mirror of
https://github.com/peter-tanner/satellite-testing-system.git
synced 2024-11-30 20:40:17 +08:00
4907 lines
163 KiB
C
4907 lines
163 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32l4xx_hal_uart.c
|
|
* @author MCD Application Team
|
|
* @brief UART HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
|
|
* + Initialization and de-initialization functions
|
|
* + IO operation functions
|
|
* + Peripheral Control functions
|
|
*
|
|
*
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2017 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
@verbatim
|
|
===============================================================================
|
|
##### How to use this driver #####
|
|
===============================================================================
|
|
[..]
|
|
The UART HAL driver can be used as follows:
|
|
|
|
(#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart).
|
|
(#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
|
|
(++) Enable the USARTx interface clock.
|
|
(++) UART pins configuration:
|
|
(+++) Enable the clock for the UART GPIOs.
|
|
(+++) Configure these UART pins as alternate function pull-up.
|
|
(++) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
|
|
and HAL_UART_Receive_IT() APIs):
|
|
(+++) Configure the USARTx interrupt priority.
|
|
(+++) Enable the NVIC USART IRQ handle.
|
|
(++) UART interrupts handling:
|
|
-@@- The specific UART interrupts (Transmission complete interrupt,
|
|
RXNE interrupt, RX/TX FIFOs related interrupts and Error Interrupts)
|
|
are managed using the macros __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT()
|
|
inside the transmit and receive processes.
|
|
(++) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
|
|
and HAL_UART_Receive_DMA() APIs):
|
|
(+++) Declare a DMA handle structure for the Tx/Rx channel.
|
|
(+++) Enable the DMAx interface clock.
|
|
(+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
|
|
(+++) Configure the DMA Tx/Rx channel.
|
|
(+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
|
|
(+++) Configure the priority and enable the NVIC for the transfer complete
|
|
interrupt on the DMA Tx/Rx channel.
|
|
|
|
(#) Program the Baud Rate, Word Length, Stop Bit, Parity, Prescaler value , Hardware
|
|
flow control and Mode (Receiver/Transmitter) in the huart handle Init structure.
|
|
|
|
(#) If required, program UART advanced features (TX/RX pins swap, auto Baud rate detection,...)
|
|
in the huart handle AdvancedInit structure.
|
|
|
|
(#) For the UART asynchronous mode, initialize the UART registers by calling
|
|
the HAL_UART_Init() API.
|
|
|
|
(#) For the UART Half duplex mode, initialize the UART registers by calling
|
|
the HAL_HalfDuplex_Init() API.
|
|
|
|
(#) For the UART LIN (Local Interconnection Network) mode, initialize the UART registers
|
|
by calling the HAL_LIN_Init() API.
|
|
|
|
(#) For the UART Multiprocessor mode, initialize the UART registers
|
|
by calling the HAL_MultiProcessor_Init() API.
|
|
|
|
(#) For the UART RS485 Driver Enabled mode, initialize the UART registers
|
|
by calling the HAL_RS485Ex_Init() API.
|
|
|
|
[..]
|
|
(@) These API's (HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init(), HAL_MultiProcessor_Init(),
|
|
also configure the low level Hardware GPIO, CLOCK, CORTEX...etc) by
|
|
calling the customized HAL_UART_MspInit() API.
|
|
|
|
##### Callback registration #####
|
|
==================================
|
|
|
|
[..]
|
|
The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1
|
|
allows the user to configure dynamically the driver callbacks.
|
|
|
|
[..]
|
|
Use Function HAL_UART_RegisterCallback() to register a user callback.
|
|
Function HAL_UART_RegisterCallback() allows to register following callbacks:
|
|
(+) TxHalfCpltCallback : Tx Half Complete Callback.
|
|
(+) TxCpltCallback : Tx Complete Callback.
|
|
(+) RxHalfCpltCallback : Rx Half Complete Callback.
|
|
(+) RxCpltCallback : Rx Complete Callback.
|
|
(+) ErrorCallback : Error Callback.
|
|
(+) AbortCpltCallback : Abort Complete Callback.
|
|
(+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
|
|
(+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
|
|
(+) WakeupCallback : Wakeup Callback.
|
|
#if defined(USART_CR1_FIFOEN)
|
|
(+) RxFifoFullCallback : Rx Fifo Full Callback.
|
|
(+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
|
|
#endif
|
|
(+) MspInitCallback : UART MspInit.
|
|
(+) MspDeInitCallback : UART MspDeInit.
|
|
This function takes as parameters the HAL peripheral handle, the Callback ID
|
|
and a pointer to the user callback function.
|
|
|
|
[..]
|
|
Use function HAL_UART_UnRegisterCallback() to reset a callback to the default
|
|
weak function.
|
|
HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
|
|
and the Callback ID.
|
|
This function allows to reset following callbacks:
|
|
(+) TxHalfCpltCallback : Tx Half Complete Callback.
|
|
(+) TxCpltCallback : Tx Complete Callback.
|
|
(+) RxHalfCpltCallback : Rx Half Complete Callback.
|
|
(+) RxCpltCallback : Rx Complete Callback.
|
|
(+) ErrorCallback : Error Callback.
|
|
(+) AbortCpltCallback : Abort Complete Callback.
|
|
(+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
|
|
(+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
|
|
(+) WakeupCallback : Wakeup Callback.
|
|
#if defined(USART_CR1_FIFOEN)
|
|
(+) RxFifoFullCallback : Rx Fifo Full Callback.
|
|
(+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
|
|
#endif
|
|
(+) MspInitCallback : UART MspInit.
|
|
(+) MspDeInitCallback : UART MspDeInit.
|
|
|
|
[..]
|
|
For specific callback RxEventCallback, use dedicated registration/reset functions:
|
|
respectively HAL_UART_RegisterRxEventCallback() , HAL_UART_UnRegisterRxEventCallback().
|
|
|
|
[..]
|
|
By default, after the HAL_UART_Init() and when the state is HAL_UART_STATE_RESET
|
|
all callbacks are set to the corresponding weak functions:
|
|
examples HAL_UART_TxCpltCallback(), HAL_UART_RxHalfCpltCallback().
|
|
Exception done for MspInit and MspDeInit functions that are respectively
|
|
reset to the legacy weak functions in the HAL_UART_Init()
|
|
and HAL_UART_DeInit() only when these callbacks are null (not registered beforehand).
|
|
If not, MspInit or MspDeInit are not null, the HAL_UART_Init() and HAL_UART_DeInit()
|
|
keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
|
|
|
|
[..]
|
|
Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only.
|
|
Exception done MspInit/MspDeInit that can be registered/unregistered
|
|
in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user)
|
|
MspInit/DeInit callbacks can be used during the Init/DeInit.
|
|
In that case first register the MspInit/MspDeInit user callbacks
|
|
using HAL_UART_RegisterCallback() before calling HAL_UART_DeInit()
|
|
or HAL_UART_Init() function.
|
|
|
|
[..]
|
|
When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or
|
|
not defined, the callback registration feature is not available
|
|
and weak callbacks are used.
|
|
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32l4xx_hal.h"
|
|
|
|
/** @addtogroup STM32L4xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup UART UART
|
|
* @brief HAL UART module driver
|
|
* @{
|
|
*/
|
|
|
|
#ifdef HAL_UART_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/** @defgroup UART_Private_Constants UART Private Constants
|
|
* @{
|
|
*/
|
|
#if defined(USART_CR1_FIFOEN)
|
|
#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | \
|
|
USART_CR1_OVER8 | USART_CR1_FIFOEN)) /*!< UART or USART CR1 fields of parameters set by UART_SetConfig API */
|
|
#else
|
|
#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | \
|
|
USART_CR1_OVER8)) /*!< UART or USART CR1 fields of parameters set by UART_SetConfig API */
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE | USART_CR3_ONEBIT | USART_CR3_TXFTCFG | \
|
|
USART_CR3_RXFTCFG)) /*!< UART or USART CR3 fields of parameters set by UART_SetConfig API */
|
|
#else
|
|
#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE |\
|
|
USART_CR3_ONEBIT)) /*!< UART or USART CR3 fields of parameters set by UART_SetConfig API */
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
#define LPUART_BRR_MIN 0x00000300U /* LPUART BRR minimum authorized value */
|
|
#define LPUART_BRR_MAX 0x000FFFFFU /* LPUART BRR maximum authorized value */
|
|
|
|
#define UART_BRR_MIN 0x10U /* UART BRR minimum authorized value */
|
|
#define UART_BRR_MAX 0x0000FFFFU /* UART BRR maximum authorized value */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private macros ------------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/** @addtogroup UART_Private_Functions
|
|
* @{
|
|
*/
|
|
static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
|
|
static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
|
|
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
|
|
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
|
|
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
|
|
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
|
|
static void UART_DMAError(DMA_HandleTypeDef *hdma);
|
|
static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
|
|
static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
|
|
static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
|
|
static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
|
|
static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
|
|
static void UART_TxISR_8BIT(UART_HandleTypeDef *huart);
|
|
static void UART_TxISR_16BIT(UART_HandleTypeDef *huart);
|
|
#if defined(USART_CR1_FIFOEN)
|
|
static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart);
|
|
static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart);
|
|
#endif /* USART_CR1_FIFOEN */
|
|
static void UART_EndTransmit_IT(UART_HandleTypeDef *huart);
|
|
static void UART_RxISR_8BIT(UART_HandleTypeDef *huart);
|
|
static void UART_RxISR_16BIT(UART_HandleTypeDef *huart);
|
|
#if defined(USART_CR1_FIFOEN)
|
|
static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart);
|
|
static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart);
|
|
#endif /* USART_CR1_FIFOEN */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private variables ---------------------------------------------------------*/
|
|
#if defined(USART_PRESC_PRESCALER)
|
|
/** @addtogroup UART_Private_variables
|
|
* @{
|
|
*/
|
|
const uint16_t UARTPrescTable[12] = {1U, 2U, 4U, 6U, 8U, 10U, 12U, 16U, 32U, 64U, 128U, 256U};
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* USART_PRESC_PRESCALER */
|
|
/* Exported Constants --------------------------------------------------------*/
|
|
/* Exported functions --------------------------------------------------------*/
|
|
|
|
/** @defgroup UART_Exported_Functions UART Exported Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
* @brief Initialization and Configuration functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and Configuration functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
|
|
in asynchronous mode.
|
|
(+) For the asynchronous mode the parameters below can be configured:
|
|
(++) Baud Rate
|
|
(++) Word Length
|
|
(++) Stop Bit
|
|
(++) Parity: If the parity is enabled, then the MSB bit of the data written
|
|
in the data register is transmitted but is changed by the parity bit.
|
|
(++) Hardware flow control
|
|
(++) Receiver/transmitter modes
|
|
(++) Over Sampling Method
|
|
(++) One-Bit Sampling Method
|
|
(+) For the asynchronous mode, the following advanced features can be configured as well:
|
|
(++) TX and/or RX pin level inversion
|
|
(++) data logical level inversion
|
|
(++) RX and TX pins swap
|
|
(++) RX overrun detection disabling
|
|
(++) DMA disabling on RX error
|
|
(++) MSB first on communication line
|
|
(++) auto Baud rate detection
|
|
[..]
|
|
The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init()and HAL_MultiProcessor_Init()API
|
|
follow respectively the UART asynchronous, UART Half duplex, UART LIN mode
|
|
and UART multiprocessor mode configuration procedures (details for the procedures
|
|
are available in reference manual).
|
|
|
|
@endverbatim
|
|
|
|
Depending on the frame length defined by the M1 and M0 bits (7-bit,
|
|
8-bit or 9-bit), the possible UART formats are listed in the
|
|
following table.
|
|
|
|
Table 1. UART frame format.
|
|
+-----------------------------------------------------------------------+
|
|
| M1 bit | M0 bit | PCE bit | UART frame |
|
|
|---------|---------|-----------|---------------------------------------|
|
|
| 0 | 0 | 0 | | SB | 8 bit data | STB | |
|
|
|---------|---------|-----------|---------------------------------------|
|
|
| 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
|
|
|---------|---------|-----------|---------------------------------------|
|
|
| 0 | 1 | 0 | | SB | 9 bit data | STB | |
|
|
|---------|---------|-----------|---------------------------------------|
|
|
| 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
|
|
|---------|---------|-----------|---------------------------------------|
|
|
| 1 | 0 | 0 | | SB | 7 bit data | STB | |
|
|
|---------|---------|-----------|---------------------------------------|
|
|
| 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
|
|
+-----------------------------------------------------------------------+
|
|
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the UART mode according to the specified
|
|
* parameters in the UART_InitTypeDef and initialize the associated handle.
|
|
* @param huart UART handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Check the UART handle allocation */
|
|
if (huart == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
|
|
}
|
|
else
|
|
{
|
|
/* Check the parameters */
|
|
assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance)));
|
|
}
|
|
|
|
if (huart->gState == HAL_UART_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
huart->Lock = HAL_UNLOCKED;
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
UART_InitCallbacksToDefault(huart);
|
|
|
|
if (huart->MspInitCallback == NULL)
|
|
{
|
|
huart->MspInitCallback = HAL_UART_MspInit;
|
|
}
|
|
|
|
/* Init the low level hardware */
|
|
huart->MspInitCallback(huart);
|
|
#else
|
|
/* Init the low level hardware : GPIO, CLOCK */
|
|
HAL_UART_MspInit(huart);
|
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
|
}
|
|
|
|
huart->gState = HAL_UART_STATE_BUSY;
|
|
|
|
__HAL_UART_DISABLE(huart);
|
|
|
|
/* Perform advanced settings configuration */
|
|
/* For some items, configuration requires to be done prior TE and RE bits are set */
|
|
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
|
|
{
|
|
UART_AdvFeatureConfig(huart);
|
|
}
|
|
|
|
/* Set the UART Communication parameters */
|
|
if (UART_SetConfig(huart) == HAL_ERROR)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* In asynchronous mode, the following bits must be kept cleared:
|
|
- LINEN and CLKEN bits in the USART_CR2 register,
|
|
- SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
|
|
CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
|
|
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
|
|
|
|
__HAL_UART_ENABLE(huart);
|
|
|
|
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
|
|
return (UART_CheckIdleState(huart));
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the half-duplex mode according to the specified
|
|
* parameters in the UART_InitTypeDef and creates the associated handle.
|
|
* @param huart UART handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Check the UART handle allocation */
|
|
if (huart == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check UART instance */
|
|
assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
|
|
|
|
if (huart->gState == HAL_UART_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
huart->Lock = HAL_UNLOCKED;
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
UART_InitCallbacksToDefault(huart);
|
|
|
|
if (huart->MspInitCallback == NULL)
|
|
{
|
|
huart->MspInitCallback = HAL_UART_MspInit;
|
|
}
|
|
|
|
/* Init the low level hardware */
|
|
huart->MspInitCallback(huart);
|
|
#else
|
|
/* Init the low level hardware : GPIO, CLOCK */
|
|
HAL_UART_MspInit(huart);
|
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
|
}
|
|
|
|
huart->gState = HAL_UART_STATE_BUSY;
|
|
|
|
__HAL_UART_DISABLE(huart);
|
|
|
|
/* Perform advanced settings configuration */
|
|
/* For some items, configuration requires to be done prior TE and RE bits are set */
|
|
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
|
|
{
|
|
UART_AdvFeatureConfig(huart);
|
|
}
|
|
|
|
/* Set the UART Communication parameters */
|
|
if (UART_SetConfig(huart) == HAL_ERROR)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* In half-duplex mode, the following bits must be kept cleared:
|
|
- LINEN and CLKEN bits in the USART_CR2 register,
|
|
- SCEN and IREN bits in the USART_CR3 register.*/
|
|
CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
|
|
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
|
|
|
|
/* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
|
|
SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
|
|
|
|
__HAL_UART_ENABLE(huart);
|
|
|
|
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
|
|
return (UART_CheckIdleState(huart));
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the LIN mode according to the specified
|
|
* parameters in the UART_InitTypeDef and creates the associated handle.
|
|
* @param huart UART handle.
|
|
* @param BreakDetectLength Specifies the LIN break detection length.
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref UART_LINBREAKDETECTLENGTH_10B 10-bit break detection
|
|
* @arg @ref UART_LINBREAKDETECTLENGTH_11B 11-bit break detection
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
|
|
{
|
|
/* Check the UART handle allocation */
|
|
if (huart == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the LIN UART instance */
|
|
assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
|
|
/* Check the Break detection length parameter */
|
|
assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
|
|
|
|
/* LIN mode limited to 16-bit oversampling only */
|
|
if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
/* LIN mode limited to 8-bit data length */
|
|
if (huart->Init.WordLength != UART_WORDLENGTH_8B)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
if (huart->gState == HAL_UART_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
huart->Lock = HAL_UNLOCKED;
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
UART_InitCallbacksToDefault(huart);
|
|
|
|
if (huart->MspInitCallback == NULL)
|
|
{
|
|
huart->MspInitCallback = HAL_UART_MspInit;
|
|
}
|
|
|
|
/* Init the low level hardware */
|
|
huart->MspInitCallback(huart);
|
|
#else
|
|
/* Init the low level hardware : GPIO, CLOCK */
|
|
HAL_UART_MspInit(huart);
|
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
|
}
|
|
|
|
huart->gState = HAL_UART_STATE_BUSY;
|
|
|
|
__HAL_UART_DISABLE(huart);
|
|
|
|
/* Perform advanced settings configuration */
|
|
/* For some items, configuration requires to be done prior TE and RE bits are set */
|
|
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
|
|
{
|
|
UART_AdvFeatureConfig(huart);
|
|
}
|
|
|
|
/* Set the UART Communication parameters */
|
|
if (UART_SetConfig(huart) == HAL_ERROR)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* In LIN mode, the following bits must be kept cleared:
|
|
- LINEN and CLKEN bits in the USART_CR2 register,
|
|
- SCEN and IREN bits in the USART_CR3 register.*/
|
|
CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN);
|
|
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
|
|
|
|
/* Enable the LIN mode by setting the LINEN bit in the CR2 register */
|
|
SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
|
|
|
|
/* Set the USART LIN Break detection length. */
|
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength);
|
|
|
|
__HAL_UART_ENABLE(huart);
|
|
|
|
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
|
|
return (UART_CheckIdleState(huart));
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the multiprocessor mode according to the specified
|
|
* parameters in the UART_InitTypeDef and initialize the associated handle.
|
|
* @param huart UART handle.
|
|
* @param Address UART node address (4-, 6-, 7- or 8-bit long).
|
|
* @param WakeUpMethod Specifies the UART wakeup method.
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref UART_WAKEUPMETHOD_IDLELINE WakeUp by an idle line detection
|
|
* @arg @ref UART_WAKEUPMETHOD_ADDRESSMARK WakeUp by an address mark
|
|
* @note If the user resorts to idle line detection wake up, the Address parameter
|
|
* is useless and ignored by the initialization function.
|
|
* @note If the user resorts to address mark wake up, the address length detection
|
|
* is configured by default to 4 bits only. For the UART to be able to
|
|
* manage 6-, 7- or 8-bit long addresses detection, the API
|
|
* HAL_MultiProcessorEx_AddressLength_Set() must be called after
|
|
* HAL_MultiProcessor_Init().
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
|
|
{
|
|
/* Check the UART handle allocation */
|
|
if (huart == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the wake up method parameter */
|
|
assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
|
|
|
|
if (huart->gState == HAL_UART_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
huart->Lock = HAL_UNLOCKED;
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
UART_InitCallbacksToDefault(huart);
|
|
|
|
if (huart->MspInitCallback == NULL)
|
|
{
|
|
huart->MspInitCallback = HAL_UART_MspInit;
|
|
}
|
|
|
|
/* Init the low level hardware */
|
|
huart->MspInitCallback(huart);
|
|
#else
|
|
/* Init the low level hardware : GPIO, CLOCK */
|
|
HAL_UART_MspInit(huart);
|
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
|
}
|
|
|
|
huart->gState = HAL_UART_STATE_BUSY;
|
|
|
|
__HAL_UART_DISABLE(huart);
|
|
|
|
/* Perform advanced settings configuration */
|
|
/* For some items, configuration requires to be done prior TE and RE bits are set */
|
|
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
|
|
{
|
|
UART_AdvFeatureConfig(huart);
|
|
}
|
|
|
|
/* Set the UART Communication parameters */
|
|
if (UART_SetConfig(huart) == HAL_ERROR)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* In multiprocessor mode, the following bits must be kept cleared:
|
|
- LINEN and CLKEN bits in the USART_CR2 register,
|
|
- SCEN, HDSEL and IREN bits in the USART_CR3 register. */
|
|
CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
|
|
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
|
|
|
|
if (WakeUpMethod == UART_WAKEUPMETHOD_ADDRESSMARK)
|
|
{
|
|
/* If address mark wake up method is chosen, set the USART address node */
|
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)Address << UART_CR2_ADDRESS_LSB_POS));
|
|
}
|
|
|
|
/* Set the wake up method by setting the WAKE bit in the CR1 register */
|
|
MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod);
|
|
|
|
__HAL_UART_ENABLE(huart);
|
|
|
|
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
|
|
return (UART_CheckIdleState(huart));
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief DeInitialize the UART peripheral.
|
|
* @param huart UART handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Check the UART handle allocation */
|
|
if (huart == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance)));
|
|
|
|
huart->gState = HAL_UART_STATE_BUSY;
|
|
|
|
__HAL_UART_DISABLE(huart);
|
|
|
|
huart->Instance->CR1 = 0x0U;
|
|
huart->Instance->CR2 = 0x0U;
|
|
huart->Instance->CR3 = 0x0U;
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
if (huart->MspDeInitCallback == NULL)
|
|
{
|
|
huart->MspDeInitCallback = HAL_UART_MspDeInit;
|
|
}
|
|
/* DeInit the low level hardware */
|
|
huart->MspDeInitCallback(huart);
|
|
#else
|
|
/* DeInit the low level hardware */
|
|
HAL_UART_MspDeInit(huart);
|
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
huart->gState = HAL_UART_STATE_RESET;
|
|
huart->RxState = HAL_UART_STATE_RESET;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
huart->RxEventType = HAL_UART_RXEVENT_TC;
|
|
|
|
__HAL_UNLOCK(huart);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the UART MSP.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(huart);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_UART_MspInit can be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitialize the UART MSP.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(huart);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_UART_MspDeInit can be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/**
|
|
* @brief Register a User UART Callback
|
|
* To be used to override the weak predefined callback
|
|
* @note The HAL_UART_RegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(),
|
|
* HAL_LIN_Init(), HAL_MultiProcessor_Init() or HAL_RS485Ex_Init() in HAL_UART_STATE_RESET to register
|
|
* callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID
|
|
* @param huart uart handle
|
|
* @param CallbackID ID of the callback to be registered
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
|
|
* @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
|
|
* @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
|
|
* @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
|
|
* @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
|
|
* @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
|
|
* @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
|
|
* @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
|
|
* @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID
|
|
#if defined(USART_CR1_FIFOEN)
|
|
* @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID
|
|
* @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID
|
|
#endif
|
|
* @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
|
|
* @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
|
|
* @param pCallback pointer to the Callback function
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID,
|
|
pUART_CallbackTypeDef pCallback)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
if (pCallback == NULL)
|
|
{
|
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
if (huart->gState == HAL_UART_STATE_READY)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_UART_TX_HALFCOMPLETE_CB_ID :
|
|
huart->TxHalfCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_UART_TX_COMPLETE_CB_ID :
|
|
huart->TxCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_UART_RX_HALFCOMPLETE_CB_ID :
|
|
huart->RxHalfCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_UART_RX_COMPLETE_CB_ID :
|
|
huart->RxCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_UART_ERROR_CB_ID :
|
|
huart->ErrorCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_UART_ABORT_COMPLETE_CB_ID :
|
|
huart->AbortCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
|
|
huart->AbortTransmitCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
|
|
huart->AbortReceiveCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_UART_WAKEUP_CB_ID :
|
|
huart->WakeupCallback = pCallback;
|
|
break;
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
case HAL_UART_RX_FIFO_FULL_CB_ID :
|
|
huart->RxFifoFullCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_UART_TX_FIFO_EMPTY_CB_ID :
|
|
huart->TxFifoEmptyCallback = pCallback;
|
|
break;
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
case HAL_UART_MSPINIT_CB_ID :
|
|
huart->MspInitCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_UART_MSPDEINIT_CB_ID :
|
|
huart->MspDeInitCallback = pCallback;
|
|
break;
|
|
|
|
default :
|
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
|
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else if (huart->gState == HAL_UART_STATE_RESET)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_UART_MSPINIT_CB_ID :
|
|
huart->MspInitCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_UART_MSPDEINIT_CB_ID :
|
|
huart->MspDeInitCallback = pCallback;
|
|
break;
|
|
|
|
default :
|
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
|
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
|
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Unregister an UART Callback
|
|
* UART callaback is redirected to the weak predefined callback
|
|
* @note The HAL_UART_UnRegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(),
|
|
* HAL_LIN_Init(), HAL_MultiProcessor_Init() or HAL_RS485Ex_Init() in HAL_UART_STATE_RESET to un-register
|
|
* callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID
|
|
* @param huart uart handle
|
|
* @param CallbackID ID of the callback to be unregistered
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
|
|
* @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
|
|
* @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
|
|
* @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
|
|
* @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
|
|
* @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
|
|
* @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
|
|
* @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
|
|
* @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID
|
|
#if defined(USART_CR1_FIFOEN)
|
|
* @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID
|
|
* @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID
|
|
#endif
|
|
* @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
|
|
* @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
if (HAL_UART_STATE_READY == huart->gState)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_UART_TX_HALFCOMPLETE_CB_ID :
|
|
huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
|
|
break;
|
|
|
|
case HAL_UART_TX_COMPLETE_CB_ID :
|
|
huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */
|
|
break;
|
|
|
|
case HAL_UART_RX_HALFCOMPLETE_CB_ID :
|
|
huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
|
|
break;
|
|
|
|
case HAL_UART_RX_COMPLETE_CB_ID :
|
|
huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */
|
|
break;
|
|
|
|
case HAL_UART_ERROR_CB_ID :
|
|
huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */
|
|
break;
|
|
|
|
case HAL_UART_ABORT_COMPLETE_CB_ID :
|
|
huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
|
|
break;
|
|
|
|
case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
|
|
huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak
|
|
AbortTransmitCpltCallback */
|
|
break;
|
|
|
|
case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
|
|
huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak
|
|
AbortReceiveCpltCallback */
|
|
break;
|
|
|
|
case HAL_UART_WAKEUP_CB_ID :
|
|
huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */
|
|
break;
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
case HAL_UART_RX_FIFO_FULL_CB_ID :
|
|
huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */
|
|
break;
|
|
|
|
case HAL_UART_TX_FIFO_EMPTY_CB_ID :
|
|
huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */
|
|
break;
|
|
|
|
#endif /* USART_CR1_FIFOEN */
|
|
case HAL_UART_MSPINIT_CB_ID :
|
|
huart->MspInitCallback = HAL_UART_MspInit; /* Legacy weak MspInitCallback */
|
|
break;
|
|
|
|
case HAL_UART_MSPDEINIT_CB_ID :
|
|
huart->MspDeInitCallback = HAL_UART_MspDeInit; /* Legacy weak MspDeInitCallback */
|
|
break;
|
|
|
|
default :
|
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
|
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else if (HAL_UART_STATE_RESET == huart->gState)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_UART_MSPINIT_CB_ID :
|
|
huart->MspInitCallback = HAL_UART_MspInit;
|
|
break;
|
|
|
|
case HAL_UART_MSPDEINIT_CB_ID :
|
|
huart->MspDeInitCallback = HAL_UART_MspDeInit;
|
|
break;
|
|
|
|
default :
|
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
|
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
|
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Register a User UART Rx Event Callback
|
|
* To be used instead of the weak predefined callback
|
|
* @param huart Uart handle
|
|
* @param pCallback Pointer to the Rx Event Callback function
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
if (pCallback == NULL)
|
|
{
|
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(huart);
|
|
|
|
if (huart->gState == HAL_UART_STATE_READY)
|
|
{
|
|
huart->RxEventCallback = pCallback;
|
|
}
|
|
else
|
|
{
|
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
|
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(huart);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief UnRegister the UART Rx Event Callback
|
|
* UART Rx Event Callback is redirected to the weak HAL_UARTEx_RxEventCallback() predefined callback
|
|
* @param huart Uart handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(huart);
|
|
|
|
if (huart->gState == HAL_UART_STATE_READY)
|
|
{
|
|
huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback */
|
|
}
|
|
else
|
|
{
|
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
|
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(huart);
|
|
return status;
|
|
}
|
|
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup UART_Exported_Functions_Group2 IO operation functions
|
|
* @brief UART Transmit/Receive functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### IO operation functions #####
|
|
===============================================================================
|
|
This subsection provides a set of functions allowing to manage the UART asynchronous
|
|
and Half duplex data transfers.
|
|
|
|
(#) There are two mode of transfer:
|
|
(+) Blocking mode: The communication is performed in polling mode.
|
|
The HAL status of all data processing is returned by the same function
|
|
after finishing transfer.
|
|
(+) Non-Blocking mode: The communication is performed using Interrupts
|
|
or DMA, These API's return the HAL status.
|
|
The end of the data processing will be indicated through the
|
|
dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
|
|
using DMA mode.
|
|
The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
|
|
will be executed respectively at the end of the transmit or Receive process
|
|
The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected
|
|
|
|
(#) Blocking mode API's are :
|
|
(+) HAL_UART_Transmit()
|
|
(+) HAL_UART_Receive()
|
|
|
|
(#) Non-Blocking mode API's with Interrupt are :
|
|
(+) HAL_UART_Transmit_IT()
|
|
(+) HAL_UART_Receive_IT()
|
|
(+) HAL_UART_IRQHandler()
|
|
|
|
(#) Non-Blocking mode API's with DMA are :
|
|
(+) HAL_UART_Transmit_DMA()
|
|
(+) HAL_UART_Receive_DMA()
|
|
(+) HAL_UART_DMAPause()
|
|
(+) HAL_UART_DMAResume()
|
|
(+) HAL_UART_DMAStop()
|
|
|
|
(#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode:
|
|
(+) HAL_UART_TxHalfCpltCallback()
|
|
(+) HAL_UART_TxCpltCallback()
|
|
(+) HAL_UART_RxHalfCpltCallback()
|
|
(+) HAL_UART_RxCpltCallback()
|
|
(+) HAL_UART_ErrorCallback()
|
|
|
|
(#) Non-Blocking mode transfers could be aborted using Abort API's :
|
|
(+) HAL_UART_Abort()
|
|
(+) HAL_UART_AbortTransmit()
|
|
(+) HAL_UART_AbortReceive()
|
|
(+) HAL_UART_Abort_IT()
|
|
(+) HAL_UART_AbortTransmit_IT()
|
|
(+) HAL_UART_AbortReceive_IT()
|
|
|
|
(#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
|
|
(+) HAL_UART_AbortCpltCallback()
|
|
(+) HAL_UART_AbortTransmitCpltCallback()
|
|
(+) HAL_UART_AbortReceiveCpltCallback()
|
|
|
|
(#) A Rx Event Reception Callback (Rx event notification) is available for Non_Blocking modes of enhanced
|
|
reception services:
|
|
(+) HAL_UARTEx_RxEventCallback()
|
|
|
|
(#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
|
|
Errors are handled as follows :
|
|
(+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
|
|
to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error
|
|
in Interrupt mode reception .
|
|
Received character is then retrieved and stored in Rx buffer, Error code is set to allow user
|
|
to identify error type, and HAL_UART_ErrorCallback() user callback is executed.
|
|
Transfer is kept ongoing on UART side.
|
|
If user wants to abort it, Abort services should be called by user.
|
|
(+) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
|
|
This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
|
|
Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback()
|
|
user callback is executed.
|
|
|
|
-@- In the Half duplex communication, it is forbidden to run the transmit
|
|
and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Send an amount of data in blocking mode.
|
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
|
* the sent data is handled as a set of u16. In this case, Size must indicate the number
|
|
* of u16 provided through pData.
|
|
* @note When FIFO mode is enabled, writing a data in the TDR register adds one
|
|
* data to the TXFIFO. Write operations to the TDR register are performed
|
|
* when TXFNF flag is set. From hardware perspective, TXFNF flag and
|
|
* TXE are mapped on the same bit-field.
|
|
* @param huart UART handle.
|
|
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
|
* @param Size Amount of data elements (u8 or u16) to be sent.
|
|
* @param Timeout Timeout duration.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size, uint32_t Timeout)
|
|
{
|
|
const uint8_t *pdata8bits;
|
|
const uint16_t *pdata16bits;
|
|
uint32_t tickstart;
|
|
|
|
/* Check that a Tx process is not already ongoing */
|
|
if (huart->gState == HAL_UART_STATE_READY)
|
|
{
|
|
if ((pData == NULL) || (Size == 0U))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
huart->gState = HAL_UART_STATE_BUSY_TX;
|
|
|
|
/* Init tickstart for timeout management */
|
|
tickstart = HAL_GetTick();
|
|
|
|
huart->TxXferSize = Size;
|
|
huart->TxXferCount = Size;
|
|
|
|
/* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
|
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
|
{
|
|
pdata8bits = NULL;
|
|
pdata16bits = (const uint16_t *) pData;
|
|
}
|
|
else
|
|
{
|
|
pdata8bits = pData;
|
|
pdata16bits = NULL;
|
|
}
|
|
|
|
while (huart->TxXferCount > 0U)
|
|
{
|
|
if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
|
|
{
|
|
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
if (pdata8bits == NULL)
|
|
{
|
|
huart->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU);
|
|
pdata16bits++;
|
|
}
|
|
else
|
|
{
|
|
huart->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU);
|
|
pdata8bits++;
|
|
}
|
|
huart->TxXferCount--;
|
|
}
|
|
|
|
if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
|
|
{
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* At end of Tx process, restore huart->gState to Ready */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in blocking mode.
|
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
|
* the received data is handled as a set of u16. In this case, Size must indicate the number
|
|
* of u16 available through pData.
|
|
* @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO
|
|
* is not empty. Read operations from the RDR register are performed when
|
|
* RXFNE flag is set. From hardware perspective, RXFNE flag and
|
|
* RXNE are mapped on the same bit-field.
|
|
* @param huart UART handle.
|
|
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
|
* @param Size Amount of data elements (u8 or u16) to be received.
|
|
* @param Timeout Timeout duration.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
|
|
{
|
|
uint8_t *pdata8bits;
|
|
uint16_t *pdata16bits;
|
|
uint16_t uhMask;
|
|
uint32_t tickstart;
|
|
|
|
/* Check that a Rx process is not already ongoing */
|
|
if (huart->RxState == HAL_UART_STATE_READY)
|
|
{
|
|
if ((pData == NULL) || (Size == 0U))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
huart->RxState = HAL_UART_STATE_BUSY_RX;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* Init tickstart for timeout management */
|
|
tickstart = HAL_GetTick();
|
|
|
|
huart->RxXferSize = Size;
|
|
huart->RxXferCount = Size;
|
|
|
|
/* Computation of UART mask to apply to RDR register */
|
|
UART_MASK_COMPUTATION(huart);
|
|
uhMask = huart->Mask;
|
|
|
|
/* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
|
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
|
{
|
|
pdata8bits = NULL;
|
|
pdata16bits = (uint16_t *) pData;
|
|
}
|
|
else
|
|
{
|
|
pdata8bits = pData;
|
|
pdata16bits = NULL;
|
|
}
|
|
|
|
/* as long as data have to be received */
|
|
while (huart->RxXferCount > 0U)
|
|
{
|
|
if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
|
|
{
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
if (pdata8bits == NULL)
|
|
{
|
|
*pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
|
|
pdata16bits++;
|
|
}
|
|
else
|
|
{
|
|
*pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
|
|
pdata8bits++;
|
|
}
|
|
huart->RxXferCount--;
|
|
}
|
|
|
|
/* At end of Rx process, restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Send an amount of data in interrupt mode.
|
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
|
* the sent data is handled as a set of u16. In this case, Size must indicate the number
|
|
* of u16 provided through pData.
|
|
* @param huart UART handle.
|
|
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
|
* @param Size Amount of data elements (u8 or u16) to be sent.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
|
|
{
|
|
/* Check that a Tx process is not already ongoing */
|
|
if (huart->gState == HAL_UART_STATE_READY)
|
|
{
|
|
if ((pData == NULL) || (Size == 0U))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
huart->pTxBuffPtr = pData;
|
|
huart->TxXferSize = Size;
|
|
huart->TxXferCount = Size;
|
|
huart->TxISR = NULL;
|
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
huart->gState = HAL_UART_STATE_BUSY_TX;
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Configure Tx interrupt processing */
|
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
|
{
|
|
/* Set the Tx ISR function pointer according to the data word length */
|
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
|
{
|
|
huart->TxISR = UART_TxISR_16BIT_FIFOEN;
|
|
}
|
|
else
|
|
{
|
|
huart->TxISR = UART_TxISR_8BIT_FIFOEN;
|
|
}
|
|
|
|
/* Enable the TX FIFO threshold interrupt */
|
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
|
|
}
|
|
else
|
|
{
|
|
/* Set the Tx ISR function pointer according to the data word length */
|
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
|
{
|
|
huart->TxISR = UART_TxISR_16BIT;
|
|
}
|
|
else
|
|
{
|
|
huart->TxISR = UART_TxISR_8BIT;
|
|
}
|
|
|
|
/* Enable the Transmit Data Register Empty interrupt */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
|
|
}
|
|
#else
|
|
/* Set the Tx ISR function pointer according to the data word length */
|
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
|
{
|
|
huart->TxISR = UART_TxISR_16BIT;
|
|
}
|
|
else
|
|
{
|
|
huart->TxISR = UART_TxISR_8BIT;
|
|
}
|
|
|
|
/* Enable the Transmit Data Register Empty interrupt */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TXEIE);
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in interrupt mode.
|
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
|
* the received data is handled as a set of u16. In this case, Size must indicate the number
|
|
* of u16 available through pData.
|
|
* @param huart UART handle.
|
|
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
|
* @param Size Amount of data elements (u8 or u16) to be received.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
|
{
|
|
/* Check that a Rx process is not already ongoing */
|
|
if (huart->RxState == HAL_UART_STATE_READY)
|
|
{
|
|
if ((pData == NULL) || (Size == 0U))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Set Reception type to Standard reception */
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
|
{
|
|
/* Check that USART RTOEN bit is set */
|
|
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
|
|
{
|
|
/* Enable the UART Receiver Timeout Interrupt */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
|
|
}
|
|
}
|
|
|
|
return (UART_Start_Receive_IT(huart, pData, Size));
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Send an amount of data in DMA mode.
|
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
|
* the sent data is handled as a set of u16. In this case, Size must indicate the number
|
|
* of u16 provided through pData.
|
|
* @param huart UART handle.
|
|
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
|
* @param Size Amount of data elements (u8 or u16) to be sent.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
|
|
{
|
|
/* Check that a Tx process is not already ongoing */
|
|
if (huart->gState == HAL_UART_STATE_READY)
|
|
{
|
|
if ((pData == NULL) || (Size == 0U))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
huart->pTxBuffPtr = pData;
|
|
huart->TxXferSize = Size;
|
|
huart->TxXferCount = Size;
|
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
huart->gState = HAL_UART_STATE_BUSY_TX;
|
|
|
|
if (huart->hdmatx != NULL)
|
|
{
|
|
/* Set the UART DMA transfer complete callback */
|
|
huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
|
|
|
|
/* Set the UART DMA Half transfer complete callback */
|
|
huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
huart->hdmatx->XferErrorCallback = UART_DMAError;
|
|
|
|
/* Set the DMA abort callback */
|
|
huart->hdmatx->XferAbortCallback = NULL;
|
|
|
|
/* Enable the UART transmit DMA channel */
|
|
if (HAL_DMA_Start_IT(huart->hdmatx, (uint32_t)huart->pTxBuffPtr, (uint32_t)&huart->Instance->TDR, Size) != HAL_OK)
|
|
{
|
|
/* Set error code to DMA */
|
|
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
|
|
|
/* Restore huart->gState to ready */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* Clear the TC flag in the ICR register */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_TCF);
|
|
|
|
/* Enable the DMA transfer for transmit request by setting the DMAT bit
|
|
in the UART CR3 register */
|
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in DMA mode.
|
|
* @note When the UART parity is enabled (PCE = 1), the received data contain
|
|
* the parity bit (MSB position).
|
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
|
* the received data is handled as a set of u16. In this case, Size must indicate the number
|
|
* of u16 available through pData.
|
|
* @param huart UART handle.
|
|
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
|
* @param Size Amount of data elements (u8 or u16) to be received.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
|
{
|
|
/* Check that a Rx process is not already ongoing */
|
|
if (huart->RxState == HAL_UART_STATE_READY)
|
|
{
|
|
if ((pData == NULL) || (Size == 0U))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Set Reception type to Standard reception */
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
|
{
|
|
/* Check that USART RTOEN bit is set */
|
|
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
|
|
{
|
|
/* Enable the UART Receiver Timeout Interrupt */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
|
|
}
|
|
}
|
|
|
|
return (UART_Start_Receive_DMA(huart, pData, Size));
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Pause the DMA Transfer.
|
|
* @param huart UART handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
|
|
{
|
|
const HAL_UART_StateTypeDef gstate = huart->gState;
|
|
const HAL_UART_StateTypeDef rxstate = huart->RxState;
|
|
|
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
|
|
(gstate == HAL_UART_STATE_BUSY_TX))
|
|
{
|
|
/* Disable the UART DMA Tx request */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
|
}
|
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
|
|
(rxstate == HAL_UART_STATE_BUSY_RX))
|
|
{
|
|
/* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
|
|
/* Disable the UART DMA Rx request */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Resume the DMA Transfer.
|
|
* @param huart UART handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
|
|
{
|
|
if (huart->gState == HAL_UART_STATE_BUSY_TX)
|
|
{
|
|
/* Enable the UART DMA Tx request */
|
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
|
}
|
|
if (huart->RxState == HAL_UART_STATE_BUSY_RX)
|
|
{
|
|
/* Clear the Overrun flag before resuming the Rx transfer */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
|
|
|
|
/* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */
|
|
if (huart->Init.Parity != UART_PARITY_NONE)
|
|
{
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
|
}
|
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
|
|
/* Enable the UART DMA Rx request */
|
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Stop the DMA Transfer.
|
|
* @param huart UART handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
|
|
{
|
|
/* The Lock is not implemented on this API to allow the user application
|
|
to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() /
|
|
HAL_UART_TxHalfCpltCallback / HAL_UART_RxHalfCpltCallback:
|
|
indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete
|
|
interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of
|
|
the stream and the corresponding call back is executed. */
|
|
|
|
const HAL_UART_StateTypeDef gstate = huart->gState;
|
|
const HAL_UART_StateTypeDef rxstate = huart->RxState;
|
|
|
|
/* Stop UART DMA Tx request if ongoing */
|
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
|
|
(gstate == HAL_UART_STATE_BUSY_TX))
|
|
{
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
|
|
|
/* Abort the UART DMA Tx channel */
|
|
if (huart->hdmatx != NULL)
|
|
{
|
|
if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
|
|
{
|
|
if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
|
|
{
|
|
/* Set error code to DMA */
|
|
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
UART_EndTxTransfer(huart);
|
|
}
|
|
|
|
/* Stop UART DMA Rx request if ongoing */
|
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
|
|
(rxstate == HAL_UART_STATE_BUSY_RX))
|
|
{
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
|
|
|
/* Abort the UART DMA Rx channel */
|
|
if (huart->hdmarx != NULL)
|
|
{
|
|
if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
|
|
{
|
|
if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
|
|
{
|
|
/* Set error code to DMA */
|
|
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
UART_EndRxTransfer(huart);
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Abort ongoing transfers (blocking mode).
|
|
* @param huart UART handle.
|
|
* @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
|
|
* This procedure performs following operations :
|
|
* - Disable UART Interrupts (Tx and Rx)
|
|
* - Disable the DMA transfer in the peripheral register (if enabled)
|
|
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
|
|
* - Set handle State to READY
|
|
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart)
|
|
{
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Disable TXE, TC, RXNE, PE, RXFT, TXFT and ERR (Frame error, noise error, overrun error) interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE |
|
|
USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE);
|
|
#else
|
|
/* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
|
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
{
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
|
|
}
|
|
|
|
/* Abort the UART DMA Tx channel if enabled */
|
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
|
|
{
|
|
/* Disable the UART DMA Tx request if enabled */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
|
|
|
/* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
|
|
if (huart->hdmatx != NULL)
|
|
{
|
|
/* Set the UART DMA Abort callback to Null.
|
|
No call back execution at end of DMA abort procedure */
|
|
huart->hdmatx->XferAbortCallback = NULL;
|
|
|
|
if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
|
|
{
|
|
if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
|
|
{
|
|
/* Set error code to DMA */
|
|
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Abort the UART DMA Rx channel if enabled */
|
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
|
{
|
|
/* Disable the UART DMA Rx request if enabled */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
|
|
|
/* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
|
|
if (huart->hdmarx != NULL)
|
|
{
|
|
/* Set the UART DMA Abort callback to Null.
|
|
No call back execution at end of DMA abort procedure */
|
|
huart->hdmarx->XferAbortCallback = NULL;
|
|
|
|
if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
|
|
{
|
|
if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
|
|
{
|
|
/* Set error code to DMA */
|
|
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reset Tx and Rx transfer counters */
|
|
huart->TxXferCount = 0U;
|
|
huart->RxXferCount = 0U;
|
|
|
|
/* Clear the Error flags in the ICR register */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Flush the whole TX FIFO (if needed) */
|
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
|
{
|
|
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
|
|
}
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Discard the received data */
|
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
|
|
|
/* Restore huart->gState and huart->RxState to Ready */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Abort ongoing Transmit transfer (blocking mode).
|
|
* @param huart UART handle.
|
|
* @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
|
|
* This procedure performs following operations :
|
|
* - Disable UART Interrupts (Tx)
|
|
* - Disable the DMA transfer in the peripheral register (if enabled)
|
|
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
|
|
* - Set handle State to READY
|
|
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart)
|
|
{
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Disable TCIE, TXEIE and TXFTIE interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
|
|
#else
|
|
/* Disable TXEIE and TCIE interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Abort the UART DMA Tx channel if enabled */
|
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
|
|
{
|
|
/* Disable the UART DMA Tx request if enabled */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
|
|
|
/* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
|
|
if (huart->hdmatx != NULL)
|
|
{
|
|
/* Set the UART DMA Abort callback to Null.
|
|
No call back execution at end of DMA abort procedure */
|
|
huart->hdmatx->XferAbortCallback = NULL;
|
|
|
|
if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
|
|
{
|
|
if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
|
|
{
|
|
/* Set error code to DMA */
|
|
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reset Tx transfer counter */
|
|
huart->TxXferCount = 0U;
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Flush the whole TX FIFO (if needed) */
|
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
|
{
|
|
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
|
|
}
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Restore huart->gState to Ready */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Abort ongoing Receive transfer (blocking mode).
|
|
* @param huart UART handle.
|
|
* @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
|
|
* This procedure performs following operations :
|
|
* - Disable UART Interrupts (Rx)
|
|
* - Disable the DMA transfer in the peripheral register (if enabled)
|
|
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
|
|
* - Set handle State to READY
|
|
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart)
|
|
{
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Disable PEIE, EIE, RXNEIE and RXFTIE interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE);
|
|
#else
|
|
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
|
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
{
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
|
|
}
|
|
|
|
/* Abort the UART DMA Rx channel if enabled */
|
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
|
{
|
|
/* Disable the UART DMA Rx request if enabled */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
|
|
|
/* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
|
|
if (huart->hdmarx != NULL)
|
|
{
|
|
/* Set the UART DMA Abort callback to Null.
|
|
No call back execution at end of DMA abort procedure */
|
|
huart->hdmarx->XferAbortCallback = NULL;
|
|
|
|
if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
|
|
{
|
|
if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
|
|
{
|
|
/* Set error code to DMA */
|
|
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reset Rx transfer counter */
|
|
huart->RxXferCount = 0U;
|
|
|
|
/* Clear the Error flags in the ICR register */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
|
|
|
/* Discard the received data */
|
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
|
|
|
/* Restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Abort ongoing transfers (Interrupt mode).
|
|
* @param huart UART handle.
|
|
* @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
|
|
* This procedure performs following operations :
|
|
* - Disable UART Interrupts (Tx and Rx)
|
|
* - Disable the DMA transfer in the peripheral register (if enabled)
|
|
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
|
|
* - Set handle State to READY
|
|
* - At abort completion, call user abort complete callback
|
|
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
|
|
* considered as completed only when user abort complete callback is executed (not when exiting function).
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart)
|
|
{
|
|
uint32_t abortcplt = 1U;
|
|
|
|
/* Disable interrupts */
|
|
#if defined(USART_CR1_FIFOEN)
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_TCIE | USART_CR1_RXNEIE_RXFNEIE |
|
|
USART_CR1_TXEIE_TXFNFIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE));
|
|
#else
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
|
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
{
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
|
|
}
|
|
|
|
/* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised
|
|
before any call to DMA Abort functions */
|
|
/* DMA Tx Handle is valid */
|
|
if (huart->hdmatx != NULL)
|
|
{
|
|
/* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
|
|
Otherwise, set it to NULL */
|
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
|
|
{
|
|
huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback;
|
|
}
|
|
else
|
|
{
|
|
huart->hdmatx->XferAbortCallback = NULL;
|
|
}
|
|
}
|
|
/* DMA Rx Handle is valid */
|
|
if (huart->hdmarx != NULL)
|
|
{
|
|
/* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
|
|
Otherwise, set it to NULL */
|
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
|
{
|
|
huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback;
|
|
}
|
|
else
|
|
{
|
|
huart->hdmarx->XferAbortCallback = NULL;
|
|
}
|
|
}
|
|
|
|
/* Abort the UART DMA Tx channel if enabled */
|
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
|
|
{
|
|
/* Disable DMA Tx at UART level */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
|
|
|
/* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
|
|
if (huart->hdmatx != NULL)
|
|
{
|
|
/* UART Tx DMA Abort callback has already been initialised :
|
|
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
|
|
|
|
/* Abort DMA TX */
|
|
if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
|
|
{
|
|
huart->hdmatx->XferAbortCallback = NULL;
|
|
}
|
|
else
|
|
{
|
|
abortcplt = 0U;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Abort the UART DMA Rx channel if enabled */
|
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
|
{
|
|
/* Disable the UART DMA Rx request if enabled */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
|
|
|
/* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
|
|
if (huart->hdmarx != NULL)
|
|
{
|
|
/* UART Rx DMA Abort callback has already been initialised :
|
|
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
|
|
|
|
/* Abort DMA RX */
|
|
if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
|
|
{
|
|
huart->hdmarx->XferAbortCallback = NULL;
|
|
abortcplt = 1U;
|
|
}
|
|
else
|
|
{
|
|
abortcplt = 0U;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if no DMA abort complete callback execution is required => call user Abort Complete callback */
|
|
if (abortcplt == 1U)
|
|
{
|
|
/* Reset Tx and Rx transfer counters */
|
|
huart->TxXferCount = 0U;
|
|
huart->RxXferCount = 0U;
|
|
|
|
/* Clear ISR function pointers */
|
|
huart->RxISR = NULL;
|
|
huart->TxISR = NULL;
|
|
|
|
/* Reset errorCode */
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
|
|
/* Clear the Error flags in the ICR register */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Flush the whole TX FIFO (if needed) */
|
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
|
{
|
|
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
|
|
}
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Discard the received data */
|
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
|
|
|
/* Restore huart->gState and huart->RxState to Ready */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* As no DMA to be aborted, call directly user Abort complete callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/* Call registered Abort complete callback */
|
|
huart->AbortCpltCallback(huart);
|
|
#else
|
|
/* Call legacy weak Abort complete callback */
|
|
HAL_UART_AbortCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Abort ongoing Transmit transfer (Interrupt mode).
|
|
* @param huart UART handle.
|
|
* @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
|
|
* This procedure performs following operations :
|
|
* - Disable UART Interrupts (Tx)
|
|
* - Disable the DMA transfer in the peripheral register (if enabled)
|
|
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
|
|
* - Set handle State to READY
|
|
* - At abort completion, call user abort complete callback
|
|
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
|
|
* considered as completed only when user abort complete callback is executed (not when exiting function).
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Disable interrupts */
|
|
#if defined(USART_CR1_FIFOEN)
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
|
|
#else
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Abort the UART DMA Tx channel if enabled */
|
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
|
|
{
|
|
/* Disable the UART DMA Tx request if enabled */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
|
|
|
/* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
|
|
if (huart->hdmatx != NULL)
|
|
{
|
|
/* Set the UART DMA Abort callback :
|
|
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
|
|
huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback;
|
|
|
|
/* Abort DMA TX */
|
|
if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
|
|
{
|
|
/* Call Directly huart->hdmatx->XferAbortCallback function in case of error */
|
|
huart->hdmatx->XferAbortCallback(huart->hdmatx);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Reset Tx transfer counter */
|
|
huart->TxXferCount = 0U;
|
|
|
|
/* Clear TxISR function pointers */
|
|
huart->TxISR = NULL;
|
|
|
|
/* Restore huart->gState to Ready */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
/* As no DMA to be aborted, call directly user Abort complete callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/* Call registered Abort Transmit Complete Callback */
|
|
huart->AbortTransmitCpltCallback(huart);
|
|
#else
|
|
/* Call legacy weak Abort Transmit Complete Callback */
|
|
HAL_UART_AbortTransmitCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Reset Tx transfer counter */
|
|
huart->TxXferCount = 0U;
|
|
|
|
/* Clear TxISR function pointers */
|
|
huart->TxISR = NULL;
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Flush the whole TX FIFO (if needed) */
|
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
|
{
|
|
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
|
|
}
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Restore huart->gState to Ready */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
/* As no DMA to be aborted, call directly user Abort complete callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/* Call registered Abort Transmit Complete Callback */
|
|
huart->AbortTransmitCpltCallback(huart);
|
|
#else
|
|
/* Call legacy weak Abort Transmit Complete Callback */
|
|
HAL_UART_AbortTransmitCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Abort ongoing Receive transfer (Interrupt mode).
|
|
* @param huart UART handle.
|
|
* @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
|
|
* This procedure performs following operations :
|
|
* - Disable UART Interrupts (Rx)
|
|
* - Disable the DMA transfer in the peripheral register (if enabled)
|
|
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
|
|
* - Set handle State to READY
|
|
* - At abort completion, call user abort complete callback
|
|
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
|
|
* considered as completed only when user abort complete callback is executed (not when exiting function).
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
|
|
#if defined(USART_CR1_FIFOEN)
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
|
|
#else
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
|
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
{
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
|
|
}
|
|
|
|
/* Abort the UART DMA Rx channel if enabled */
|
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
|
{
|
|
/* Disable the UART DMA Rx request if enabled */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
|
|
|
/* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
|
|
if (huart->hdmarx != NULL)
|
|
{
|
|
/* Set the UART DMA Abort callback :
|
|
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
|
|
huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback;
|
|
|
|
/* Abort DMA RX */
|
|
if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
|
|
{
|
|
/* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
|
|
huart->hdmarx->XferAbortCallback(huart->hdmarx);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Reset Rx transfer counter */
|
|
huart->RxXferCount = 0U;
|
|
|
|
/* Clear RxISR function pointer */
|
|
huart->pRxBuffPtr = NULL;
|
|
|
|
/* Clear the Error flags in the ICR register */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
|
|
|
/* Discard the received data */
|
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
|
|
|
/* Restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* As no DMA to be aborted, call directly user Abort complete callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/* Call registered Abort Receive Complete Callback */
|
|
huart->AbortReceiveCpltCallback(huart);
|
|
#else
|
|
/* Call legacy weak Abort Receive Complete Callback */
|
|
HAL_UART_AbortReceiveCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Reset Rx transfer counter */
|
|
huart->RxXferCount = 0U;
|
|
|
|
/* Clear RxISR function pointer */
|
|
huart->pRxBuffPtr = NULL;
|
|
|
|
/* Clear the Error flags in the ICR register */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
|
|
|
/* Restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* As no DMA to be aborted, call directly user Abort complete callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/* Call registered Abort Receive Complete Callback */
|
|
huart->AbortReceiveCpltCallback(huart);
|
|
#else
|
|
/* Call legacy weak Abort Receive Complete Callback */
|
|
HAL_UART_AbortReceiveCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Handle UART interrupt request.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
|
|
{
|
|
uint32_t isrflags = READ_REG(huart->Instance->ISR);
|
|
uint32_t cr1its = READ_REG(huart->Instance->CR1);
|
|
uint32_t cr3its = READ_REG(huart->Instance->CR3);
|
|
|
|
uint32_t errorflags;
|
|
uint32_t errorcode;
|
|
|
|
/* If no error occurs */
|
|
errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE | USART_ISR_RTOF));
|
|
if (errorflags == 0U)
|
|
{
|
|
/* UART in mode Receiver ---------------------------------------------------*/
|
|
#if defined(USART_CR1_FIFOEN)
|
|
if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U)
|
|
&& (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)
|
|
|| ((cr3its & USART_CR3_RXFTIE) != 0U)))
|
|
#else
|
|
if (((isrflags & USART_ISR_RXNE) != 0U)
|
|
&& ((cr1its & USART_CR1_RXNEIE) != 0U))
|
|
#endif /* USART_CR1_FIFOEN */
|
|
{
|
|
if (huart->RxISR != NULL)
|
|
{
|
|
huart->RxISR(huart);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* If some errors occur */
|
|
#if defined(USART_CR1_FIFOEN)
|
|
if ((errorflags != 0U)
|
|
&& ((((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U)
|
|
|| ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_RTOIE)) != 0U))))
|
|
#else
|
|
if ((errorflags != 0U)
|
|
&& (((cr3its & USART_CR3_EIE) != 0U)
|
|
|| ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_RTOIE)) != 0U)))
|
|
#endif /* USART_CR1_FIFOEN */
|
|
{
|
|
/* UART parity error interrupt occurred -------------------------------------*/
|
|
if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
|
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_PE;
|
|
}
|
|
|
|
/* UART frame error interrupt occurred --------------------------------------*/
|
|
if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
|
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_FE;
|
|
}
|
|
|
|
/* UART noise error interrupt occurred --------------------------------------*/
|
|
if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
|
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_NE;
|
|
}
|
|
|
|
/* UART Over-Run interrupt occurred -----------------------------------------*/
|
|
#if defined(USART_CR1_FIFOEN)
|
|
if (((isrflags & USART_ISR_ORE) != 0U)
|
|
&& (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) ||
|
|
((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U)))
|
|
#else
|
|
if (((isrflags & USART_ISR_ORE) != 0U)
|
|
&& (((cr1its & USART_CR1_RXNEIE) != 0U) ||
|
|
((cr3its & USART_CR3_EIE) != 0U)))
|
|
#endif /* USART_CR1_FIFOEN */
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
|
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_ORE;
|
|
}
|
|
|
|
/* UART Receiver Timeout interrupt occurred ---------------------------------*/
|
|
if (((isrflags & USART_ISR_RTOF) != 0U) && ((cr1its & USART_CR1_RTOIE) != 0U))
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF);
|
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_RTO;
|
|
}
|
|
|
|
/* Call UART Error Call back function if need be ----------------------------*/
|
|
if (huart->ErrorCode != HAL_UART_ERROR_NONE)
|
|
{
|
|
/* UART in mode Receiver --------------------------------------------------*/
|
|
#if defined(USART_CR1_FIFOEN)
|
|
if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U)
|
|
&& (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)
|
|
|| ((cr3its & USART_CR3_RXFTIE) != 0U)))
|
|
#else
|
|
if (((isrflags & USART_ISR_RXNE) != 0U)
|
|
&& ((cr1its & USART_CR1_RXNEIE) != 0U))
|
|
#endif /* USART_CR1_FIFOEN */
|
|
{
|
|
if (huart->RxISR != NULL)
|
|
{
|
|
huart->RxISR(huart);
|
|
}
|
|
}
|
|
|
|
/* If Error is to be considered as blocking :
|
|
- Receiver Timeout error in Reception
|
|
- Overrun error in Reception
|
|
- any error occurs in DMA mode reception
|
|
*/
|
|
errorcode = huart->ErrorCode;
|
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) ||
|
|
((errorcode & (HAL_UART_ERROR_RTO | HAL_UART_ERROR_ORE)) != 0U))
|
|
{
|
|
/* Blocking error : transfer is aborted
|
|
Set the UART state ready to be able to start again the process,
|
|
Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
|
|
UART_EndRxTransfer(huart);
|
|
|
|
/* Abort the UART DMA Rx channel if enabled */
|
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
|
{
|
|
/* Disable the UART DMA Rx request if enabled */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
|
|
|
/* Abort the UART DMA Rx channel */
|
|
if (huart->hdmarx != NULL)
|
|
{
|
|
/* Set the UART DMA Abort callback :
|
|
will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
|
|
huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
|
|
|
|
/* Abort DMA RX */
|
|
if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
|
|
{
|
|
/* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
|
|
huart->hdmarx->XferAbortCallback(huart->hdmarx);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Call user error callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
huart->ErrorCallback(huart);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_UART_ErrorCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Call user error callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
huart->ErrorCallback(huart);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_UART_ErrorCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Non Blocking error : transfer could go on.
|
|
Error is notified to user through user error callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
huart->ErrorCallback(huart);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_UART_ErrorCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
}
|
|
}
|
|
return;
|
|
|
|
} /* End if some error occurs */
|
|
|
|
/* Check current reception Mode :
|
|
If Reception till IDLE event has been selected : */
|
|
if ((huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
&& ((isrflags & USART_ISR_IDLE) != 0U)
|
|
&& ((cr1its & USART_ISR_IDLE) != 0U))
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
|
|
|
/* Check if DMA mode is enabled in UART */
|
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
|
{
|
|
/* DMA mode enabled */
|
|
/* Check received length : If all expected data are received, do nothing,
|
|
(DMA cplt callback will be called).
|
|
Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
|
|
uint16_t nb_remaining_rx_data = (uint16_t) __HAL_DMA_GET_COUNTER(huart->hdmarx);
|
|
if ((nb_remaining_rx_data > 0U)
|
|
&& (nb_remaining_rx_data < huart->RxXferSize))
|
|
{
|
|
/* Reception is not complete */
|
|
huart->RxXferCount = nb_remaining_rx_data;
|
|
|
|
/* In Normal mode, end DMA xfer and HAL UART Rx process*/
|
|
if (HAL_IS_BIT_CLR(huart->hdmarx->Instance->CCR, DMA_CCR_CIRC))
|
|
{
|
|
/* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
|
|
/* Disable the DMA transfer for the receiver request by resetting the DMAR bit
|
|
in the UART CR3 register */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
|
|
|
/* At end of Rx process, restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
|
|
|
/* Last bytes received, so no need as the abort is immediate */
|
|
(void)HAL_DMA_Abort(huart->hdmarx);
|
|
}
|
|
|
|
/* Initialize type of RxEvent that correspond to RxEvent callback execution;
|
|
In this case, Rx Event type is Idle Event */
|
|
huart->RxEventType = HAL_UART_RXEVENT_IDLE;
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx Event callback*/
|
|
huart->RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
|
|
#else
|
|
/*Call legacy weak Rx Event callback*/
|
|
HAL_UARTEx_RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
|
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
|
}
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
/* DMA mode not enabled */
|
|
/* Check received length : If all expected data are received, do nothing.
|
|
Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
|
|
uint16_t nb_rx_data = huart->RxXferSize - huart->RxXferCount;
|
|
if ((huart->RxXferCount > 0U)
|
|
&& (nb_rx_data > 0U))
|
|
{
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Disable the UART Parity Error Interrupt and RXNE interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
|
|
|
|
/* Disable the UART Error Interrupt:(Frame error, noise error, overrun error) and RX FIFO Threshold interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
|
|
#else
|
|
/* Disable the UART Parity Error Interrupt and RXNE interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
|
|
|
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Rx process is completed, restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* Clear RxISR function pointer */
|
|
huart->RxISR = NULL;
|
|
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
|
|
|
/* Initialize type of RxEvent that correspond to RxEvent callback execution;
|
|
In this case, Rx Event type is Idle Event */
|
|
huart->RxEventType = HAL_UART_RXEVENT_IDLE;
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx complete callback*/
|
|
huart->RxEventCallback(huart, nb_rx_data);
|
|
#else
|
|
/*Call legacy weak Rx Event callback*/
|
|
HAL_UARTEx_RxEventCallback(huart, nb_rx_data);
|
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* UART wakeup from Stop mode interrupt occurred ---------------------------*/
|
|
if (((isrflags & USART_ISR_WUF) != 0U) && ((cr3its & USART_CR3_WUFIE) != 0U))
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_WUF);
|
|
|
|
/* UART Rx state is not reset as a reception process might be ongoing.
|
|
If UART handle state fields need to be reset to READY, this could be done in Wakeup callback */
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/* Call registered Wakeup Callback */
|
|
huart->WakeupCallback(huart);
|
|
#else
|
|
/* Call legacy weak Wakeup Callback */
|
|
HAL_UARTEx_WakeupCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
return;
|
|
}
|
|
|
|
/* UART in mode Transmitter ------------------------------------------------*/
|
|
#if defined(USART_CR1_FIFOEN)
|
|
if (((isrflags & USART_ISR_TXE_TXFNF) != 0U)
|
|
&& (((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U)
|
|
|| ((cr3its & USART_CR3_TXFTIE) != 0U)))
|
|
#else
|
|
if (((isrflags & USART_ISR_TXE) != 0U)
|
|
&& ((cr1its & USART_CR1_TXEIE) != 0U))
|
|
#endif /* USART_CR1_FIFOEN */
|
|
{
|
|
if (huart->TxISR != NULL)
|
|
{
|
|
huart->TxISR(huart);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* UART in mode Transmitter (transmission end) -----------------------------*/
|
|
if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U))
|
|
{
|
|
UART_EndTransmit_IT(huart);
|
|
return;
|
|
}
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* UART TX Fifo Empty occurred ----------------------------------------------*/
|
|
if (((isrflags & USART_ISR_TXFE) != 0U) && ((cr1its & USART_CR1_TXFEIE) != 0U))
|
|
{
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/* Call registered Tx Fifo Empty Callback */
|
|
huart->TxFifoEmptyCallback(huart);
|
|
#else
|
|
/* Call legacy weak Tx Fifo Empty Callback */
|
|
HAL_UARTEx_TxFifoEmptyCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
return;
|
|
}
|
|
|
|
/* UART RX Fifo Full occurred ----------------------------------------------*/
|
|
if (((isrflags & USART_ISR_RXFF) != 0U) && ((cr1its & USART_CR1_RXFFIE) != 0U))
|
|
{
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/* Call registered Rx Fifo Full Callback */
|
|
huart->RxFifoFullCallback(huart);
|
|
#else
|
|
/* Call legacy weak Rx Fifo Full Callback */
|
|
HAL_UARTEx_RxFifoFullCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
return;
|
|
}
|
|
#endif /* USART_CR1_FIFOEN */
|
|
}
|
|
|
|
/**
|
|
* @brief Tx Transfer completed callback.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(huart);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_UART_TxCpltCallback can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Tx Half Transfer completed callback.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(huart);
|
|
|
|
/* NOTE: This function should not be modified, when the callback is needed,
|
|
the HAL_UART_TxHalfCpltCallback can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Rx Transfer completed callback.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(huart);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_UART_RxCpltCallback can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Rx Half Transfer completed callback.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(huart);
|
|
|
|
/* NOTE: This function should not be modified, when the callback is needed,
|
|
the HAL_UART_RxHalfCpltCallback can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief UART error callback.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(huart);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_UART_ErrorCallback can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief UART Abort Complete callback.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(huart);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_UART_AbortCpltCallback can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief UART Abort Complete callback.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(huart);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief UART Abort Receive Complete callback.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(huart);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Reception Event Callback (Rx event notification called after use of advanced reception service).
|
|
* @param huart UART handle
|
|
* @param Size Number of data available in application reception buffer (indicates a position in
|
|
* reception buffer until which, data are available)
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(huart);
|
|
UNUSED(Size);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_UARTEx_RxEventCallback can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
|
|
* @brief UART control functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral Control functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to control the UART.
|
|
(+) HAL_UART_ReceiverTimeout_Config() API allows to configure the receiver timeout value on the fly
|
|
(+) HAL_UART_EnableReceiverTimeout() API enables the receiver timeout feature
|
|
(+) HAL_UART_DisableReceiverTimeout() API disables the receiver timeout feature
|
|
(+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode
|
|
(+) HAL_MultiProcessor_DisableMuteMode() API disables mute mode
|
|
(+) HAL_MultiProcessor_EnterMuteMode() API enters mute mode
|
|
(+) UART_SetConfig() API configures the UART peripheral
|
|
(+) UART_AdvFeatureConfig() API optionally configures the UART advanced features
|
|
(+) UART_CheckIdleState() API ensures that TEACK and/or REACK are set after initialization
|
|
(+) HAL_HalfDuplex_EnableTransmitter() API disables receiver and enables transmitter
|
|
(+) HAL_HalfDuplex_EnableReceiver() API disables transmitter and enables receiver
|
|
(+) HAL_LIN_SendBreak() API transmits the break characters
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Update on the fly the receiver timeout value in RTOR register.
|
|
* @param huart Pointer to a UART_HandleTypeDef structure that contains
|
|
* the configuration information for the specified UART module.
|
|
* @param TimeoutValue receiver timeout value in number of baud blocks. The timeout
|
|
* value must be less or equal to 0x0FFFFFFFF.
|
|
* @retval None
|
|
*/
|
|
void HAL_UART_ReceiverTimeout_Config(UART_HandleTypeDef *huart, uint32_t TimeoutValue)
|
|
{
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
|
{
|
|
assert_param(IS_UART_RECEIVER_TIMEOUT_VALUE(TimeoutValue));
|
|
MODIFY_REG(huart->Instance->RTOR, USART_RTOR_RTO, TimeoutValue);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Enable the UART receiver timeout feature.
|
|
* @param huart Pointer to a UART_HandleTypeDef structure that contains
|
|
* the configuration information for the specified UART module.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_EnableReceiverTimeout(UART_HandleTypeDef *huart)
|
|
{
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
|
{
|
|
if (huart->gState == HAL_UART_STATE_READY)
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(huart);
|
|
|
|
huart->gState = HAL_UART_STATE_BUSY;
|
|
|
|
/* Set the USART RTOEN bit */
|
|
SET_BIT(huart->Instance->CR2, USART_CR2_RTOEN);
|
|
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(huart);
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Disable the UART receiver timeout feature.
|
|
* @param huart Pointer to a UART_HandleTypeDef structure that contains
|
|
* the configuration information for the specified UART module.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_UART_DisableReceiverTimeout(UART_HandleTypeDef *huart)
|
|
{
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
|
{
|
|
if (huart->gState == HAL_UART_STATE_READY)
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(huart);
|
|
|
|
huart->gState = HAL_UART_STATE_BUSY;
|
|
|
|
/* Clear the USART RTOEN bit */
|
|
CLEAR_BIT(huart->Instance->CR2, USART_CR2_RTOEN);
|
|
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(huart);
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Enable UART in mute mode (does not mean UART enters mute mode;
|
|
* to enter mute mode, HAL_MultiProcessor_EnterMuteMode() API must be called).
|
|
* @param huart UART handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart)
|
|
{
|
|
__HAL_LOCK(huart);
|
|
|
|
huart->gState = HAL_UART_STATE_BUSY;
|
|
|
|
/* Enable USART mute mode by setting the MME bit in the CR1 register */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_MME);
|
|
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
return (UART_CheckIdleState(huart));
|
|
}
|
|
|
|
/**
|
|
* @brief Disable UART mute mode (does not mean the UART actually exits mute mode
|
|
* as it may not have been in mute mode at this very moment).
|
|
* @param huart UART handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart)
|
|
{
|
|
__HAL_LOCK(huart);
|
|
|
|
huart->gState = HAL_UART_STATE_BUSY;
|
|
|
|
/* Disable USART mute mode by clearing the MME bit in the CR1 register */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_MME);
|
|
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
return (UART_CheckIdleState(huart));
|
|
}
|
|
|
|
/**
|
|
* @brief Enter UART mute mode (means UART actually enters mute mode).
|
|
* @note To exit from mute mode, HAL_MultiProcessor_DisableMuteMode() API must be called.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
|
|
{
|
|
__HAL_UART_SEND_REQ(huart, UART_MUTE_MODE_REQUEST);
|
|
}
|
|
|
|
/**
|
|
* @brief Enable the UART transmitter and disable the UART receiver.
|
|
* @param huart UART handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
|
|
{
|
|
__HAL_LOCK(huart);
|
|
huart->gState = HAL_UART_STATE_BUSY;
|
|
|
|
/* Clear TE and RE bits */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
|
|
|
|
/* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TE);
|
|
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
__HAL_UNLOCK(huart);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Enable the UART receiver and disable the UART transmitter.
|
|
* @param huart UART handle.
|
|
* @retval HAL status.
|
|
*/
|
|
HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
|
|
{
|
|
__HAL_LOCK(huart);
|
|
huart->gState = HAL_UART_STATE_BUSY;
|
|
|
|
/* Clear TE and RE bits */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
|
|
|
|
/* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RE);
|
|
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
__HAL_UNLOCK(huart);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Transmit break characters.
|
|
* @param huart UART handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
|
|
|
|
__HAL_LOCK(huart);
|
|
|
|
huart->gState = HAL_UART_STATE_BUSY;
|
|
|
|
/* Send break characters */
|
|
__HAL_UART_SEND_REQ(huart, UART_SENDBREAK_REQUEST);
|
|
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
__HAL_UNLOCK(huart);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Error functions
|
|
* @brief UART Peripheral State functions
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### Peripheral State and Error functions #####
|
|
==============================================================================
|
|
[..]
|
|
This subsection provides functions allowing to :
|
|
(+) Return the UART handle state.
|
|
(+) Return the UART handle error code
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Return the UART handle state.
|
|
* @param huart Pointer to a UART_HandleTypeDef structure that contains
|
|
* the configuration information for the specified UART.
|
|
* @retval HAL state
|
|
*/
|
|
HAL_UART_StateTypeDef HAL_UART_GetState(const UART_HandleTypeDef *huart)
|
|
{
|
|
uint32_t temp1;
|
|
uint32_t temp2;
|
|
temp1 = huart->gState;
|
|
temp2 = huart->RxState;
|
|
|
|
return (HAL_UART_StateTypeDef)(temp1 | temp2);
|
|
}
|
|
|
|
/**
|
|
* @brief Return the UART handle error code.
|
|
* @param huart Pointer to a UART_HandleTypeDef structure that contains
|
|
* the configuration information for the specified UART.
|
|
* @retval UART Error Code
|
|
*/
|
|
uint32_t HAL_UART_GetError(const UART_HandleTypeDef *huart)
|
|
{
|
|
return huart->ErrorCode;
|
|
}
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup UART_Private_Functions UART Private Functions
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the callbacks to their default values.
|
|
* @param huart UART handle.
|
|
* @retval none
|
|
*/
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Init the UART Callback settings */
|
|
huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
|
|
huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */
|
|
huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
|
|
huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */
|
|
huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */
|
|
huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
|
|
huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
|
|
huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */
|
|
huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */
|
|
#if defined(USART_CR1_FIFOEN)
|
|
huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */
|
|
huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */
|
|
#endif /* USART_CR1_FIFOEN */
|
|
huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak RxEventCallback */
|
|
|
|
}
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
|
|
/**
|
|
* @brief Configure the UART peripheral.
|
|
* @param huart UART handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart)
|
|
{
|
|
uint32_t tmpreg;
|
|
uint16_t brrtemp;
|
|
UART_ClockSourceTypeDef clocksource;
|
|
uint32_t usartdiv;
|
|
HAL_StatusTypeDef ret = HAL_OK;
|
|
#if defined(USART_PRESC_PRESCALER)
|
|
uint32_t lpuart_ker_ck_pres;
|
|
#endif /* USART_PRESC_PRESCALER */
|
|
uint32_t pclk;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
|
|
assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
|
|
if (UART_INSTANCE_LOWPOWER(huart))
|
|
{
|
|
assert_param(IS_LPUART_STOPBITS(huart->Init.StopBits));
|
|
}
|
|
else
|
|
{
|
|
assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
|
|
assert_param(IS_UART_ONE_BIT_SAMPLE(huart->Init.OneBitSampling));
|
|
}
|
|
|
|
assert_param(IS_UART_PARITY(huart->Init.Parity));
|
|
assert_param(IS_UART_MODE(huart->Init.Mode));
|
|
assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
|
|
assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
|
|
#if defined(USART_PRESC_PRESCALER)
|
|
assert_param(IS_UART_PRESCALER(huart->Init.ClockPrescaler));
|
|
#endif /* USART_PRESC_PRESCALER */
|
|
|
|
/*-------------------------- USART CR1 Configuration -----------------------*/
|
|
/* Clear M, PCE, PS, TE, RE and OVER8 bits and configure
|
|
* the UART Word Length, Parity, Mode and oversampling:
|
|
* set the M bits according to huart->Init.WordLength value
|
|
* set PCE and PS bits according to huart->Init.Parity value
|
|
* set TE and RE bits according to huart->Init.Mode value
|
|
* set OVER8 bit according to huart->Init.OverSampling value */
|
|
tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling ;
|
|
MODIFY_REG(huart->Instance->CR1, USART_CR1_FIELDS, tmpreg);
|
|
|
|
/*-------------------------- USART CR2 Configuration -----------------------*/
|
|
/* Configure the UART Stop Bits: Set STOP[13:12] bits according
|
|
* to huart->Init.StopBits value */
|
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
|
|
|
|
/*-------------------------- USART CR3 Configuration -----------------------*/
|
|
/* Configure
|
|
* - UART HardWare Flow Control: set CTSE and RTSE bits according
|
|
* to huart->Init.HwFlowCtl value
|
|
* - one-bit sampling method versus three samples' majority rule according
|
|
* to huart->Init.OneBitSampling (not applicable to LPUART) */
|
|
tmpreg = (uint32_t)huart->Init.HwFlowCtl;
|
|
|
|
if (!(UART_INSTANCE_LOWPOWER(huart)))
|
|
{
|
|
tmpreg |= huart->Init.OneBitSampling;
|
|
}
|
|
MODIFY_REG(huart->Instance->CR3, USART_CR3_FIELDS, tmpreg);
|
|
|
|
#if defined(USART_PRESC_PRESCALER)
|
|
/*-------------------------- USART PRESC Configuration -----------------------*/
|
|
/* Configure
|
|
* - UART Clock Prescaler : set PRESCALER according to huart->Init.ClockPrescaler value */
|
|
MODIFY_REG(huart->Instance->PRESC, USART_PRESC_PRESCALER, huart->Init.ClockPrescaler);
|
|
#endif /* USART_PRESC_PRESCALER */
|
|
|
|
/*-------------------------- USART BRR Configuration -----------------------*/
|
|
UART_GETCLOCKSOURCE(huart, clocksource);
|
|
|
|
/* Check LPUART instance */
|
|
if (UART_INSTANCE_LOWPOWER(huart))
|
|
{
|
|
/* Retrieve frequency clock */
|
|
switch (clocksource)
|
|
{
|
|
case UART_CLOCKSOURCE_PCLK1:
|
|
pclk = HAL_RCC_GetPCLK1Freq();
|
|
break;
|
|
case UART_CLOCKSOURCE_HSI:
|
|
pclk = (uint32_t) HSI_VALUE;
|
|
break;
|
|
case UART_CLOCKSOURCE_SYSCLK:
|
|
pclk = HAL_RCC_GetSysClockFreq();
|
|
break;
|
|
case UART_CLOCKSOURCE_LSE:
|
|
pclk = (uint32_t) LSE_VALUE;
|
|
break;
|
|
default:
|
|
pclk = 0U;
|
|
ret = HAL_ERROR;
|
|
break;
|
|
}
|
|
|
|
/* If proper clock source reported */
|
|
if (pclk != 0U)
|
|
{
|
|
#if defined(USART_PRESC_PRESCALER)
|
|
/* Compute clock after Prescaler */
|
|
lpuart_ker_ck_pres = (pclk / UARTPrescTable[huart->Init.ClockPrescaler]);
|
|
|
|
/* Ensure that Frequency clock is in the range [3 * baudrate, 4096 * baudrate] */
|
|
if ((lpuart_ker_ck_pres < (3U * huart->Init.BaudRate)) ||
|
|
(lpuart_ker_ck_pres > (4096U * huart->Init.BaudRate)))
|
|
{
|
|
ret = HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
/* Check computed UsartDiv value is in allocated range
|
|
(it is forbidden to write values lower than 0x300 in the LPUART_BRR register) */
|
|
usartdiv = (uint32_t)(UART_DIV_LPUART(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
|
|
if ((usartdiv >= LPUART_BRR_MIN) && (usartdiv <= LPUART_BRR_MAX))
|
|
{
|
|
huart->Instance->BRR = usartdiv;
|
|
}
|
|
else
|
|
{
|
|
ret = HAL_ERROR;
|
|
}
|
|
} /* if ( (lpuart_ker_ck_pres < (3 * huart->Init.BaudRate) ) ||
|
|
(lpuart_ker_ck_pres > (4096 * huart->Init.BaudRate) )) */
|
|
#else
|
|
/* No Prescaler applicable */
|
|
/* Ensure that Frequency clock is in the range [3 * baudrate, 4096 * baudrate] */
|
|
if ((pclk < (3U * huart->Init.BaudRate)) ||
|
|
(pclk > (4096U * huart->Init.BaudRate)))
|
|
{
|
|
ret = HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
usartdiv = (uint32_t)(UART_DIV_LPUART(pclk, huart->Init.BaudRate));
|
|
if ((usartdiv >= LPUART_BRR_MIN) && (usartdiv <= LPUART_BRR_MAX))
|
|
{
|
|
huart->Instance->BRR = usartdiv;
|
|
}
|
|
else
|
|
{
|
|
ret = HAL_ERROR;
|
|
}
|
|
} /* if ( (pclk < (3 * huart->Init.BaudRate) ) || (pclk > (4096 * huart->Init.BaudRate) )) */
|
|
#endif /* USART_PRESC_PRESCALER */
|
|
} /* if (pclk != 0) */
|
|
}
|
|
/* Check UART Over Sampling to set Baud Rate Register */
|
|
else if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
|
|
{
|
|
switch (clocksource)
|
|
{
|
|
case UART_CLOCKSOURCE_PCLK1:
|
|
pclk = HAL_RCC_GetPCLK1Freq();
|
|
break;
|
|
case UART_CLOCKSOURCE_PCLK2:
|
|
pclk = HAL_RCC_GetPCLK2Freq();
|
|
break;
|
|
case UART_CLOCKSOURCE_HSI:
|
|
pclk = (uint32_t) HSI_VALUE;
|
|
break;
|
|
case UART_CLOCKSOURCE_SYSCLK:
|
|
pclk = HAL_RCC_GetSysClockFreq();
|
|
break;
|
|
case UART_CLOCKSOURCE_LSE:
|
|
pclk = (uint32_t) LSE_VALUE;
|
|
break;
|
|
default:
|
|
pclk = 0U;
|
|
ret = HAL_ERROR;
|
|
break;
|
|
}
|
|
|
|
/* USARTDIV must be greater than or equal to 0d16 */
|
|
if (pclk != 0U)
|
|
{
|
|
#if defined(USART_PRESC_PRESCALER)
|
|
usartdiv = (uint32_t)(UART_DIV_SAMPLING8(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
|
|
#else
|
|
usartdiv = (uint32_t)(UART_DIV_SAMPLING8(pclk, huart->Init.BaudRate));
|
|
#endif /* USART_PRESC_PRESCALER */
|
|
if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX))
|
|
{
|
|
brrtemp = (uint16_t)(usartdiv & 0xFFF0U);
|
|
brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U);
|
|
huart->Instance->BRR = brrtemp;
|
|
}
|
|
else
|
|
{
|
|
ret = HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (clocksource)
|
|
{
|
|
case UART_CLOCKSOURCE_PCLK1:
|
|
pclk = HAL_RCC_GetPCLK1Freq();
|
|
break;
|
|
case UART_CLOCKSOURCE_PCLK2:
|
|
pclk = HAL_RCC_GetPCLK2Freq();
|
|
break;
|
|
case UART_CLOCKSOURCE_HSI:
|
|
pclk = (uint32_t) HSI_VALUE;
|
|
break;
|
|
case UART_CLOCKSOURCE_SYSCLK:
|
|
pclk = HAL_RCC_GetSysClockFreq();
|
|
break;
|
|
case UART_CLOCKSOURCE_LSE:
|
|
pclk = (uint32_t) LSE_VALUE;
|
|
break;
|
|
default:
|
|
pclk = 0U;
|
|
ret = HAL_ERROR;
|
|
break;
|
|
}
|
|
|
|
if (pclk != 0U)
|
|
{
|
|
/* USARTDIV must be greater than or equal to 0d16 */
|
|
#if defined(USART_PRESC_PRESCALER)
|
|
usartdiv = (uint32_t)(UART_DIV_SAMPLING16(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
|
|
#else
|
|
usartdiv = (uint32_t)(UART_DIV_SAMPLING16(pclk, huart->Init.BaudRate));
|
|
#endif /* USART_PRESC_PRESCALER */
|
|
if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX))
|
|
{
|
|
huart->Instance->BRR = (uint16_t)usartdiv;
|
|
}
|
|
else
|
|
{
|
|
ret = HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Initialize the number of data to process during RX/TX ISR execution */
|
|
huart->NbTxDataToProcess = 1;
|
|
huart->NbRxDataToProcess = 1;
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Clear ISR function pointers */
|
|
huart->RxISR = NULL;
|
|
huart->TxISR = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the UART peripheral advanced features.
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
void UART_AdvFeatureConfig(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Check whether the set of advanced features to configure is properly set */
|
|
assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit));
|
|
|
|
/* if required, configure RX/TX pins swap */
|
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT))
|
|
{
|
|
assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap));
|
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap);
|
|
}
|
|
|
|
/* if required, configure TX pin active level inversion */
|
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT))
|
|
{
|
|
assert_param(IS_UART_ADVFEATURE_TXINV(huart->AdvancedInit.TxPinLevelInvert));
|
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_TXINV, huart->AdvancedInit.TxPinLevelInvert);
|
|
}
|
|
|
|
/* if required, configure RX pin active level inversion */
|
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXINVERT_INIT))
|
|
{
|
|
assert_param(IS_UART_ADVFEATURE_RXINV(huart->AdvancedInit.RxPinLevelInvert));
|
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_RXINV, huart->AdvancedInit.RxPinLevelInvert);
|
|
}
|
|
|
|
/* if required, configure data inversion */
|
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DATAINVERT_INIT))
|
|
{
|
|
assert_param(IS_UART_ADVFEATURE_DATAINV(huart->AdvancedInit.DataInvert));
|
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert);
|
|
}
|
|
|
|
/* if required, configure RX overrun detection disabling */
|
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT))
|
|
{
|
|
assert_param(IS_UART_OVERRUN(huart->AdvancedInit.OverrunDisable));
|
|
MODIFY_REG(huart->Instance->CR3, USART_CR3_OVRDIS, huart->AdvancedInit.OverrunDisable);
|
|
}
|
|
|
|
/* if required, configure DMA disabling on reception error */
|
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DMADISABLEONERROR_INIT))
|
|
{
|
|
assert_param(IS_UART_ADVFEATURE_DMAONRXERROR(huart->AdvancedInit.DMADisableonRxError));
|
|
MODIFY_REG(huart->Instance->CR3, USART_CR3_DDRE, huart->AdvancedInit.DMADisableonRxError);
|
|
}
|
|
|
|
/* if required, configure auto Baud rate detection scheme */
|
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT))
|
|
{
|
|
assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(huart->Instance));
|
|
assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(huart->AdvancedInit.AutoBaudRateEnable));
|
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_ABREN, huart->AdvancedInit.AutoBaudRateEnable);
|
|
/* set auto Baudrate detection parameters if detection is enabled */
|
|
if (huart->AdvancedInit.AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE)
|
|
{
|
|
assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(huart->AdvancedInit.AutoBaudRateMode));
|
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_ABRMODE, huart->AdvancedInit.AutoBaudRateMode);
|
|
}
|
|
}
|
|
|
|
/* if required, configure MSB first on communication line */
|
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_MSBFIRST_INIT))
|
|
{
|
|
assert_param(IS_UART_ADVFEATURE_MSBFIRST(huart->AdvancedInit.MSBFirst));
|
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_MSBFIRST, huart->AdvancedInit.MSBFirst);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Check the UART Idle State.
|
|
* @param huart UART handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Initialize the UART ErrorCode */
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
|
|
/* Init tickstart for timeout management */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Check if the Transmitter is enabled */
|
|
if ((huart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
|
|
{
|
|
/* Wait until TEACK flag is set */
|
|
if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_TEACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
|
|
{
|
|
/* Disable TXE interrupt for the interrupt process */
|
|
#if defined(USART_CR1_FIFOEN)
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE));
|
|
#else
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE));
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
__HAL_UNLOCK(huart);
|
|
|
|
/* Timeout occurred */
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Check if the Receiver is enabled */
|
|
if ((huart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
|
|
{
|
|
/* Wait until REACK flag is set */
|
|
if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
|
|
{
|
|
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error)
|
|
interrupts for the interrupt process */
|
|
#if defined(USART_CR1_FIFOEN)
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
|
|
#else
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
|
#endif /* USART_CR1_FIFOEN */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
|
|
__HAL_UNLOCK(huart);
|
|
|
|
/* Timeout occurred */
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Initialize the UART State */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
huart->RxEventType = HAL_UART_RXEVENT_TC;
|
|
|
|
__HAL_UNLOCK(huart);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles UART Communication Timeout. It waits
|
|
* until a flag is no longer in the specified status.
|
|
* @param huart UART handle.
|
|
* @param Flag Specifies the UART flag to check
|
|
* @param Status The actual Flag status (SET or RESET)
|
|
* @param Tickstart Tick start value
|
|
* @param Timeout Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
|
|
uint32_t Tickstart, uint32_t Timeout)
|
|
{
|
|
/* Wait until flag is set */
|
|
while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status)
|
|
{
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
if (READ_BIT(huart->Instance->CR1, USART_CR1_RE) != 0U)
|
|
{
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) == SET)
|
|
{
|
|
/* Clear Overrun Error flag*/
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
|
|
|
|
/* Blocking error : transfer is aborted
|
|
Set the UART state ready to be able to start again the process,
|
|
Disable Rx Interrupts if ongoing */
|
|
UART_EndRxTransfer(huart);
|
|
|
|
huart->ErrorCode = HAL_UART_ERROR_ORE;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(huart);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RTOF) == SET)
|
|
{
|
|
/* Clear Receiver Timeout flag*/
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF);
|
|
|
|
/* Blocking error : transfer is aborted
|
|
Set the UART state ready to be able to start again the process,
|
|
Disable Rx Interrupts if ongoing */
|
|
UART_EndRxTransfer(huart);
|
|
|
|
huart->ErrorCode = HAL_UART_ERROR_RTO;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(huart);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Start Receive operation in interrupt mode.
|
|
* @note This function could be called by all HAL UART API providing reception in Interrupt mode.
|
|
* @note When calling this function, parameters validity is considered as already checked,
|
|
* i.e. Rx State, buffer address, ...
|
|
* UART Handle is assumed as Locked.
|
|
* @param huart UART handle.
|
|
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
|
* @param Size Amount of data elements (u8 or u16) to be received.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
|
{
|
|
huart->pRxBuffPtr = pData;
|
|
huart->RxXferSize = Size;
|
|
huart->RxXferCount = Size;
|
|
huart->RxISR = NULL;
|
|
|
|
/* Computation of UART mask to apply to RDR register */
|
|
UART_MASK_COMPUTATION(huart);
|
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
huart->RxState = HAL_UART_STATE_BUSY_RX;
|
|
|
|
/* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
|
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Configure Rx interrupt processing */
|
|
if ((huart->FifoMode == UART_FIFOMODE_ENABLE) && (Size >= huart->NbRxDataToProcess))
|
|
{
|
|
/* Set the Rx ISR function pointer according to the data word length */
|
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
|
{
|
|
huart->RxISR = UART_RxISR_16BIT_FIFOEN;
|
|
}
|
|
else
|
|
{
|
|
huart->RxISR = UART_RxISR_8BIT_FIFOEN;
|
|
}
|
|
|
|
/* Enable the UART Parity Error interrupt and RX FIFO Threshold interrupt */
|
|
if (huart->Init.Parity != UART_PARITY_NONE)
|
|
{
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
|
}
|
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
|
|
}
|
|
else
|
|
{
|
|
/* Set the Rx ISR function pointer according to the data word length */
|
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
|
{
|
|
huart->RxISR = UART_RxISR_16BIT;
|
|
}
|
|
else
|
|
{
|
|
huart->RxISR = UART_RxISR_8BIT;
|
|
}
|
|
|
|
/* Enable the UART Parity Error interrupt and Data Register Not Empty interrupt */
|
|
if (huart->Init.Parity != UART_PARITY_NONE)
|
|
{
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE);
|
|
}
|
|
else
|
|
{
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
|
|
}
|
|
}
|
|
#else
|
|
/* Set the Rx ISR function pointer according to the data word length */
|
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
|
{
|
|
huart->RxISR = UART_RxISR_16BIT;
|
|
}
|
|
else
|
|
{
|
|
huart->RxISR = UART_RxISR_8BIT;
|
|
}
|
|
|
|
/* Enable the UART Parity Error interrupt and Data Register Not Empty interrupt */
|
|
if (huart->Init.Parity != UART_PARITY_NONE)
|
|
{
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE);
|
|
}
|
|
else
|
|
{
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE);
|
|
}
|
|
#endif /* USART_CR1_FIFOEN */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Start Receive operation in DMA mode.
|
|
* @note This function could be called by all HAL UART API providing reception in DMA mode.
|
|
* @note When calling this function, parameters validity is considered as already checked,
|
|
* i.e. Rx State, buffer address, ...
|
|
* UART Handle is assumed as Locked.
|
|
* @param huart UART handle.
|
|
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
|
* @param Size Amount of data elements (u8 or u16) to be received.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
|
{
|
|
huart->pRxBuffPtr = pData;
|
|
huart->RxXferSize = Size;
|
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
huart->RxState = HAL_UART_STATE_BUSY_RX;
|
|
|
|
if (huart->hdmarx != NULL)
|
|
{
|
|
/* Set the UART DMA transfer complete callback */
|
|
huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
|
|
|
|
/* Set the UART DMA Half transfer complete callback */
|
|
huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
huart->hdmarx->XferErrorCallback = UART_DMAError;
|
|
|
|
/* Set the DMA abort callback */
|
|
huart->hdmarx->XferAbortCallback = NULL;
|
|
|
|
/* Enable the DMA channel */
|
|
if (HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->RDR, (uint32_t)huart->pRxBuffPtr, Size) != HAL_OK)
|
|
{
|
|
/* Set error code to DMA */
|
|
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
|
|
|
/* Restore huart->RxState to ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/* Enable the UART Parity Error Interrupt */
|
|
if (huart->Init.Parity != UART_PARITY_NONE)
|
|
{
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
|
}
|
|
|
|
/* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
|
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
|
|
/* Enable the DMA transfer for the receiver request by setting the DMAR bit
|
|
in the UART CR3 register */
|
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion).
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_EndTxTransfer(UART_HandleTypeDef *huart)
|
|
{
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Disable TXEIE, TCIE, TXFT interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_TXFTIE));
|
|
#else
|
|
/* Disable TXEIE and TCIE interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* At end of Tx process, restore huart->gState to Ready */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_EndRxTransfer(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
|
|
#if defined(USART_CR1_FIFOEN)
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
|
|
#else
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* In case of reception waiting for IDLE event, disable also the IDLE IE interrupt source */
|
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
{
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
|
}
|
|
|
|
/* At end of Rx process, restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* Reset RxIsr function pointer */
|
|
huart->RxISR = NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief DMA UART transmit process complete callback.
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
|
|
|
/* DMA Normal mode */
|
|
if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
|
|
{
|
|
huart->TxXferCount = 0U;
|
|
|
|
/* Disable the DMA transfer for transmit request by resetting the DMAT bit
|
|
in the UART CR3 register */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
|
|
|
/* Enable the UART Transmit Complete Interrupt */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
|
|
}
|
|
/* DMA Circular mode */
|
|
else
|
|
{
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Tx complete callback*/
|
|
huart->TxCpltCallback(huart);
|
|
#else
|
|
/*Call legacy weak Tx complete callback*/
|
|
HAL_UART_TxCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA UART transmit process half complete callback.
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Tx Half complete callback*/
|
|
huart->TxHalfCpltCallback(huart);
|
|
#else
|
|
/*Call legacy weak Tx Half complete callback*/
|
|
HAL_UART_TxHalfCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA UART receive process complete callback.
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
|
|
|
/* DMA Normal mode */
|
|
if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
|
|
{
|
|
huart->RxXferCount = 0U;
|
|
|
|
/* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
|
|
/* Disable the DMA transfer for the receiver request by resetting the DMAR bit
|
|
in the UART CR3 register */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
|
|
|
/* At end of Rx process, restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
|
|
/* If Reception till IDLE event has been selected, Disable IDLE Interrupt */
|
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
{
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
|
}
|
|
}
|
|
|
|
/* Initialize type of RxEvent that correspond to RxEvent callback execution;
|
|
In this case, Rx Event type is Transfer Complete */
|
|
huart->RxEventType = HAL_UART_RXEVENT_TC;
|
|
|
|
/* Check current reception Mode :
|
|
If Reception till IDLE event has been selected : use Rx Event callback */
|
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
{
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx Event callback*/
|
|
huart->RxEventCallback(huart, huart->RxXferSize);
|
|
#else
|
|
/*Call legacy weak Rx Event callback*/
|
|
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
else
|
|
{
|
|
/* In other cases : use Rx Complete callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx complete callback*/
|
|
huart->RxCpltCallback(huart);
|
|
#else
|
|
/*Call legacy weak Rx complete callback*/
|
|
HAL_UART_RxCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA UART receive process half complete callback.
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
|
|
|
/* Initialize type of RxEvent that correspond to RxEvent callback execution;
|
|
In this case, Rx Event type is Half Transfer */
|
|
huart->RxEventType = HAL_UART_RXEVENT_HT;
|
|
|
|
/* Check current reception Mode :
|
|
If Reception till IDLE event has been selected : use Rx Event callback */
|
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
{
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx Event callback*/
|
|
huart->RxEventCallback(huart, huart->RxXferSize / 2U);
|
|
#else
|
|
/*Call legacy weak Rx Event callback*/
|
|
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize / 2U);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
else
|
|
{
|
|
/* In other cases : use Rx Half Complete callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx Half complete callback*/
|
|
huart->RxHalfCpltCallback(huart);
|
|
#else
|
|
/*Call legacy weak Rx Half complete callback*/
|
|
HAL_UART_RxHalfCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA UART communication error callback.
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_DMAError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
|
|
|
const HAL_UART_StateTypeDef gstate = huart->gState;
|
|
const HAL_UART_StateTypeDef rxstate = huart->RxState;
|
|
|
|
/* Stop UART DMA Tx request if ongoing */
|
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
|
|
(gstate == HAL_UART_STATE_BUSY_TX))
|
|
{
|
|
huart->TxXferCount = 0U;
|
|
UART_EndTxTransfer(huart);
|
|
}
|
|
|
|
/* Stop UART DMA Rx request if ongoing */
|
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
|
|
(rxstate == HAL_UART_STATE_BUSY_RX))
|
|
{
|
|
huart->RxXferCount = 0U;
|
|
UART_EndRxTransfer(huart);
|
|
}
|
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_DMA;
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
huart->ErrorCallback(huart);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_UART_ErrorCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA UART communication abort callback, when initiated by HAL services on Error
|
|
* (To be called at end of DMA Abort procedure following error occurrence).
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
|
huart->RxXferCount = 0U;
|
|
huart->TxXferCount = 0U;
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
huart->ErrorCallback(huart);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_UART_ErrorCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA UART Tx communication abort callback, when initiated by user
|
|
* (To be called at end of DMA Tx Abort procedure following user abort request).
|
|
* @note When this callback is executed, User Abort complete call back is called only if no
|
|
* Abort still ongoing for Rx DMA Handle.
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
|
|
{
|
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
|
|
|
huart->hdmatx->XferAbortCallback = NULL;
|
|
|
|
/* Check if an Abort process is still ongoing */
|
|
if (huart->hdmarx != NULL)
|
|
{
|
|
if (huart->hdmarx->XferAbortCallback != NULL)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
|
|
huart->TxXferCount = 0U;
|
|
huart->RxXferCount = 0U;
|
|
|
|
/* Reset errorCode */
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
|
|
/* Clear the Error flags in the ICR register */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Flush the whole TX FIFO (if needed) */
|
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
|
{
|
|
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
|
|
}
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Restore huart->gState and huart->RxState to Ready */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* Call user Abort complete callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/* Call registered Abort complete callback */
|
|
huart->AbortCpltCallback(huart);
|
|
#else
|
|
/* Call legacy weak Abort complete callback */
|
|
HAL_UART_AbortCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief DMA UART Rx communication abort callback, when initiated by user
|
|
* (To be called at end of DMA Rx Abort procedure following user abort request).
|
|
* @note When this callback is executed, User Abort complete call back is called only if no
|
|
* Abort still ongoing for Tx DMA Handle.
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
|
|
{
|
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
|
|
|
huart->hdmarx->XferAbortCallback = NULL;
|
|
|
|
/* Check if an Abort process is still ongoing */
|
|
if (huart->hdmatx != NULL)
|
|
{
|
|
if (huart->hdmatx->XferAbortCallback != NULL)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
|
|
huart->TxXferCount = 0U;
|
|
huart->RxXferCount = 0U;
|
|
|
|
/* Reset errorCode */
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
|
|
/* Clear the Error flags in the ICR register */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
|
|
|
/* Discard the received data */
|
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
|
|
|
/* Restore huart->gState and huart->RxState to Ready */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* Call user Abort complete callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/* Call registered Abort complete callback */
|
|
huart->AbortCpltCallback(huart);
|
|
#else
|
|
/* Call legacy weak Abort complete callback */
|
|
HAL_UART_AbortCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief DMA UART Tx communication abort callback, when initiated by user by a call to
|
|
* HAL_UART_AbortTransmit_IT API (Abort only Tx transfer)
|
|
* (This callback is executed at end of DMA Tx Abort procedure following user abort request,
|
|
* and leads to user Tx Abort Complete callback execution).
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
|
|
{
|
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
|
|
|
huart->TxXferCount = 0U;
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/* Flush the whole TX FIFO (if needed) */
|
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
|
{
|
|
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
|
|
}
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Restore huart->gState to Ready */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
/* Call user Abort complete callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/* Call registered Abort Transmit Complete Callback */
|
|
huart->AbortTransmitCpltCallback(huart);
|
|
#else
|
|
/* Call legacy weak Abort Transmit Complete Callback */
|
|
HAL_UART_AbortTransmitCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA UART Rx communication abort callback, when initiated by user by a call to
|
|
* HAL_UART_AbortReceive_IT API (Abort only Rx transfer)
|
|
* (This callback is executed at end of DMA Rx Abort procedure following user abort request,
|
|
* and leads to user Rx Abort Complete callback execution).
|
|
* @param hdma DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
|
|
{
|
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
huart->RxXferCount = 0U;
|
|
|
|
/* Clear the Error flags in the ICR register */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
|
|
|
/* Discard the received data */
|
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
|
|
|
/* Restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* Call user Abort complete callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/* Call registered Abort Receive Complete Callback */
|
|
huart->AbortReceiveCpltCallback(huart);
|
|
#else
|
|
/* Call legacy weak Abort Receive Complete Callback */
|
|
HAL_UART_AbortReceiveCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief TX interrupt handler for 7 or 8 bits data word length .
|
|
* @note Function is called under interruption only, once
|
|
* interruptions have been enabled by HAL_UART_Transmit_IT().
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_TxISR_8BIT(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Check that a Tx process is ongoing */
|
|
if (huart->gState == HAL_UART_STATE_BUSY_TX)
|
|
{
|
|
if (huart->TxXferCount == 0U)
|
|
{
|
|
/* Disable the UART Transmit Data Register Empty Interrupt */
|
|
#if defined(USART_CR1_FIFOEN)
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
|
|
#else
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE);
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Enable the UART Transmit Complete Interrupt */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
|
|
}
|
|
else
|
|
{
|
|
huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF);
|
|
huart->pTxBuffPtr++;
|
|
huart->TxXferCount--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief TX interrupt handler for 9 bits data word length.
|
|
* @note Function is called under interruption only, once
|
|
* interruptions have been enabled by HAL_UART_Transmit_IT().
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_TxISR_16BIT(UART_HandleTypeDef *huart)
|
|
{
|
|
const uint16_t *tmp;
|
|
|
|
/* Check that a Tx process is ongoing */
|
|
if (huart->gState == HAL_UART_STATE_BUSY_TX)
|
|
{
|
|
if (huart->TxXferCount == 0U)
|
|
{
|
|
/* Disable the UART Transmit Data Register Empty Interrupt */
|
|
#if defined(USART_CR1_FIFOEN)
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
|
|
#else
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE);
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Enable the UART Transmit Complete Interrupt */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
|
|
}
|
|
else
|
|
{
|
|
tmp = (const uint16_t *) huart->pTxBuffPtr;
|
|
huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL);
|
|
huart->pTxBuffPtr += 2U;
|
|
huart->TxXferCount--;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/**
|
|
* @brief TX interrupt handler for 7 or 8 bits data word length and FIFO mode is enabled.
|
|
* @note Function is called under interruption only, once
|
|
* interruptions have been enabled by HAL_UART_Transmit_IT().
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart)
|
|
{
|
|
uint16_t nb_tx_data;
|
|
|
|
/* Check that a Tx process is ongoing */
|
|
if (huart->gState == HAL_UART_STATE_BUSY_TX)
|
|
{
|
|
for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--)
|
|
{
|
|
if (huart->TxXferCount == 0U)
|
|
{
|
|
/* Disable the TX FIFO threshold interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
|
|
|
|
/* Enable the UART Transmit Complete Interrupt */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
|
|
|
|
break; /* force exit loop */
|
|
}
|
|
else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U)
|
|
{
|
|
huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF);
|
|
huart->pTxBuffPtr++;
|
|
huart->TxXferCount--;
|
|
}
|
|
else
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief TX interrupt handler for 9 bits data word length and FIFO mode is enabled.
|
|
* @note Function is called under interruption only, once
|
|
* interruptions have been enabled by HAL_UART_Transmit_IT().
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart)
|
|
{
|
|
const uint16_t *tmp;
|
|
uint16_t nb_tx_data;
|
|
|
|
/* Check that a Tx process is ongoing */
|
|
if (huart->gState == HAL_UART_STATE_BUSY_TX)
|
|
{
|
|
for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--)
|
|
{
|
|
if (huart->TxXferCount == 0U)
|
|
{
|
|
/* Disable the TX FIFO threshold interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
|
|
|
|
/* Enable the UART Transmit Complete Interrupt */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
|
|
|
|
break; /* force exit loop */
|
|
}
|
|
else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U)
|
|
{
|
|
tmp = (const uint16_t *) huart->pTxBuffPtr;
|
|
huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL);
|
|
huart->pTxBuffPtr += 2U;
|
|
huart->TxXferCount--;
|
|
}
|
|
else
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/**
|
|
* @brief Wrap up transmission in non-blocking mode.
|
|
* @param huart pointer to a UART_HandleTypeDef structure that contains
|
|
* the configuration information for the specified UART module.
|
|
* @retval None
|
|
*/
|
|
static void UART_EndTransmit_IT(UART_HandleTypeDef *huart)
|
|
{
|
|
/* Disable the UART Transmit Complete Interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TCIE);
|
|
|
|
/* Tx process is ended, restore huart->gState to Ready */
|
|
huart->gState = HAL_UART_STATE_READY;
|
|
|
|
/* Cleat TxISR function pointer */
|
|
huart->TxISR = NULL;
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Tx complete callback*/
|
|
huart->TxCpltCallback(huart);
|
|
#else
|
|
/*Call legacy weak Tx complete callback*/
|
|
HAL_UART_TxCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief RX interrupt handler for 7 or 8 bits data word length .
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_RxISR_8BIT(UART_HandleTypeDef *huart)
|
|
{
|
|
uint16_t uhMask = huart->Mask;
|
|
uint16_t uhdata;
|
|
|
|
/* Check that a Rx process is ongoing */
|
|
if (huart->RxState == HAL_UART_STATE_BUSY_RX)
|
|
{
|
|
uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
|
|
*huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
|
|
huart->pRxBuffPtr++;
|
|
huart->RxXferCount--;
|
|
|
|
if (huart->RxXferCount == 0U)
|
|
{
|
|
/* Disable the UART Parity Error Interrupt and RXNE interrupts */
|
|
#if defined(USART_CR1_FIFOEN)
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
|
|
#else
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
|
|
/* Rx process is completed, restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
|
|
/* Clear RxISR function pointer */
|
|
huart->RxISR = NULL;
|
|
|
|
/* Initialize type of RxEvent to Transfer Complete */
|
|
huart->RxEventType = HAL_UART_RXEVENT_TC;
|
|
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
|
{
|
|
/* Check that USART RTOEN bit is set */
|
|
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
|
|
{
|
|
/* Enable the UART Receiver Timeout Interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
|
|
}
|
|
}
|
|
|
|
/* Check current reception Mode :
|
|
If Reception till IDLE event has been selected : */
|
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
{
|
|
/* Set reception type to Standard */
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* Disable IDLE interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
|
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
|
|
{
|
|
/* Clear IDLE Flag */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
|
}
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx Event callback*/
|
|
huart->RxEventCallback(huart, huart->RxXferSize);
|
|
#else
|
|
/*Call legacy weak Rx Event callback*/
|
|
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
|
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
|
}
|
|
else
|
|
{
|
|
/* Standard reception API called */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx complete callback*/
|
|
huart->RxCpltCallback(huart);
|
|
#else
|
|
/*Call legacy weak Rx complete callback*/
|
|
HAL_UART_RxCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Clear RXNE interrupt flag */
|
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief RX interrupt handler for 9 bits data word length .
|
|
* @note Function is called under interruption only, once
|
|
* interruptions have been enabled by HAL_UART_Receive_IT()
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_RxISR_16BIT(UART_HandleTypeDef *huart)
|
|
{
|
|
uint16_t *tmp;
|
|
uint16_t uhMask = huart->Mask;
|
|
uint16_t uhdata;
|
|
|
|
/* Check that a Rx process is ongoing */
|
|
if (huart->RxState == HAL_UART_STATE_BUSY_RX)
|
|
{
|
|
uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
|
|
tmp = (uint16_t *) huart->pRxBuffPtr ;
|
|
*tmp = (uint16_t)(uhdata & uhMask);
|
|
huart->pRxBuffPtr += 2U;
|
|
huart->RxXferCount--;
|
|
|
|
if (huart->RxXferCount == 0U)
|
|
{
|
|
/* Disable the UART Parity Error Interrupt and RXNE interrupt*/
|
|
#if defined(USART_CR1_FIFOEN)
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
|
|
#else
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
|
|
|
/* Rx process is completed, restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
|
|
/* Clear RxISR function pointer */
|
|
huart->RxISR = NULL;
|
|
|
|
/* Initialize type of RxEvent to Transfer Complete */
|
|
huart->RxEventType = HAL_UART_RXEVENT_TC;
|
|
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
|
{
|
|
/* Check that USART RTOEN bit is set */
|
|
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
|
|
{
|
|
/* Enable the UART Receiver Timeout Interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
|
|
}
|
|
}
|
|
|
|
/* Check current reception Mode :
|
|
If Reception till IDLE event has been selected : */
|
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
{
|
|
/* Set reception type to Standard */
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* Disable IDLE interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
|
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
|
|
{
|
|
/* Clear IDLE Flag */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
|
}
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx Event callback*/
|
|
huart->RxEventCallback(huart, huart->RxXferSize);
|
|
#else
|
|
/*Call legacy weak Rx Event callback*/
|
|
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
|
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
|
}
|
|
else
|
|
{
|
|
/* Standard reception API called */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx complete callback*/
|
|
huart->RxCpltCallback(huart);
|
|
#else
|
|
/*Call legacy weak Rx complete callback*/
|
|
HAL_UART_RxCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Clear RXNE interrupt flag */
|
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
|
}
|
|
}
|
|
|
|
#if defined(USART_CR1_FIFOEN)
|
|
/**
|
|
* @brief RX interrupt handler for 7 or 8 bits data word length and FIFO mode is enabled.
|
|
* @note Function is called under interruption only, once
|
|
* interruptions have been enabled by HAL_UART_Receive_IT()
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart)
|
|
{
|
|
uint16_t uhMask = huart->Mask;
|
|
uint16_t uhdata;
|
|
uint16_t nb_rx_data;
|
|
uint16_t rxdatacount;
|
|
uint32_t isrflags = READ_REG(huart->Instance->ISR);
|
|
uint32_t cr1its = READ_REG(huart->Instance->CR1);
|
|
uint32_t cr3its = READ_REG(huart->Instance->CR3);
|
|
|
|
/* Check that a Rx process is ongoing */
|
|
if (huart->RxState == HAL_UART_STATE_BUSY_RX)
|
|
{
|
|
nb_rx_data = huart->NbRxDataToProcess;
|
|
while ((nb_rx_data > 0U) && ((isrflags & USART_ISR_RXNE_RXFNE) != 0U))
|
|
{
|
|
uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
|
|
*huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
|
|
huart->pRxBuffPtr++;
|
|
huart->RxXferCount--;
|
|
isrflags = READ_REG(huart->Instance->ISR);
|
|
|
|
/* If some non blocking errors occurred */
|
|
if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE)) != 0U)
|
|
{
|
|
/* UART parity error interrupt occurred -------------------------------------*/
|
|
if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
|
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_PE;
|
|
}
|
|
|
|
/* UART frame error interrupt occurred --------------------------------------*/
|
|
if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
|
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_FE;
|
|
}
|
|
|
|
/* UART noise error interrupt occurred --------------------------------------*/
|
|
if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
|
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_NE;
|
|
}
|
|
|
|
/* Call UART Error Call back function if need be ----------------------------*/
|
|
if (huart->ErrorCode != HAL_UART_ERROR_NONE)
|
|
{
|
|
/* Non Blocking error : transfer could go on.
|
|
Error is notified to user through user error callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
huart->ErrorCallback(huart);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_UART_ErrorCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
}
|
|
}
|
|
|
|
if (huart->RxXferCount == 0U)
|
|
{
|
|
/* Disable the UART Parity Error Interrupt and RXFT interrupt*/
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
|
|
|
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error)
|
|
and RX FIFO Threshold interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
|
|
|
|
/* Rx process is completed, restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
|
|
/* Clear RxISR function pointer */
|
|
huart->RxISR = NULL;
|
|
|
|
/* Initialize type of RxEvent to Transfer Complete */
|
|
huart->RxEventType = HAL_UART_RXEVENT_TC;
|
|
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
|
{
|
|
/* Check that USART RTOEN bit is set */
|
|
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
|
|
{
|
|
/* Enable the UART Receiver Timeout Interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
|
|
}
|
|
}
|
|
|
|
/* Check current reception Mode :
|
|
If Reception till IDLE event has been selected : */
|
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
{
|
|
/* Set reception type to Standard */
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* Disable IDLE interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
|
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
|
|
{
|
|
/* Clear IDLE Flag */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
|
}
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx Event callback*/
|
|
huart->RxEventCallback(huart, huart->RxXferSize);
|
|
#else
|
|
/*Call legacy weak Rx Event callback*/
|
|
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
|
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
|
}
|
|
else
|
|
{
|
|
/* Standard reception API called */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx complete callback*/
|
|
huart->RxCpltCallback(huart);
|
|
#else
|
|
/*Call legacy weak Rx complete callback*/
|
|
HAL_UART_RxCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* When remaining number of bytes to receive is less than the RX FIFO
|
|
threshold, next incoming frames are processed as if FIFO mode was
|
|
disabled (i.e. one interrupt per received frame).
|
|
*/
|
|
rxdatacount = huart->RxXferCount;
|
|
if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess))
|
|
{
|
|
/* Disable the UART RXFT interrupt*/
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
|
|
|
|
/* Update the RxISR function pointer */
|
|
huart->RxISR = UART_RxISR_8BIT;
|
|
|
|
/* Enable the UART Data Register Not Empty interrupt */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Clear RXNE interrupt flag */
|
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief RX interrupt handler for 9 bits data word length and FIFO mode is enabled.
|
|
* @note Function is called under interruption only, once
|
|
* interruptions have been enabled by HAL_UART_Receive_IT()
|
|
* @param huart UART handle.
|
|
* @retval None
|
|
*/
|
|
static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart)
|
|
{
|
|
uint16_t *tmp;
|
|
uint16_t uhMask = huart->Mask;
|
|
uint16_t uhdata;
|
|
uint16_t nb_rx_data;
|
|
uint16_t rxdatacount;
|
|
uint32_t isrflags = READ_REG(huart->Instance->ISR);
|
|
uint32_t cr1its = READ_REG(huart->Instance->CR1);
|
|
uint32_t cr3its = READ_REG(huart->Instance->CR3);
|
|
|
|
/* Check that a Rx process is ongoing */
|
|
if (huart->RxState == HAL_UART_STATE_BUSY_RX)
|
|
{
|
|
nb_rx_data = huart->NbRxDataToProcess;
|
|
while ((nb_rx_data > 0U) && ((isrflags & USART_ISR_RXNE_RXFNE) != 0U))
|
|
{
|
|
uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
|
|
tmp = (uint16_t *) huart->pRxBuffPtr ;
|
|
*tmp = (uint16_t)(uhdata & uhMask);
|
|
huart->pRxBuffPtr += 2U;
|
|
huart->RxXferCount--;
|
|
isrflags = READ_REG(huart->Instance->ISR);
|
|
|
|
/* If some non blocking errors occurred */
|
|
if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE)) != 0U)
|
|
{
|
|
/* UART parity error interrupt occurred -------------------------------------*/
|
|
if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
|
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_PE;
|
|
}
|
|
|
|
/* UART frame error interrupt occurred --------------------------------------*/
|
|
if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
|
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_FE;
|
|
}
|
|
|
|
/* UART noise error interrupt occurred --------------------------------------*/
|
|
if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
|
|
{
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
|
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_NE;
|
|
}
|
|
|
|
/* Call UART Error Call back function if need be ----------------------------*/
|
|
if (huart->ErrorCode != HAL_UART_ERROR_NONE)
|
|
{
|
|
/* Non Blocking error : transfer could go on.
|
|
Error is notified to user through user error callback */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered error callback*/
|
|
huart->ErrorCallback(huart);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_UART_ErrorCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
|
}
|
|
}
|
|
|
|
if (huart->RxXferCount == 0U)
|
|
{
|
|
/* Disable the UART Parity Error Interrupt and RXFT interrupt*/
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
|
|
|
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error)
|
|
and RX FIFO Threshold interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
|
|
|
|
/* Rx process is completed, restore huart->RxState to Ready */
|
|
huart->RxState = HAL_UART_STATE_READY;
|
|
|
|
/* Clear RxISR function pointer */
|
|
huart->RxISR = NULL;
|
|
|
|
/* Initialize type of RxEvent to Transfer Complete */
|
|
huart->RxEventType = HAL_UART_RXEVENT_TC;
|
|
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
|
{
|
|
/* Check that USART RTOEN bit is set */
|
|
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
|
|
{
|
|
/* Enable the UART Receiver Timeout Interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
|
|
}
|
|
}
|
|
|
|
/* Check current reception Mode :
|
|
If Reception till IDLE event has been selected : */
|
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
|
{
|
|
/* Set reception type to Standard */
|
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
|
|
|
/* Disable IDLE interrupt */
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
|
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
|
|
{
|
|
/* Clear IDLE Flag */
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
|
}
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx Event callback*/
|
|
huart->RxEventCallback(huart, huart->RxXferSize);
|
|
#else
|
|
/*Call legacy weak Rx Event callback*/
|
|
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
|
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
|
}
|
|
else
|
|
{
|
|
/* Standard reception API called */
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Rx complete callback*/
|
|
huart->RxCpltCallback(huart);
|
|
#else
|
|
/*Call legacy weak Rx complete callback*/
|
|
HAL_UART_RxCpltCallback(huart);
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* When remaining number of bytes to receive is less than the RX FIFO
|
|
threshold, next incoming frames are processed as if FIFO mode was
|
|
disabled (i.e. one interrupt per received frame).
|
|
*/
|
|
rxdatacount = huart->RxXferCount;
|
|
if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess))
|
|
{
|
|
/* Disable the UART RXFT interrupt*/
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
|
|
|
|
/* Update the RxISR function pointer */
|
|
huart->RxISR = UART_RxISR_16BIT;
|
|
|
|
/* Enable the UART Data Register Not Empty interrupt */
|
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Clear RXNE interrupt flag */
|
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
|
}
|
|
}
|
|
#endif /* USART_CR1_FIFOEN */
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_UART_MODULE_ENABLED */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|