallSensor_MspInitCallback = pCallback;
break;
case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
htim->HallSensor_MspDeInitCallback = pCallback;
break;
case HAL_TIM_PERIOD_ELAPSED_CB_ID :
htim->PeriodElapsedCallback = pCallback;
break;
case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
htim->PeriodElapsedHalfCpltCallback = pCallback;
break;
case HAL_TIM_TRIGGER_CB_ID :
htim->TriggerCallback = pCallback;
break;
case HAL_TIM_TRIGGER_HALF_CB_ID :
htim->TriggerHalfCpltCallback = pCallback;
break;
case HAL_TIM_IC_CAPTURE_CB_ID :
htim->IC_CaptureCallback = pCallback;
break;
case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
htim->IC_CaptureHalfCpltCallback = pCallback;
break;
case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
htim->OC_DelayElapsedCallback = pCallback;
break;
case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
htim->PWM_PulseFinishedCallback = pCallback;
break;
case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
htim->PWM_PulseFinishedHalfCpltCallback = pCallback;
break;
case HAL_TIM_ERROR_CB_ID :
htim->ErrorCallback = pCallback;
break;
case HAL_TIM_COMMUTATION_CB_ID :
htim->CommutationCallback = pCallback;
break;
case HAL_TIM_COMMUTATION_HALF_CB_ID :
htim->CommutationHalfCpltCallback = pCallback;
break;
case HAL_TIM_BREAK_CB_ID :
htim->BreakCallback = pCallback;
break;
case HAL_TIM_BREAK2_CB_ID :
htim->Break2Callback = pCallback;
break;
default :
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (htim->State == HAL_TIM_STATE_RESET)
{
switch (CallbackID)
{
case HAL_TIM_BASE_MSPINIT_CB_ID :
htim->Base_MspInitCallback = pCallback;
break;
case HAL_TIM_BASE_MSPDEINIT_CB_ID :
htim->Base_MspDeInitCallback = pCallback;
break;
case HAL_TIM_IC_MSPINIT_CB_ID :
htim->IC_MspInitCallback = pCallback;
break;
case HAL_TIM_IC_MSPDEINIT_CB_ID :
htim->IC_MspDeInitCallback = pCallback;
break;
case HAL_TIM_OC_MSPINIT_CB_ID :
htim->OC_MspInitCallback = pCallback;
break;
case HAL_TIM_OC_MSPDEINIT_CB_ID :
htim->OC_MspDeInitCallback = pCallback;
break;
case HAL_TIM_PWM_MSPINIT_CB_ID :
htim->PWM_MspInitCallback = pCallback;
break;
case HAL_TIM_PWM_MSPDEINIT_CB_ID :
htim->PWM_MspDeInitCallback = pCallback;
break;
case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
htim->OnePulse_MspInitCallback = pCallback;
break;
case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
htim->OnePulse_MspDeInitCallback = pCallback;
break;
case HAL_TIM_ENCODER_MSPINIT_CB_ID :
htim->Encoder_MspInitCallback = pCallback;
break;
case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
htim->Encoder_MspDeInitCallback = pCallback;
break;
case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
htim->HallSensor_MspInitCallback = pCallback;
break;
case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
htim->HallSensor_MspDeInitCallback = pCallback;
break;
default :
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Unregister a TIM callback
* TIM callback is redirected to the weak predefined callback
* @param htim tim handle
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
* @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
* @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
* @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
* @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
* @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
* @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
* @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
* @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
* @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
* @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
* @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
* @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
* @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
* @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
* @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
* @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
* @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
* @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
* @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
* @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
* @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
* @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
* @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
* @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
* @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
* @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
* @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
* @retval status
*/
HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
if (htim->State == HAL_TIM_STATE_READY)
{
switch (CallbackID)
{
case HAL_TIM_BASE_MSPINIT_CB_ID :
/* Legacy weak Base MspInit Callback */
htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
break;
case HAL_TIM_BASE_MSPDEINIT_CB_ID :
/* Legacy weak Base Msp DeInit Callback */
htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
break;
case HAL_TIM_IC_MSPINIT_CB_ID :
/* Legacy weak IC Msp Init Callback */
htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
break;
case HAL_TIM_IC_MSPDEINIT_CB_ID :
/* Legacy weak IC Msp DeInit Callback */
htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
break;
case HAL_TIM_OC_MSPINIT_CB_ID :
/* Legacy weak OC Msp Init Callback */
htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
break;
case HAL_TIM_OC_MSPDEINIT_CB_ID :
/* Legacy weak OC Msp DeInit Callback */
htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
break;
case HAL_TIM_PWM_MSPINIT_CB_ID :
/* Legacy weak PWM Msp Init Callback */
htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
break;
case HAL_TIM_PWM_MSPDEINIT_CB_ID :
/* Legacy weak PWM Msp DeInit Callback */
htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
break;
case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
/* Legacy weak One Pulse Msp Init Callback */
htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
break;
case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
/* Legacy weak One Pulse Msp DeInit Callback */
htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
break;
case HAL_TIM_ENCODER_MSPINIT_CB_ID :
/* Legacy weak Encoder Msp Init Callback */
htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
break;
case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
/* Legacy weak Encoder Msp DeInit Callback */
htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
break;
case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
/* Legacy weak Hall Sensor Msp Init Callback */
htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
break;
case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
/* Legacy weak Hall Sensor Msp DeInit Callback */
htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
break;
case HAL_TIM_PERIOD_ELAPSED_CB_ID :
/* Legacy weak Period Elapsed Callback */
htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback;
break;
case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
/* Legacy weak Period Elapsed half complete Callback */
htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback;
break;
case HAL_TIM_TRIGGER_CB_ID :
/* Legacy weak Trigger Callback */
htim->TriggerCallback = HAL_TIM_TriggerCallback;
break;
case HAL_TIM_TRIGGER_HALF_CB_ID :
/* Legacy weak Trigger half complete Callback */
htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback;
break;
case HAL_TIM_IC_CAPTURE_CB_ID :
/* Legacy weak IC Capture Callback */
htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback;
break;
case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
/* Legacy weak IC Capture half complete Callback */
htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback;
break;
case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
/* Legacy weak OC Delay Elapsed Callback */
htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback;
break;
case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
/* Legacy weak PWM Pulse Finished Callback */
htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback;
break;
case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
/* Legacy weak PWM Pulse Finished half complete Callback */
htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
break;
case HAL_TIM_ERROR_CB_ID :
/* Legacy weak Error Callback */
htim->ErrorCallback = HAL_TIM_ErrorCallback;
break;
case HAL_TIM_COMMUTATION_CB_ID :
/* Legacy weak Commutation Callback */
htim->CommutationCallback = HAL_TIMEx_CommutCallback;
break;
case HAL_TIM_COMMUTATION_HALF_CB_ID :
/* Legacy weak Commutation half complete Callback */
htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback;
break;
case HAL_TIM_BREAK_CB_ID :
/* Legacy weak Break Callback */
htim->BreakCallback = HAL_TIMEx_BreakCallback;
break;
case HAL_TIM_BREAK2_CB_ID :
/* Legacy weak Break2 Callback */
htim->Break2Callback = HAL_TIMEx_Break2Callback;
break;
default :
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (htim->State == HAL_TIM_STATE_RESET)
{
switch (CallbackID)
{
case HAL_TIM_BASE_MSPINIT_CB_ID :
/* Legacy weak Base MspInit Callback */
htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
break;
case HAL_TIM_BASE_MSPDEINIT_CB_ID :
/* Legacy weak Base Msp DeInit Callback */
htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
break;
case HAL_TIM_IC_MSPINIT_CB_ID :
/* Legacy weak IC Msp Init Callback */
htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
break;
case HAL_TIM_IC_MSPDEINIT_CB_ID :
/* Legacy weak IC Msp DeInit Callback */
htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
break;
case HAL_TIM_OC_MSPINIT_CB_ID :
/* Legacy weak OC Msp Init Callback */
htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
break;
case HAL_TIM_OC_MSPDEINIT_CB_ID :
/* Legacy weak OC Msp DeInit Callback */
htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
break;
case HAL_TIM_PWM_MSPINIT_CB_ID :
/* Legacy weak PWM Msp Init Callback */
htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
break;
case HAL_TIM_PWM_MSPDEINIT_CB_ID :
/* Legacy weak PWM Msp DeInit Callback */
htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
break;
case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
/* Legacy weak One Pulse Msp Init Callback */
htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
break;
case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
/* Legacy weak One Pulse Msp DeInit Callback */
htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
break;
case HAL_TIM_ENCODER_MSPINIT_CB_ID :
/* Legacy weak Encoder Msp Init Callback */
htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
break;
case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
/* Legacy weak Encoder Msp DeInit Callback */
htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
break;
case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
/* Legacy weak Hall Sensor Msp Init Callback */
htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
break;
case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
/* Legacy weak Hall Sensor Msp DeInit Callback */
htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
break;
default :
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Return error status */
status = HAL_ERROR;
}
return status;
}
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
* @brief TIM Peripheral State functions
*
@verbatim
==============================================================================
##### Peripheral State functions #####
==============================================================================
[..]
This subsection permits to get in run-time the status of the peripheral
and the data flow.
@endverbatim
* @{
*/
/**
* @brief Return the TIM Base handle state.
* @param htim TIM Base handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim)
{
return htim->State;
}
/**
* @brief Return the TIM OC handle state.
* @param htim TIM Output Compare handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim)
{
return htim->State;
}
/**
* @brief Return the TIM PWM handle state.
* @param htim TIM handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim)
{
return htim->State;
}
/**
* @brief Return the TIM Input Capture handle state.
* @param htim TIM IC handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim)
{
return htim->State;
}
/**
* @brief Return the TIM One Pulse Mode handle state.
* @param htim TIM OPM handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim)
{
return htim->State;
}
/**
* @brief Return the TIM Encoder Mode handle state.
* @param htim TIM Encoder Interface handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim)
{
return htim->State;
}
/**
* @brief Return the TIM Encoder Mode handle state.
* @param htim TIM handle
* @retval Active channel
*/
HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim)
{
return htim->Channel;
}
/**
* @brief Return actual state of the TIM channel.
* @param htim TIM handle
* @param Channel TIM Channel
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1
* @arg TIM_CHANNEL_2: TIM Channel 2
* @arg TIM_CHANNEL_3: TIM Channel 3
* @arg TIM_CHANNEL_4: TIM Channel 4
* @arg TIM_CHANNEL_5: TIM Channel 5
* @arg TIM_CHANNEL_6: TIM Channel 6
* @retval TIM Channel state
*/
HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim, uint32_t Channel)
{
HAL_TIM_ChannelStateTypeDef channel_state;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
return channel_state;
}
/**
* @brief Return actual state of a DMA burst operation.
* @param htim TIM handle
* @retval DMA burst state
*/
HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
return htim->DMABurstState;
}
/**
* @}
*/
/**
* @}
*/
/** @defgroup TIM_Private_Functions TIM Private Functions
* @{
*/
/**
* @brief TIM DMA error callback
* @param hdma pointer to DMA handle.
* @retval None
*/
void TIM_DMAError(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
if (hdma == htim->hdma[TIM_DMA_ID_CC1])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
}
else
{
htim->State = HAL_TIM_STATE_READY;
}
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->ErrorCallback(htim);
#else
HAL_TIM_ErrorCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
/**
* @brief TIM DMA Delay Pulse complete callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
if (hdma == htim->hdma[TIM_DMA_ID_CC1])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
}
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
}
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
}
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
}
}
else
{
/* nothing to do */
}
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->PWM_PulseFinishedCallback(htim);
#else
HAL_TIM_PWM_PulseFinishedCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
/**
* @brief TIM DMA Delay Pulse half complete callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
if (hdma == htim->hdma[TIM_DMA_ID_CC1])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
}
else
{
/* nothing to do */
}
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->PWM_PulseFinishedHalfCpltCallback(htim);
#else
HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
/**
* @brief TIM DMA Capture complete callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
if (hdma == htim->hdma[TIM_DMA_ID_CC1])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
}
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
}
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
}
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
}
}
else
{
/* nothing to do */
}
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->IC_CaptureCallback(htim);
#else
HAL_TIM_IC_CaptureCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
/**
* @brief TIM DMA Capture half complete callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
if (hdma == htim->hdma[TIM_DMA_ID_CC1])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
}
else
{
/* nothing to do */
}
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->IC_CaptureHalfCpltCallback(htim);
#else
HAL_TIM_IC_CaptureHalfCpltCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
/**
* @brief TIM DMA Period Elapse complete callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL)
{
htim->State = HAL_TIM_STATE_READY;
}
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->PeriodElapsedCallback(htim);
#else
HAL_TIM_PeriodElapsedCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/**
* @brief TIM DMA Period Elapse half complete callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->PeriodElapsedHalfCpltCallback(htim);
#else
HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/**
* @brief TIM DMA Trigger callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL)
{
htim->State = HAL_TIM_STATE_READY;
}
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->TriggerCallback(htim);
#else
HAL_TIM_TriggerCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/**
* @brief TIM DMA Trigger half complete callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->TriggerHalfCpltCallback(htim);
#else
HAL_TIM_TriggerHalfCpltCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/**
* @brief Time Base configuration
* @param TIMx TIM peripheral
* @param Structure TIM Base configuration structure
* @retval None
*/
void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure)
{
uint32_t tmpcr1;
tmpcr1 = TIMx->CR1;
/* Set TIM Time Base Unit parameters ---------------------------------------*/
if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
{
/* Select the Counter Mode */
tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
tmpcr1 |= Structure->CounterMode;
}
if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
{
/* Set the clock division */
tmpcr1 &= ~TIM_CR1_CKD;
tmpcr1 |= (uint32_t)Structure->ClockDivision;
}
/* Set the auto-reload preload */
MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
TIMx->CR1 = tmpcr1;
/* Set the Autoreload value */
TIMx->ARR = (uint32_t)Structure->Period ;
/* Set the Prescaler value */
TIMx->PSC = Structure->Prescaler;
if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
{
/* Set the Repetition Counter value */
TIMx->RCR = Structure->RepetitionCounter;
}
/* Generate an update event to reload the Prescaler
and the repetition counter (only for advanced timer) value immediately */
TIMx->EGR = TIM_EGR_UG;
}
/**
* @brief Timer Output Compare 1 configuration
* @param TIMx to select the TIM peripheral
* @param OC_Config The output configuration structure
* @retval None
*/
static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
{
uint32_t tmpccmrx;
uint32_t tmpccer;
uint32_t tmpcr2;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Disable the Channel 1: Reset the CC1E Bit */
TIMx->CCER &= ~TIM_CCER_CC1E;
/* Get the TIMx CR2 register value */
tmpcr2 = TIMx->CR2;
/* Get the TIMx CCMR1 register value */
tmpccmrx = TIMx->CCMR1;
/* Reset the Output Compare Mode Bits */
tmpccmrx &= ~TIM_CCMR1_OC1M;
tmpccmrx &= ~TIM_CCMR1_CC1S;
/* Select the Output Compare Mode */
tmpccmrx |= OC_Config->OCMode;
/* Reset the Output Polarity level */
tmpccer &= ~TIM_CCER_CC1P;
/* Set the Output Compare Polarity */
tmpccer |= OC_Config->OCPolarity;
if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
{
/* Check parameters */
assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
/* Reset the Output N Polarity level */
tmpccer &= ~TIM_CCER_CC1NP;
/* Set the Output N Polarity */
tmpccer |= OC_Config->OCNPolarity;
/* Reset the Output N State */
tmpccer &= ~TIM_CCER_CC1NE;
}
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
/* Check parameters */
assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
/* Reset the Output Compare and Output Compare N IDLE State */
tmpcr2 &= ~TIM_CR2_OIS1;
tmpcr2 &= ~TIM_CR2_OIS1N;
/* Set the Output Idle state */
tmpcr2 |= OC_Config->OCIdleState;
/* Set the Output N Idle state */
tmpcr2 |= OC_Config->OCNIdleState;
}
/* Write to TIMx CR2 */
TIMx->CR2 = tmpcr2;
/* Write to TIMx CCMR1 */
TIMx->CCMR1 = tmpccmrx;
/* Set the Capture Compare Register value */
TIMx->CCR1 = OC_Config->Pulse;
/* Write to TIMx CCER */
TIMx->CCER = tmpccer;
}
/**
* @brief Timer Output Compare 2 configuration
* @param TIMx to select the TIM peripheral
* @param OC_Config The output configuration structure
* @retval None
*/
void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
{
uint32_t tmpccmrx;
uint32_t tmpccer;
uint32_t tmpcr2;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Disable the Channel 2: Reset the CC2E Bit */
TIMx->CCER &= ~TIM_CCER_CC2E;
/* Get the TIMx CR2 register value */
tmpcr2 = TIMx->CR2;
/* Get the TIMx CCMR1 register value */
tmpccmrx = TIMx->CCMR1;
/* Reset the Output Compare mode and Capture/Compare selection Bits */
tmpccmrx &= ~TIM_CCMR1_OC2M;
tmpccmrx &= ~TIM_CCMR1_CC2S;
/* Select the Output Compare Mode */
tmpccmrx |= (OC_Config->OCMode << 8U);
/* Reset the Output Polarity level */
tmpccer &= ~TIM_CCER_CC2P;
/* Set the Output Compare Polarity */
tmpccer |= (OC_Config->OCPolarity << 4U);
if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
{
assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
/* Reset the Output N Polarity level */
tmpccer &= ~TIM_CCER_CC2NP;
/* Set the Output N Polarity */
tmpccer |= (OC_Config->OCNPolarity << 4U);
/* Reset the Output N State */
tmpccer &= ~TIM_CCER_CC2NE;
}
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
/* Check parameters */
assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
/* Reset the Output Compare and Output Compare N IDLE State */
tmpcr2 &= ~TIM_CR2_OIS2;
tmpcr2 &= ~TIM_CR2_OIS2N;
/* Set the Output Idle state */
tmpcr2 |= (OC_Config->OCIdleState << 2U);
/* Set the Output N Idle state */
tmpcr2 |= (OC_Config->OCNIdleState << 2U);
}
/* Write to TIMx CR2 */
TIMx->CR2 = tmpcr2;
/* Write to TIMx CCMR1 */
TIMx->CCMR1 = tmpccmrx;
/* Set the Capture Compare Register value */
TIMx->CCR2 = OC_Config->Pulse;
/* Write to TIMx CCER */
TIMx->CCER = tmpccer;
}
/**
* @brief Timer Output Compare 3 configuration
* @param TIMx to select the TIM peripheral
* @param OC_Config The output configuration structure
* @retval None
*/
static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
{
uint32_t tmpccmrx;
uint32_t tmpccer;
uint32_t tmpcr2;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Disable the Channel 3: Reset the CC2E Bit */
TIMx->CCER &= ~TIM_CCER_CC3E;
/* Get the TIMx CR2 register value */
tmpcr2 = TIMx->CR2;
/* Get the TIMx CCMR2 register value */
tmpccmrx = TIMx->CCMR2;
/* Reset the Output Compare mode and Capture/Compare selection Bits */
tmpccmrx &= ~TIM_CCMR2_OC3M;
tmpccmrx &= ~TIM_CCMR2_CC3S;
/* Select the Output Compare Mode */
tmpccmrx |= OC_Config->OCMode;
/* Reset the Output Polarity level */
tmpccer &= ~TIM_CCER_CC3P;
/* Set the Output Compare Polarity */
tmpccer |= (OC_Config->OCPolarity << 8U);
if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
{
assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
/* Reset the Output N Polarity level */
tmpccer &= ~TIM_CCER_CC3NP;
/* Set the Output N Polarity */
tmpccer |= (OC_Config->OCNPolarity << 8U);
/* Reset the Output N State */
tmpccer &= ~TIM_CCER_CC3NE;
}
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
/* Check parameters */
assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
/* Reset the Output Compare and Output Compare N IDLE State */
tmpcr2 &= ~TIM_CR2_OIS3;
tmpcr2 &= ~TIM_CR2_OIS3N;
/* Set the Output Idle state */
tmpcr2 |= (OC_Config->OCIdleState << 4U);
/* Set the Output N Idle state */
tmpcr2 |= (OC_Config->OCNIdleState << 4U);
}
/* Write to TIMx CR2 */
TIMx->CR2 = tmpcr2;
/* Write to TIMx CCMR2 */
TIMx->CCMR2 = tmpccmrx;
/* Set the Capture Compare Register value */
TIMx->CCR3 = OC_Config->Pulse;
/* Write to TIMx CCER */
TIMx->CCER = tmpccer;
}
/**
* @brief Timer Output Compare 4 configuration
* @param TIMx to select the TIM peripheral
* @param OC_Config The output configuration structure
* @retval None
*/
static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
{
uint32_t tmpccmrx;
uint32_t tmpccer;
uint32_t tmpcr2;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Disable the Channel 4: Reset the CC4E Bit */
TIMx->CCER &= ~TIM_CCER_CC4E;
/* Get the TIMx CR2 register value */
tmpcr2 = TIMx->CR2;
/* Get the TIMx CCMR2 register value */
tmpccmrx = TIMx->CCMR2;
/* Reset the Output Compare mode and Capture/Compare selection Bits */
tmpccmrx &= ~TIM_CCMR2_OC4M;
tmpccmrx &= ~TIM_CCMR2_CC4S;
/* Select the Output Compare Mode */
tmpccmrx |= (OC_Config->OCMode << 8U);
/* Reset the Output Polarity level */
tmpccer &= ~TIM_CCER_CC4P;
/* Set the Output Compare Polarity */
tmpccer |= (OC_Config->OCPolarity << 12U);
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
/* Check parameters */
assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
/* Reset the Output Compare IDLE State */
tmpcr2 &= ~TIM_CR2_OIS4;
/* Set the Output Idle state */
tmpcr2 |= (OC_Config->OCIdleState << 6U);
}
/* Write to TIMx CR2 */
TIMx->CR2 = tmpcr2;
/* Write to TIMx CCMR2 */
TIMx->CCMR2 = tmpccmrx;
/* Set the Capture Compare Register value */
TIMx->CCR4 = OC_Config->Pulse;
/* Write to TIMx CCER */
TIMx->CCER = tmpccer;
}
/**
* @brief Timer Output Compare 5 configuration
* @param TIMx to select the TIM peripheral
* @param OC_Config The output configuration structure
* @retval None
*/
static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx,
const TIM_OC_InitTypeDef *OC_Config)
{
uint32_t tmpccmrx;
uint32_t tmpccer;
uint32_t tmpcr2;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Disable the output: Reset the CCxE Bit */
TIMx->CCER &= ~TIM_CCER_CC5E;
/* Get the TIMx CR2 register value */
tmpcr2 = TIMx->CR2;
/* Get the TIMx CCMR1 register value */
tmpccmrx = TIMx->CCMR3;
/* Reset the Output Compare Mode Bits */
tmpccmrx &= ~(TIM_CCMR3_OC5M);
/* Select the Output Compare Mode */
tmpccmrx |= OC_Config->OCMode;
/* Reset the Output Polarity level */
tmpccer &= ~TIM_CCER_CC5P;
/* Set the Output Compare Polarity */
tmpccer |= (OC_Config->OCPolarity << 16U);
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
/* Reset the Output Compare IDLE State */
tmpcr2 &= ~TIM_CR2_OIS5;
/* Set the Output Idle state */
tmpcr2 |= (OC_Config->OCIdleState << 8U);
}
/* Write to TIMx CR2 */
TIMx->CR2 = tmpcr2;
/* Write to TIMx CCMR3 */
TIMx->CCMR3 = tmpccmrx;
/* Set the Capture Compare Register value */
TIMx->CCR5 = OC_Config->Pulse;
/* Write to TIMx CCER */
TIMx->CCER = tmpccer;
}
/**
* @brief Timer Output Compare 6 configuration
* @param TIMx to select the TIM peripheral
* @param OC_Config The output configuration structure
* @retval None
*/
static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx,
const TIM_OC_InitTypeDef *OC_Config)
{
uint32_t tmpccmrx;
uint32_t tmpccer;
uint32_t tmpcr2;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Disable the output: Reset the CCxE Bit */
TIMx->CCER &= ~TIM_CCER_CC6E;
/* Get the TIMx CR2 register value */
tmpcr2 = TIMx->CR2;
/* Get the TIMx CCMR1 register value */
tmpccmrx = TIMx->CCMR3;
/* Reset the Output Compare Mode Bits */
tmpccmrx &= ~(TIM_CCMR3_OC6M);
/* Select the Output Compare Mode */
tmpccmrx |= (OC_Config->OCMode << 8U);
/* Reset the Output Polarity level */
tmpccer &= (uint32_t)~TIM_CCER_CC6P;
/* Set the Output Compare Polarity */
tmpccer |= (OC_Config->OCPolarity << 20U);
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
/* Reset the Output Compare IDLE State */
tmpcr2 &= ~TIM_CR2_OIS6;
/* Set the Output Idle state */
tmpcr2 |= (OC_Config->OCIdleState << 10U);
}
/* Write to TIMx CR2 */
TIMx->CR2 = tmpcr2;
/* Write to TIMx CCMR3 */
TIMx->CCMR3 = tmpccmrx;
/* Set the Capture Compare Register value */
TIMx->CCR6 = OC_Config->Pulse;
/* Write to TIMx CCER */
TIMx->CCER = tmpccer;
}
/**
* @brief Slave Timer configuration function
* @param htim TIM handle
* @param sSlaveConfig Slave timer configuration
* @retval None
*/
static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
const TIM_SlaveConfigTypeDef *sSlaveConfig)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tmpsmcr;
uint32_t tmpccmr1;
uint32_t tmpccer;
/* Get the TIMx SMCR register value */
tmpsmcr = htim->Instance->SMCR;
/* Reset the Trigger Selection Bits */
tmpsmcr &= ~TIM_SMCR_TS;
/* Set the Input Trigger source */
tmpsmcr |= sSlaveConfig->InputTrigger;
/* Reset the slave mode Bits */
tmpsmcr &= ~TIM_SMCR_SMS;
/* Set the slave mode */
tmpsmcr |= sSlaveConfig->SlaveMode;
/* Write to TIMx SMCR */
htim->Instance->SMCR = tmpsmcr;
/* Configure the trigger prescaler, filter, and polarity */
switch (sSlaveConfig->InputTrigger)
{
case TIM_TS_ETRF:
{
/* Check the parameters */
assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
/* Configure the ETR Trigger source */
TIM_ETR_SetConfig(htim->Instance,
sSlaveConfig->TriggerPrescaler,
sSlaveConfig->TriggerPolarity,
sSlaveConfig->TriggerFilter);
break;
}
case TIM_TS_TI1F_ED:
{
/* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED)
{
return HAL_ERROR;
}
/* Disable the Channel 1: Reset the CC1E Bit */
tmpccer = htim->Instance->CCER;
htim->Instance->CCER &= ~TIM_CCER_CC1E;
tmpccmr1 = htim->Instance->CCMR1;
/* Set the filter */
tmpccmr1 &= ~TIM_CCMR1_IC1F;
tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
/* Write to TIMx CCMR1 and CCER registers */
htim->Instance->CCMR1 = tmpccmr1;
htim->Instance->CCER = tmpccer;
break;
}
case TIM_TS_TI1FP1:
{
/* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
/* Configure TI1 Filter and Polarity */
TIM_TI1_ConfigInputStage(htim->Instance,
sSlaveConfig->TriggerPolarity,
sSlaveConfig->TriggerFilter);
break;
}
case TIM_TS_TI2FP2:
{
/* Check the parameters */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
/* Configure TI2 Filter and Polarity */
TIM_TI2_ConfigInputStage(htim->Instance,
sSlaveConfig->TriggerPolarity,
sSlaveConfig->TriggerFilter);
break;
}
case TIM_TS_ITR0:
case TIM_TS_ITR1:
case TIM_TS_ITR2:
case TIM_TS_ITR3:
{
/* Check the parameter */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
break;
}
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Configure the TI1 as Input.
* @param TIMx to select the TIM peripheral.
* @param TIM_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* @arg TIM_ICPOLARITY_RISING
* @arg TIM_ICPOLARITY_FALLING
* @arg TIM_ICPOLARITY_BOTHEDGE
* @param TIM_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
* @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
* @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
* @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
* @param TIM_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
* @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
* (on channel2 path) is used as the input signal. Therefore CCMR1 must be
* protected against un-initialized filter and polarity values.
*/
void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
uint32_t TIM_ICFilter)
{
uint32_t tmpccmr1;
uint32_t tmpccer;
/* Disable the Channel 1: Reset the CC1E Bit */
tmpccer = TIMx->CCER;
TIMx->CCER &= ~TIM_CCER_CC1E;
tmpccmr1 = TIMx->CCMR1;
/* Select the Input */
if (IS_TIM_CC2_INSTANCE(TIMx) != RESET)
{
tmpccmr1 &= ~TIM_CCMR1_CC1S;
tmpccmr1 |= TIM_ICSelection;
}
else
{
tmpccmr1 |= TIM_CCMR1_CC1S_0;
}
/* Set the filter */
tmpccmr1 &= ~TIM_CCMR1_IC1F;
tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
/* Select the Polarity and set the CC1E Bit */
tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
/* Write to TIMx CCMR1 and CCER registers */
TIMx->CCMR1 = tmpccmr1;
TIMx->CCER = tmpccer;
}
/**
* @brief Configure the Polarity and Filter for TI1.
* @param TIMx to select the TIM peripheral.
* @param TIM_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* @arg TIM_ICPOLARITY_RISING
* @arg TIM_ICPOLARITY_FALLING
* @arg TIM_ICPOLARITY_BOTHEDGE
* @param TIM_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
{
uint32_t tmpccmr1;
uint32_t tmpccer;
/* Disable the Channel 1: Reset the CC1E Bit */
tmpccer = TIMx->CCER;
TIMx->CCER &= ~TIM_CCER_CC1E;
tmpccmr1 = TIMx->CCMR1;
/* Set the filter */
tmpccmr1 &= ~TIM_CCMR1_IC1F;
tmpccmr1 |= (TIM_ICFilter << 4U);
/* Select the Polarity and set the CC1E Bit */
tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
tmpccer |= TIM_ICPolarity;
/* Write to TIMx CCMR1 and CCER registers */
TIMx->CCMR1 = tmpccmr1;
TIMx->CCER = tmpccer;
}
/**
* @brief Configure the TI2 as Input.
* @param TIMx to select the TIM peripheral
* @param TIM_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* @arg TIM_ICPOLARITY_RISING
* @arg TIM_ICPOLARITY_FALLING
* @arg TIM_ICPOLARITY_BOTHEDGE
* @param TIM_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
* @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
* @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
* @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
* @param TIM_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
* @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
* (on channel1 path) is used as the input signal. Therefore CCMR1 must be
* protected against un-initialized filter and polarity values.
*/
static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
uint32_t TIM_ICFilter)
{
uint32_t tmpccmr1;
uint32_t tmpccer;
/* Disable the Channel 2: Reset the CC2E Bit */
tmpccer = TIMx->CCER;
TIMx->CCER &= ~TIM_CCER_CC2E;
tmpccmr1 = TIMx->CCMR1;
/* Select the Input */
tmpccmr1 &= ~TIM_CCMR1_CC2S;
tmpccmr1 |= (TIM_ICSelection << 8U);
/* Set the filter */
tmpccmr1 &= ~TIM_CCMR1_IC2F;
tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
/* Select the Polarity and set the CC2E Bit */
tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
/* Write to TIMx CCMR1 and CCER registers */
TIMx->CCMR1 = tmpccmr1 ;
TIMx->CCER = tmpccer;
}
/**
* @brief Configure the Polarity and Filter for TI2.
* @param TIMx to select the TIM peripheral.
* @param TIM_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* @arg TIM_ICPOLARITY_RISING
* @arg TIM_ICPOLARITY_FALLING
* @arg TIM_ICPOLARITY_BOTHEDGE
* @param TIM_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
{
uint32_t tmpccmr1;
uint32_t tmpccer;
/* Disable the Channel 2: Reset the CC2E Bit */
tmpccer = TIMx->CCER;
TIMx->CCER &= ~TIM_CCER_CC2E;
tmpccmr1 = TIMx->CCMR1;
/* Set the filter */
tmpccmr1 &= ~TIM_CCMR1_IC2F;
tmpccmr1 |= (TIM_ICFilter << 12U);
/* Select the Polarity and set the CC2E Bit */
tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
tmpccer |= (TIM_ICPolarity << 4U);
/* Write to TIMx CCMR1 and CCER registers */
TIMx->CCMR1 = tmpccmr1 ;
TIMx->CCER = tmpccer;
}
/**
* @brief Configure the TI3 as Input.
* @param TIMx to select the TIM peripheral
* @param TIM_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* @arg TIM_ICPOLARITY_RISING
* @arg TIM_ICPOLARITY_FALLING
* @arg TIM_ICPOLARITY_BOTHEDGE
* @param TIM_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
* @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
* @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
* @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
* @param TIM_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
* @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
* (on channel1 path) is used as the input signal. Therefore CCMR2 must be
* protected against un-initialized filter and polarity values.
*/
static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
uint32_t TIM_ICFilter)
{
uint32_t tmpccmr2;
uint32_t tmpccer;
/* Disable the Channel 3: Reset the CC3E Bit */
tmpccer = TIMx->CCER;
TIMx->CCER &= ~TIM_CCER_CC3E;
tmpccmr2 = TIMx->CCMR2;
/* Select the Input */
tmpccmr2 &= ~TIM_CCMR2_CC3S;
tmpccmr2 |= TIM_ICSelection;
/* Set the filter */
tmpccmr2 &= ~TIM_CCMR2_IC3F;
tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
/* Select the Polarity and set the CC3E Bit */
tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
/* Write to TIMx CCMR2 and CCER registers */
TIMx->CCMR2 = tmpccmr2;
TIMx->CCER = tmpccer;
}
/**
* @brief Configure the TI4 as Input.
* @param TIMx to select the TIM peripheral
* @param TIM_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* @arg TIM_ICPOLARITY_RISING
* @arg TIM_ICPOLARITY_FALLING
* @arg TIM_ICPOLARITY_BOTHEDGE
* @param TIM_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
* @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
* @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
* @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
* @param TIM_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
* (on channel1 path) is used as the input signal. Therefore CCMR2 must be
* protected against un-initialized filter and polarity values.
* @retval None
*/
static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
uint32_t TIM_ICFilter)
{
uint32_t tmpccmr2;
uint32_t tmpccer;
/* Disable the Channel 4: Reset the CC4E Bit */
tmpccer = TIMx->CCER;
TIMx->CCER &= ~TIM_CCER_CC4E;
tmpccmr2 = TIMx->CCMR2;
/* Select the Input */
tmpccmr2 &= ~TIM_CCMR2_CC4S;
tmpccmr2 |= (TIM_ICSelection << 8U);
/* Set the filter */
tmpccmr2 &= ~TIM_CCMR2_IC4F;
tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
/* Select the Polarity and set the CC4E Bit */
tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
/* Write to TIMx CCMR2 and CCER registers */
TIMx->CCMR2 = tmpccmr2;
TIMx->CCER = tmpccer ;
}
/**
* @brief Selects the Input Trigger source
* @param TIMx to select the TIM peripheral
* @param InputTriggerSource The Input Trigger source.
* This parameter can be one of the following values:
* @arg TIM_TS_ITR0: Internal Trigger 0
* @arg TIM_TS_ITR1: Internal Trigger 1
* @arg TIM_TS_ITR2: Internal Trigger 2
* @arg TIM_TS_ITR3: Internal Trigger 3
* @arg TIM_TS_TI1F_ED: TI1 Edge Detector
* @arg TIM_TS_TI1FP1: Filtered Timer Input 1
* @arg TIM_TS_TI2FP2: Filtered Timer Input 2
* @arg TIM_TS_ETRF: External Trigger input
* @retval None
*/
static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource)
{
uint32_t tmpsmcr;
/* Get the TIMx SMCR register value */
tmpsmcr = TIMx->SMCR;
/* Reset the TS Bits */
tmpsmcr &= ~TIM_SMCR_TS;
/* Set the Input Trigger source and the slave mode*/
tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
/* Write to TIMx SMCR */
TIMx->SMCR = tmpsmcr;
}
/**
* @brief Configures the TIMx External Trigger (ETR).
* @param TIMx to select the TIM peripheral
* @param TIM_ExtTRGPrescaler The external Trigger Prescaler.
* This parameter can be one of the following values:
* @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
* @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
* @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
* @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
* @param TIM_ExtTRGPolarity The external Trigger Polarity.
* This parameter can be one of the following values:
* @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
* @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
* @param ExtTRGFilter External Trigger Filter.
* This parameter must be a value between 0x00 and 0x0F
* @retval None
*/
void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler,
uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
{
uint32_t tmpsmcr;
tmpsmcr = TIMx->SMCR;
/* Reset the ETR Bits */
tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
/* Set the Prescaler, the Filter value and the Polarity */
tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
/* Write to TIMx SMCR */
TIMx->SMCR = tmpsmcr;
}
/**
* @brief Enables or disables the TIM Capture Compare Channel x.
* @param TIMx to select the TIM peripheral
* @param Channel specifies the TIM Channel
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1
* @arg TIM_CHANNEL_2: TIM Channel 2
* @arg TIM_CHANNEL_3: TIM Channel 3
* @arg TIM_CHANNEL_4: TIM Channel 4
* @arg TIM_CHANNEL_5: TIM Channel 5 selected
* @arg TIM_CHANNEL_6: TIM Channel 6 selected
* @param ChannelState specifies the TIM Channel CCxE bit new state.
* This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
* @retval None
*/
void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState)
{
uint32_t tmp;
/* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(TIMx));
assert_param(IS_TIM_CHANNELS(Channel));
tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
/* Reset the CCxE Bit */
TIMx->CCER &= ~tmp;
/* Set or reset the CCxE Bit */
TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
}
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/**
* @brief Reset interrupt callbacks to the legacy weak callbacks.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @retval None
*/
void TIM_ResetCallback(TIM_HandleTypeDef *htim)
{
/* Reset the TIM callback to the legacy weak callbacks */
htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback;
htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback;
htim->TriggerCallback = HAL_TIM_TriggerCallback;
htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback;
htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback;
htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback;
htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback;
htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback;
htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
htim->ErrorCallback = HAL_TIM_ErrorCallback;
htim->CommutationCallback = HAL_TIMEx_CommutCallback;
htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback;
htim->BreakCallback = HAL_TIMEx_BreakCallback;
htim->Break2Callback = HAL_TIMEx_Break2Callback;
}
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/**
* @}
*/
#endif /* HAL_TIM_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/