Fix sampling function (scale $f_s$)

This commit is contained in:
Peter 2024-11-02 20:30:13 +08:00
parent 67757a98b6
commit f695c9d554
3 changed files with 17 additions and 6 deletions

File diff suppressed because one or more lines are too long

View File

@ -490,8 +490,9 @@ Use these formulas in particular:
t&=nT_s\\
T_s&=\frac{1}{f_s}\\
x_s(t)&=x(t)\delta_s(t)=x(t)\sum_{n\in\mathbb{Z}}\delta(t-nT_s)=\sum_{n\in\mathbb{Z}}x(nT_s)\delta(t-nT_s)\\
X_s(f)&=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
B&>\frac{1}{2}f_s, 2B>f_s\rightarrow\text{Aliasing}\\
X_s(f)&=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-\frac{n}{T_s}\right)=f_s X(f)*\sum_{n\in\mathbb{Z}}\delta\left(f-n f_s\right)\\
\implies X_s(f)&=\sum_{n\in\mathbb{Z}}f_s X\left(f-n f_s\right)\quad\text{Sampling (FT)}\\
B&>\frac{1}{2}f_s\implies 2B>f_s\rightarrow\text{Aliasing}\\
\end{align*}
```
@ -542,6 +543,12 @@ Calculate $C_n$ coefficient as follows from $x_p(t)$:
Do not transmit more than $2B$ samples per second over a channel of $B$ bandwidth.
```math
\text{Nyquist rate} = 2B\quad\text{Nyquist interval}=\frac{1}{2B}
```
<!-- MATH END -->
![By Bob K - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=94674142](images/Nyquist_frequency_&_rate.svg)
### Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to `images/sampling.png`)

Binary file not shown.