mirror of
https://github.com/peter-tanner/IDIOTS-GUIDE-TO-ELEC4402-communication-systems.git
synced 2024-11-30 13:40:16 +08:00
Add proper fourier transform properties list, add mutual information
graphic
This commit is contained in:
parent
d48ff87455
commit
dbb68ed60a
117
README.html
117
README.html
File diff suppressed because one or more lines are too long
30
README.md
30
README.md
|
@ -72,7 +72,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
## Fourier transform identities
|
## Fourier transform identities
|
||||||
|
|
||||||
| **Time Function** | **Fourier Transform** |
|
| Time domain $x(t)$ | Frequency domain $X(f)$ |
|
||||||
| --------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
|
| --------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| $\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)$ | $T \text{sinc}(fT)$ |
|
| $\text{rect}\left(\frac{t}{T}\right)\quad\Pi\left(\frac{t}{T}\right)$ | $T \text{sinc}(fT)$ |
|
||||||
| $\text{sinc}(2Wt)$ | $\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$ |
|
| $\text{sinc}(2Wt)$ | $\frac{1}{2W}\text{rect}\left(\frac{f}{2W}\right)\quad\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$ |
|
||||||
|
@ -83,13 +83,6 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
| $\delta(t)$ | $1$ |
|
| $\delta(t)$ | $1$ |
|
||||||
| $1$ | $\delta(f)$ |
|
| $1$ | $\delta(f)$ |
|
||||||
| $\delta(t - t_0)$ | $\exp(-j2\pi f t_0)$ |
|
| $\delta(t - t_0)$ | $\exp(-j2\pi f t_0)$ |
|
||||||
| $g(t-a)$ | $\exp(-j2\pi fa)G(f)\quad\text{shift property}$ |
|
|
||||||
| $g(bt)$ | $\frac{G(f/b)}{\|b\|}\quad\text{scaling property}$ |
|
|
||||||
| $g(bt-a)$ | $\frac{1}{\|b\|}\exp(-j2\pi a(f/b))\cdot G(f/b)\quad\text{shift and scale}$ |
|
|
||||||
| $\frac{d}{dt}g(t)$ | $j2\pi fG(f)\quad\text{differentiation property}$ |
|
|
||||||
| $G(t)$ | $g(-f)\quad\text{duality property}$ |
|
|
||||||
| $g(t)h(t)$ | $G(f)*H(f)$ |
|
|
||||||
| $g(t)*h(t)$ | $G(f)H(f)$ |
|
|
||||||
| $\exp(j2\pi f_c t)$ | $\delta(f - f_c)$ |
|
| $\exp(j2\pi f_c t)$ | $\delta(f - f_c)$ |
|
||||||
| $\cos(2\pi f_c t)$ | $\frac{1}{2}[\delta(f - f_c) + \delta(f + f_c)]$ |
|
| $\cos(2\pi f_c t)$ | $\frac{1}{2}[\delta(f - f_c) + \delta(f + f_c)]$ |
|
||||||
| $\sin(2\pi f_c t)$ | $\frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]$ |
|
| $\sin(2\pi f_c t)$ | $\frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]$ |
|
||||||
|
@ -98,6 +91,25 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
| $u(t)$ | $\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}$ |
|
| $u(t)$ | $\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}$ |
|
||||||
| $\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$ | $\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)=f_0 \sum_{n=-\infty}^{\infty} \delta\left(f - n f_0\right)$ |
|
| $\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$ | $\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)=f_0 \sum_{n=-\infty}^{\infty} \delta\left(f - n f_0\right)$ |
|
||||||
|
|
||||||
|
| Time domain $x(t)$ | Frequency domain $X(f)$ | Property |
|
||||||
|
| ------------------------------- | ------------------------------------------------ | ------------------------- |
|
||||||
|
| $g(t-a)$ | $\exp(-j2\pi fa)G(f)$ | Time shifting |
|
||||||
|
| $\exp(-j2\pi f_c t)g(t)$ | $G(f-f_c)$ | Frequency shifting |
|
||||||
|
| $g(bt)$ | $\frac{G(f/b)}{\|b\|}$ | Time scaling |
|
||||||
|
| $g(bt-a)$ | $\frac{1}{\|b\|}\exp(-j2\pi a(f/b))\cdot G(f/b)$ | Time scaling and shifting |
|
||||||
|
| $\frac{d}{dt}g(t)$ | $j2\pi fG(f)\quad$ | Differentiation wrt time |
|
||||||
|
| $g^*(t)$ | $G^*(-f)$ | Conjugate functions |
|
||||||
|
| $G(t)$ | $g(-f)$ | Duality |
|
||||||
|
| $\int_{-\infty}^t g(\tau)d\tau$ | $\frac{1}{j2\pi f}G(f)+\frac{G(0)}{2}\delta(f)$ | Integration wrt time |
|
||||||
|
| $g(t)h(t)$ | $G(f)*H(f)$ | Time multiplication |
|
||||||
|
| $g(t)*h(t)$ | $G(f)H(f)$ | Time convolution |
|
||||||
|
| $ag(t)+bh(t)$ | $aG(f)+bH(f)$ | Linearity $a,b$ constants |
|
||||||
|
|
||||||
|
| Description | Property |
|
||||||
|
| ----------------------------------- | ----------------- |
|
||||||
|
| $g(0)=\int_{-\infty}^\infty G(f)df$ | Area under $G(f)$ |
|
||||||
|
| $G(0)=\int_{-\infty}^\infty G(t)dt$ | Area under $g(t)$ |
|
||||||
|
|
||||||
```math
|
```math
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
u(t) &= \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}&\text{Unit Step Function}\\
|
u(t) &= \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}&\text{Unit Step Function}\\
|
||||||
|
@ -1015,6 +1027,8 @@ TODO: Cut out if not required
|
||||||
|
|
||||||
### Mutual information
|
### Mutual information
|
||||||
|
|
||||||
|
![Mutual information](images/MutualInformation.drawio.svg)
|
||||||
|
|
||||||
Amount of entropy decrease of $x$ after observation by $y$.
|
Amount of entropy decrease of $x$ after observation by $y$.
|
||||||
|
|
||||||
```math
|
```math
|
||||||
|
|
BIN
README.pdf
BIN
README.pdf
Binary file not shown.
4
images/MutualInformation.drawio.svg
Normal file
4
images/MutualInformation.drawio.svg
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 80 KiB |
Loading…
Reference in New Issue
Block a user