mirror of
https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems.git
synced 2024-11-30 13:40:16 +08:00
Fix modulation index, add tri
This commit is contained in:
parent
1ca408ec5e
commit
9627d38cab
38
README.html
38
README.html
File diff suppressed because one or more lines are too long
18
README.md
18
README.md
|
@ -82,13 +82,13 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
## Fourier transform identities and properties
|
||||
|
||||
| Time domain $x(t)$ | Frequency domain $X(f)$ |
|
||||
| --------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ---------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| $\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)$ | $T \text{sinc}(fT)$ |
|
||||
| $\text{sinc}(2Wt)$ | $\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$ |
|
||||
| $\exp(-at)u(t),\quad a>0$ | $\frac{1}{a + j2\pi f}$ |
|
||||
| $\exp(-a\lvert t \rvert),\quad a>0$ | $\frac{2a}{a^2 + (2\pi f)^2}$ |
|
||||
| $\exp(-\pi t^2)$ | $\exp(-\pi f^2)$ |
|
||||
| $1 - \frac{\lvert t \rvert}{T},\quad\lvert t \rvert < T$ | $T \text{sinc}^2(fT)$ |
|
||||
| $1 - \frac{\lvert t \rvert}{T},\quad\lvert t \rvert < T\quad\text{tri}(t/T)$ | $T \text{sinc}^2(fT)$ |
|
||||
| $\delta(t)$ | $1$ |
|
||||
| $1$ | $\delta(f)$ |
|
||||
| $\delta(t - t_0)$ | $\exp(-j2\pi f t_0)$ |
|
||||
|
@ -130,6 +130,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
\text{sgn}(t) &= \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}&\text{Signum Function}\\
|
||||
\text{sinc}(2Wt) &= \frac{\sin(2\pi W t)}{2\pi W t}&\text{sinc Function}\\
|
||||
\text{rect}(t) = \Pi(t) &= \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & \lvert t \rvert > 0.5 \end{cases}&\text{Rectangular/Gate Function}\\
|
||||
\text{tri}(t/T) &= \begin{cases} 1 - \frac{|t|}{T}, & \lvert t\rvert < T \\ 0, & \lvert t \rvert > T \end{cases}=\Pi(t/T)*\Pi(t/T)&\text{Triangle Function}\\
|
||||
g(t)*h(t)=(g*h)(t)&=\int_\infty^\infty g(\tau)h(t-\tau)d\tau&\text{Convolution}\\
|
||||
\end{align*}
|
||||
```
|
||||
|
@ -156,16 +157,19 @@ Calculate $C_n$ coefficient as follows from $x_p(t)$:
|
|||
|
||||
```math
|
||||
\begin{align*}
|
||||
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt\\
|
||||
&=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
|
||||
C_n&=\frac{1}{T_s} \int_{T_s} x_p(t)\exp(-j2\pi f_s t)dt=\frac{1}{T_s} X(nf_s)\quad\color{red}\text{(TODO: Check)}\quad\color{white}\text{$x(t-nT_s)$ is contained in the interval $T_s$}
|
||||
\end{align*}
|
||||
```
|
||||
|
||||
<!-- MATH END -->
|
||||
|
||||
### $\text{rect}$ function
|
||||
### Shape functions
|
||||
|
||||
![rect](images/rect.drawio.svg)
|
||||
| $\text{rect}$ function | $\text{tri}$ function |
|
||||
| ------------------------------- | --------------------- |
|
||||
| ![rect](images/rect.drawio.svg) | TODO: Add graphic. |
|
||||
|
||||
Tri placeholder: For $\text{tri}(t/T)=1-\|t\|/T$, Intersects $x$ axis at $-T$ and $T$ and $y$ axis at $1$.
|
||||
|
||||
### Bessel function
|
||||
|
||||
|
@ -319,7 +323,7 @@ h(t)&=h_I(t)\cos(2\pi f_c t)-h_Q(t)\sin(2\pi f_c t)\\
|
|||
\begin{align*}
|
||||
x(t)&=A_c\cos(2\pi f_c t)\left[1+k_a m(t)\right]=A_c\cos(2\pi f_c t)\left[1+m_a m(t)/A_c\right], \\
|
||||
&\text{where $m(t)=A_m\hat m(t)$ and $\hat m(t)$ is the normalized modulating signal}\\
|
||||
m_a &= \frac{\min_t|k_a m(t)|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
|
||||
m_a &= \frac{|\min_t(k_a m(t))|}{A_c} \quad\text{$k_a$ is the amplitude sensitivity ($\text{volt}^{-1}$), $m_a$ is the modulation index.}\\
|
||||
m_a &= \frac{A_\text{max}-A_\text{min}}{A_\text{max}+A_\text{min}}\quad\text{ (Symmetrical $m(t)$)}\\
|
||||
m_a&=k_a A_m \quad\text{ (Symmetrical $m(t)$)}\\
|
||||
P_c &=\frac{ {A_c}^2}{2}\quad\text{Carrier power}\\
|
||||
|
|
BIN
README.pdf
BIN
README.pdf
Binary file not shown.
Loading…
Reference in New Issue
Block a user