synchronous machine

This commit is contained in:
Peter 2022-10-27 21:05:17 +08:00
parent 60e0e326fa
commit 2c1e3d91d8
6 changed files with 59 additions and 1 deletions

BIN
2022-10-27-15-31-49.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

BIN
2022-10-27-15-32-07.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

BIN
2022-10-27-20-15-13.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

BIN
2022-10-27-20-15-19.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

BIN
2022-10-27-20-19-47.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

View File

@ -2,6 +2,17 @@
I draw them with a mouse
### Etc
#### FIRST-PASS CHECKS
- Double check all are in the correct phase! Multiplications and divisions by $\sqrt{3}$ or $3$ where necessary must be checked! Try annotating everything that does not have an associated phase.
- Check conjugate in current. $\bar{S}=\bar{V}\bar{I}^*$
#### Y-$\Delta$ transformation (Balanced case)
$Z_\Delta=3Z_Y$
### Types of power factors (From `ENSC2003`)
Where $\bar{S}=|\bar{S}|\angle\varphi$:
@ -17,7 +28,7 @@ $$ \varphi = \arctan\left(\frac{Q}{P}\right) = \theta_v-\theta_i$$
| PF [Load] | $[0,1)$ | $[0,1)$ | $1$ |
| PF [Source] | $[0,-1)$ | $[0,-1)$ | $-1$ |
## Power types in motor
## Power types in induction motor
| Type | Description | Equivalent terms |
| ------------------ | ---------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------- |
@ -142,3 +153,50 @@ Ignore magnetizing path
#### Diagram
![](2022-10-26-21-47-49.png)
## Synchronous machine
### Etc
$$E_A=V_{1\phi}-I_A(R_A+j X_s)$$
$$I_A=\text{CONJUGATE}\left(\frac{|S_{3\phi}|\angle\arccos(x)}{3V_{1\phi}}\right), \begin{cases}x=+\text{PF} && \text{lagging} \\ x=-\text{PF} && \text{leading}\end{cases}$$
### Voltage regulation
$$\text{VR}=\frac{|V_\text{NL}|-|V_\text{FL}|}{|V_\text{FL}|}=\frac{|E_A|-|V_{1\phi,\text{rated}}|}{|V_{1\phi,\text{rated}}|}$$
- $V_\text{FL}$ is the full-load voltage which is the full-load/maximum rated voltage at the output terminal.
- Calculate $E_A$ at full load by calculating the current as shown above.
- $V_\text{NL}$ is the no-load voltage, which in the no-load case will be $E_A$.
| No-load | Full-load |
| ---------------------------- | ---------------------------- |
| ![](2022-10-27-20-15-13.png) | ![](2022-10-27-20-19-47.png) |
| Power factor | Voltage regulation |
| ------------ | ------------------ |
| Lagging | Positive |
| Unity | Near 0 |
| Leading | Negative |
### Open and short circuit test
#### **Note** - double-check if the axis refers to per-phase or line voltage/current.
| Open-circuit test | Short-circuit test |
| ---------------------------- | ---------------------------- |
| ![](2022-10-27-15-31-49.png) | ![](2022-10-27-15-32-07.png) |
### Power flow
$P_\text{out}$ is the rated power
$$P_\text{out}=S_\text{rated}\times \text{PF}$$
$$
\begin{align}
P_\text{in}&=P_\text{copper}+P_\text{core}+P_\text{F\\\&W}+P_\text{misc}+P_\text{out}\\
P_\text{mech}&=P_\text{F\\\&W}+P_\text{misc}+P_\text{out}
\end{align}
$$
---