mirror of
https://github.com/peter-tanner/advent-of-code-2020.git
synced 2024-11-30 10:50:17 +08:00
update day 11 soln to remove unneded crud
This commit is contained in:
parent
3d128f86ec
commit
ac6bfd9c71
115
11/a.py
115
11/a.py
|
@ -15,13 +15,9 @@ def simulate(mat): # Part A.
|
|||
for j in jdom:
|
||||
adjrows.pop(0)
|
||||
adjrows.append(mat[j+1]+['.']) if j+1 in jdom else adjrows.append([ '.' for x in idom ]+['.'])
|
||||
# print(adjrows)
|
||||
for i in idom:
|
||||
cell = mat[j][i]
|
||||
# print(i,j, cell)
|
||||
if cell == "#":
|
||||
# print(adj(adjrows))
|
||||
# print( [[ x[i] for i in range(i-1,i+2) ] for x in adjrows ] )
|
||||
adjm = adj(adjrows, i).count('#')-1
|
||||
if adjm > 3:
|
||||
mat_[j][i] = 'L'
|
||||
|
@ -31,120 +27,15 @@ def simulate(mat): # Part A.
|
|||
if adjm == 0:
|
||||
mat_[j][i] = '#'
|
||||
d += 1
|
||||
# [ print(x) for x in mat_ ]
|
||||
if d > 0:
|
||||
mat = simulate(mat_)
|
||||
return mat
|
||||
return mat
|
||||
|
||||
def a(mat): #Holy [] this is slow!
|
||||
# [ print(''.join(x)) for x in simulate(mat) ]
|
||||
#Holy [] this is slow!
|
||||
[ print(''.join(x)) for x in simulate(mat) ]
|
||||
count = []
|
||||
[ count.append(x.count('#')) for x in simulate(mat) ]
|
||||
return sum(count)
|
||||
print(sum(count))
|
||||
|
||||
# SEE b.py FOR PART 2 ANSWER
|
||||
# SEE b.py FOR PART 2 ANSWER
|
||||
# SEE b.py FOR PART 2 ANSWER
|
||||
# NOT USING THIS AS MY ANSWER.
|
||||
|
||||
# # print(a(mat))
|
||||
|
||||
# def diagrtx(mat, r, nc, pc, jdom):
|
||||
# [c, pb, nb] = [0, False, False]
|
||||
# for x in r:
|
||||
# y = -x + nc
|
||||
# if nb == False and -y in jdom:
|
||||
# cell = mat[-y][x]
|
||||
# if cell == '#':
|
||||
# c += 1
|
||||
# nb = True
|
||||
# elif cell == "L":
|
||||
# nb = True
|
||||
# y = x + pc
|
||||
# if pb == False and -y in jdom:
|
||||
# cell = mat[-y][x]
|
||||
# if cell == '#':
|
||||
# c += 1
|
||||
# pb = True
|
||||
# elif cell == "L":
|
||||
# pb = True
|
||||
# return c
|
||||
|
||||
# def hrtx(mat, r, j, idom):
|
||||
# for x in r:
|
||||
# if x in idom:
|
||||
# cell = mat[j][x]
|
||||
# if cell == "#":
|
||||
# return 1
|
||||
# break
|
||||
# elif cell == "L":
|
||||
# break
|
||||
# return 0
|
||||
|
||||
# def vrtx(mat, r, i, jdom):
|
||||
# for y in r:
|
||||
# if -y in jdom:
|
||||
# cell = mat[-y][i]
|
||||
# if cell == "#":
|
||||
# return 1
|
||||
# break
|
||||
# elif cell == "L":
|
||||
# break
|
||||
# return 0
|
||||
|
||||
# def RTX(mat, idom, jdom, i, j): #generate diagonals - this is quality '3am' code right here
|
||||
# nc = i + j
|
||||
# pc = j - i
|
||||
# # print(nc, pc)
|
||||
# # print(list(range(i,len(mat[0]))))
|
||||
# # [ print(x) for x in mat ]
|
||||
# rl = range(i-1, -1, -1)
|
||||
# lr = range(i+1, len(mat[0]))
|
||||
# u = range(j+1, 1)
|
||||
# d = range(j-1, -len(mat), -1)
|
||||
# return (
|
||||
# diagrtx(mat, rl, nc, pc, jdom) + hrtx(mat, rl, -j, idom)
|
||||
# + diagrtx(mat, lr, nc, pc, jdom) + hrtx(mat, lr, -j, idom)
|
||||
# + vrtx(mat, u, i, idom) + vrtx(mat, d, i, idom)
|
||||
# )
|
||||
# #wtf part over.
|
||||
|
||||
# def simulate2(mat):
|
||||
# idom = range(len(mat[0]))
|
||||
# jdom = range(len(mat))
|
||||
# mat_ = deepcopy(mat)
|
||||
# d = 0
|
||||
# for j in jdom:
|
||||
# for i in idom:
|
||||
# c = RTX(mat, idom, jdom, i, j)
|
||||
# cell = mat[j][i]
|
||||
# # print(i,j, c, cell)
|
||||
# if cell == "#":
|
||||
# if c > 4:
|
||||
# mat_[j][i] = 'L'
|
||||
# d += 1
|
||||
# elif cell == "L":
|
||||
# if c == 0:
|
||||
# mat_[j][i] = '#'
|
||||
# d += 1
|
||||
# [ print(''.join(x)) for x in mat_ ]
|
||||
# print('')
|
||||
# if d > 0:
|
||||
# mat = simulate2(mat_)
|
||||
# return mat
|
||||
# return mat
|
||||
|
||||
# #increment x
|
||||
# # print([-x + nc if -(-x + nc) in jdom else None, x + pc if -(x + pc) in jdom else None])
|
||||
|
||||
# # print({x:[-x + nc if -(-x + nc) in jdom else None, x + pc if -(x + pc) in jdom else None] for x in idom})
|
||||
|
||||
# def b(mat): #Holy shit this is even slower!
|
||||
# count = []
|
||||
# [ count.append(x.count('#')) for x in simulate2(mat) ]
|
||||
# return sum(count)
|
||||
|
||||
# print(b(mat))
|
||||
|
||||
# # def rtx(mat, i, j): #raytracer
|
||||
|
|
27
11/b.py
27
11/b.py
|
@ -3,7 +3,7 @@ from copy import deepcopy
|
|||
|
||||
mat = [ ['.']+list(x)+['.'] for x in open('input').read().replace('L','#').splitlines() ] #
|
||||
null = [ '.' for x in range(len(mat[0])) ]
|
||||
# cmat = [null] + [ ['.']+[ '0' for y in range(len(mat[0])-2) ]+['.'] for x in mat ] + [null]
|
||||
# cmat = [null] + [ ['.']+[ '0' for y in range(len(mat[0])-2) ]+['.'] for x in mat ] + [null] #cmat is the number of # according to the rule, in matrix form.
|
||||
mat = [null] + mat + [null]
|
||||
|
||||
def RTX_side(r, d, y, mat): # Yes i know this isn't proper raytracing but haha tech tip nvidia rtx 6900ti funny moment.
|
||||
|
@ -20,7 +20,6 @@ def RTX_side(r, d, y, mat): # Yes i know this isn't proper raytracing but haha t
|
|||
elif cell == '#':
|
||||
top = False
|
||||
c += 1
|
||||
# mat[y+j_d][i] = "Y"
|
||||
if y-j_d in d and bottom:
|
||||
cell = mat[y-j_d][i]
|
||||
if cell == 'L':
|
||||
|
@ -28,14 +27,12 @@ def RTX_side(r, d, y, mat): # Yes i know this isn't proper raytracing but haha t
|
|||
elif cell == '#':
|
||||
bottom = False
|
||||
c += 1
|
||||
# mat[y-j_d][i] = "Y"
|
||||
if side:
|
||||
if mat[y][i] == "L":
|
||||
side = False
|
||||
if mat[y][i] == "#":
|
||||
side = False
|
||||
c += 1
|
||||
# mat[y][i] = 'Y'
|
||||
if c == 3: break
|
||||
j_d += 1
|
||||
return c
|
||||
|
@ -46,35 +43,25 @@ def RTX_top(r, i, mat):
|
|||
return 0
|
||||
elif mat[j][i] == '#':
|
||||
return 1
|
||||
# mat[j][i] = "Y"
|
||||
return 0
|
||||
|
||||
# mat_ = list(map(list, zip(*mat)))
|
||||
|
||||
dim_j = len(mat)-1
|
||||
# dim_j = len(mat_)-2
|
||||
dim_i = len(mat[0])-1
|
||||
|
||||
domVERT = range(1,dim_j+1) #Domain for vertical / j values
|
||||
# [ print(x) for x in mat ]
|
||||
def RTX_ON(mat):
|
||||
mat_ = deepcopy(mat)
|
||||
d = False
|
||||
for x in range(1, dim_i):
|
||||
for y in range(1, dim_j):
|
||||
# [ print(x) for x in mat ]
|
||||
# mat[y][x] = 'X'
|
||||
rN = range(y-1,0,-1)
|
||||
rS = range(y+1,dim_j+1)
|
||||
|
||||
rE = range(x+1, dim_i+1)
|
||||
rW = range(x-1, 0, -1)
|
||||
|
||||
# print(list(rN), list(rS))
|
||||
# print(list(rE), list(rW))
|
||||
|
||||
c = (RTX_side(rE, domVERT, y, mat) + RTX_side(rW, domVERT, y, mat) + RTX_top(rN, x, mat) + RTX_top(rS, x, mat))
|
||||
# cmat[y][x] = (str)(c)
|
||||
# cmat[y][x] = (str)(c) #cmat is the number of # according to the rule, in matrix form.
|
||||
if mat[y][x] == '#' and c > 4:
|
||||
mat_[y][x] = 'L'
|
||||
d = True
|
||||
|
@ -82,13 +69,7 @@ def RTX_ON(mat):
|
|||
mat_[y][x] = '#'
|
||||
d = True
|
||||
if d == True:
|
||||
# print("")
|
||||
# print("")
|
||||
# [ print(x) for x in mat ]
|
||||
# [ print(x) for x in cmat ]
|
||||
# print("")
|
||||
# [ print(x) for x in mat_ ]
|
||||
# print("")
|
||||
#print(""); [ print(x) for x in mat ]; print(""); [ print(x) for x in cmat ]; print(""); [ print(x) for x in mat_ ]; print("") #good ol' print debugging
|
||||
mat = RTX_ON(mat_)
|
||||
return mat
|
||||
return mat
|
||||
|
@ -96,5 +77,5 @@ def RTX_ON(mat):
|
|||
|
||||
simulated = RTX_ON(mat) #This is slow AF
|
||||
|
||||
[ print(''.join(x)) for x in simulated ] #output ascii
|
||||
[ print(''.join(x)) for x in simulated ] #output ascii, why not?
|
||||
print(sum([ x.count('#') for x in simulated ]))
|
||||
|
|
Loading…
Reference in New Issue
Block a user