mirror of
https://github.com/peter-tanner/Power-and-Machines-notes.git
synced 2024-11-30 09:00:25 +08:00
Power and Machines (ENSC3016) notes I made.
.gitignore | ||
2022-10-25-11-33-40.png | ||
2022-10-25-11-45-26.png | ||
2022-10-25-11-46-04.png | ||
2022-10-26-21-47-29.png | ||
2022-10-26-21-47-49.png | ||
2022-10-26-21-48-00.png | ||
2022-10-26-21-53-13.png | ||
2022-10-26-22-06-19.png | ||
2022-10-26-22-43-25.png | ||
2022-10-26-22-48-09.png | ||
2022-10-27-15-31-49.png | ||
2022-10-27-15-32-07.png | ||
2022-10-27-20-15-13.png | ||
2022-10-27-20-15-19.png | ||
2022-10-27-20-19-47.png | ||
README.md |
Why are the drawings bad?
I draw them with a mouse
Etc
FIRST-PASS CHECKS
- Double check all are in the correct phase! Multiplications and divisions by
\sqrt{3}
or3
where necessary must be checked! Try annotating everything that does not have an associated phase. - Check conjugate in current.
\bar{S}=\bar{V}\bar{I}^*
Y-\Delta
transformation (Balanced case)
Z_\Delta=3Z_Y
Types of power factors (From ENSC2003
)
Where \bar{S}=|\bar{S}|\angle\varphi
:
\varphi = \arctan\left(\frac{Q}{P}\right) = \theta_v-\theta_i
Lagging | Leading | Unity | |
---|---|---|---|
Voltage | Current behind | Current ahead | In phase |
Load type | Inductive | Capacitive | Resistive |
Q |
Q>0 |
Q<0 |
Q=0 |
\varphi |
\varphi>0° |
\varphi<0° |
\varphi=0° |
PF [Load] | [0,1) |
[0,1) |
1 |
PF [Source] | [0,-1) |
[0,-1) |
-1 |
Power types in induction motor
Type | Description | Equivalent terms |
---|---|---|
Input power | Power into machine. V_T=V_{3\phi} , I_L=I_{3\phi} |
P_\text{in} , \sqrt{3}V_TI_L\cos(\theta) |
Output power | Mechanical output power of the machine, excludes losses | P_\text{out} , P_\text{load} |
Converted power | Total electrical power converted to mechanical power, includes useful power and mechanical losses inside machine | P_\text{conv} , P_\text{converted} , P_\text{mech} , P_\text{developed} , \tau_\text{mech}\times\omega_m |
Airgap power | Power transmitted over airgap. | P_\text{AG} , \tau_\text{mech}\times\omega_s |
Mechanical loss | Power lost to friction and windage | P_\text{mechanical loss} , P_\text{F\\\&W} , P_\text{friction and windage} |
Core loss | Power lost in machine magnetic material due to hysteresis loss and eddy currents | P_\text{core} |
Rotor copper loss | Due to resistance of rotor windings | P_r , P_\text{RCL} |
Stator copper loss | Due to resistance of stator windings | P_s , P_\text{SCL} |
Miscellaneous loss | Add 1% to losses to account for other unmeasured losses | P_\text{misc} , P_\text{stray} |
\begin{align}
P_\text{in}&=P_\text{SCL}+P_\text{RCL}+P_\text{core}+P_\text{F\\\&W}+P_\text{misc}+P_\text{out}\\
P_\text{AG}&=P_\text{RCL}+P_\text{F\\\&W}+P_\text{misc}+P_\text{out}\\
P_\text{mech}&=P_\text{F\\\&W}+P_\text{misc}+P_\text{out}
\end{align}
Note - assume loss is 0 if not mentioned!
Type | Description | Symbols |
---|---|---|
Load torque, Shaft torque | Torque experienced by load after all losses | \tau_\text{load} , \tau_\text{shaft} |
3\phi
induction motor
Etc.
-
Slip speed
N_\text{slip}=N_{s\text{ (sync)}}-N_r=sN_{s\text{ (sync)}}
-
"1/4 of rated load" != "1/4 times full load"
- Means 1/4 of full load slip as it is in the linear region. Accounts for the minimum load.
-
Rated power stated in machine specification refers to the output power
P_\text{out}
, and excludes all losses. -
Speed regulation using machine speed: $$\text{SR}=\frac{N_{r,\text{NL}}-N_{r,\text{FL}}}{N_{r,\text{FL}}}
Diagram
Equivalent model
Assumptions
x_m\approx X_m
R_c\ggg X_m\Rightarrow r_c\lll x_m
x_m=\frac{{R_c}^2}{{R_c}^2+{X_m}^2}X_m\approx\frac{\cancel{{R_c}^2}}{\cancel{{R_c}^2}}X_m=X_m
r_c\approx {X_m}^2/R_c
R_c\ggg X_m\Rightarrow r_c\lll x_m
r_c=\frac{{X_m}^2}{{R_c}^2+{X_m}^2}R_c\approx\frac{{X_m}^2}{{R_c}^2}R_c=\frac{{X_m}^2}{R_c}
Diagram
DC test
\Delta
machine
R_s=\frac{3}{2}\cdot\frac{V_{\text{DC},3\phi}}{I_{\text{DC},3\phi}}
Y machine
R_s=\frac{1}{2}\cdot\frac{V_{\text{DC},3\phi}}{I_{\text{DC},3\phi}}
No-load test
Assumptions
P_\text{out}=0
- No output power as no load.
R_r/s=\infty
andI_r=0
- Infinite rotor resistance, ignore rotor path.
Diagram
Using assumptions, remove rotor part of circuit and only consider stator and magnetizing path.
Blocked rotor test
Assumptions
- Ignore magnetizing path,
I_m=0
I_r\ggg I_m
asR_r/s\ggg Z_m
R_r/s=R_r
,s=1
- Slip is
1
as rotor is blocked.
- Slip is
x_s=x_r'
- Same number of turns in stator and rotor
- and
x_r=f_0/f_\text{BL} \times x_r'
- Note:
x_r'
is the inductance atf_\text{BL}
, the blocked rotor test frequency which is less than the nominal frequencyf_0
- Note:
Diagram
Ignore magnetizing path
Single-phase induction motor
Diagram
Blocked-rotor
Diagram
No-load
Diagram
Synchronous machine
Etc
E_A=V_{1\phi}-I_A(R_A+j X_s)
I_A=\text{CONJUGATE}\left(\frac{|S_{3\phi}|\angle\arccos(x)}{3V_{1\phi}}\right), \begin{cases}x=+\text{PF} && \text{lagging} \\ x=-\text{PF} && \text{leading}\end{cases}
Voltage regulation
\text{VR}=\frac{|V_\text{NL}|-|V_\text{FL}|}{|V_\text{FL}|}=\frac{|E_A|-|V_{1\phi,\text{rated}}|}{|V_{1\phi,\text{rated}}|}
V_\text{FL}
is the full-load voltage which is the full-load/maximum rated voltage at the output terminal.- Calculate
E_A
at full load by calculating the current as shown above. V_\text{NL}
is the no-load voltage, which in the no-load case will beE_A
.
No-load | Full-load |
---|---|
Power factor | Voltage regulation |
---|---|
Lagging | Positive |
Unity | Near 0 |
Leading | Negative |
Open and short circuit test
Note - double-check if the axis refers to per-phase or line voltage/current.
Open-circuit test | Short-circuit test |
---|---|
Power flow
P_\text{out}
is the rated power
P_\text{out}=S_\text{rated}\times \text{PF}
\begin{align}
P_\text{in}&=P_\text{copper}+P_\text{core}+P_\text{F\\\&W}+P_\text{misc}+P_\text{out}\\
P_\text{mech}&=P_\text{F\\\&W}+P_\text{misc}+P_\text{out}
\end{align}