Power-and-Machines-notes/notes.md
2022-10-25 12:04:23 +08:00

4.9 KiB

Power types in motor

Type Description Equivalent terms
Input power Power into machine. V_T=V_{3\phi}, I_L=I_{3\phi} P_\text{in}, \sqrt{3}V_TI_L\cos(\theta)
Output power Mechanical output power of the machine, excludes losses P_\text{out}, P_\text{load}
Converted power Total electrical power converted to mechanical power, includes useful power and mechanical losses inside machine P_\text{conv}, P_\text{converted}, P_\text{mech}, P_\text{developed}, \tau_\text{mech}\times\omega_m
Airgap power Power transmitted over airgap. P_\text{AG}, \tau_\text{mech}\times\omega_s
Mechanical loss Power lost to friction and windage P_\text{mechanical loss}, P_\text{F\\\&W}, P_\text{friction and windage}
Core loss Power lost in machine magnetic material due to hysteresis loss and eddy currents P_\text{core}
Rotor copper loss Due to resistance of rotor windings P_r, P_\text{RCL}
Stator copper loss Due to resistance of stator windings P_s, P_\text{SCL}
Miscellaneous loss Add 1% to losses to account for other unmeasured losses P_\text{misc}, P_\text{stray}


\begin{align}
P_\text{in}&=P_\text{SCL}+P_\text{RCL}+P_\text{core}+P_\text{F\\\&W}+P_\text{misc}+P_\text{out}\\
P_\text{AG}&=P_\text{RCL}+P_\text{F\\\&W}+P_\text{misc}+P_\text{out}\\
P_\text{mech}&=P_\text{F\\\&W}+P_\text{misc}+P_\text{out}
\end{align}

No-load test

Assumption Eqn Reason
rotor current is insignificant I_r \approx 0 high rotor resistance
no output mechanical power P_\text{out}=0 no load
high rotor resistance R_r/s\to \infty s\to 0, high slip at no load

Using assumptions, remove rotor part of circuit and only consider stator and magnetizing path.

Blocked rotor test

Assumption Eqn Reason
ignore magnetizing path I_r\ggg I_m magnetizing current is low compared to rotor current as rotor resistance is low
low rotor resistance R_r/s\approx R_r s\approx 1, slip is 1 when blocked
X_r\approx f_0/f_{BL}\times X_r' X_r'\approx X_{BL}/2
X_r'\approx X_{BL}/2 X_s\approx X_r'
X_s\approx X_r'

Equivalent model

Assumption Eqn Reason
x_m\approx X_m R_c\ggg X_m\Rightarrow r_c\lll x_m
r_c\approx {X_m}^2/R_c R_c\ggg X_m\Rightarrow r_c\lll x_m